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Abstract. Mobile network performance and user Quality of Experience
(QoE) will be negatively affected by the explosion of mobile data traf-
fic. Recent research has focused on local caching at the wireless edge, as
motivated by the 80/20 rule regarding content popularity. By caching
popular contents at base stations (BSs), backhaul congestion and con-
tent access latency can be dramatically reduced. To address the limited
storage size of BSs, an algorithm optimizing cooperative caching has
been highlighted. Contents requested by mobile users that cannot be
obtained locally could be transferred by cooperative BSs. In this paper,
we propose a cooperative caching algorithm based on BS content access
patterns. We use tensor decompositions with distance constraint to ana-
lyze interaction between users, contents and base stations. Thus, BSs
with small geographical distances and similar content access patterns
constitute a cooperative caching domain. Simulation results based on a
real dataset of usage detail records (UDRs) demonstrate the superior
performance and promising practical gains in caching of the proposed
caching method compared to user clustering and BS clustering.

Keywords: Cooperative caching · Mobile Internet ·
Multi-aspect data and analysis · Network edge · Tensor decomposition

1 Introduction

In recent years, rapid ubiquity of advanced mobile applications with huge band-
width requirements has dramatically increased mobile and Wi-Fi traffic. The
Cisco Visual Networking Index (VNI) predicts that mobile data traffic will
increase at a compound annual growth rate of 47% resulting in an increase to 49
exabytes monthly by 2021, which is a 7-fold increase over mobile data traffic in
2016. Globally, the proportion of smart devices and connections will increase to
75% in 2021, compared to 46% in 2016. As the explosive growth of network traf-
fic, traditional core network architecture cannot accommodate rapidly increasing
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user demand generated by the explosive growth of network traffic, due to long
latency and the heavy burden on backhaul links.

Mobile edge caching [1,2] has been identified as one of the most disruptive
enablers for 5G networks by the 5G Infrastructure Public Private Partnership,
both to reduce content access latency and to alleviate backhaul congestion by
relocating computing and storage units closer to the edge of the network [3].
This approach better accommodates proximal user demand while eliminating
redundant transmissions from the remote sources [4].

To meet the ever-increasing demand for resource utilization and Quality of
Experience (QoE), efficient cooperative content caching and delivery algorithm
is suggested for cooperative caching between users and BSs. In most previous
research on cooperative caching, cooperative base stations (BSs) are grouped
based on placement, without considering content access behavior at the network
edge or the interest distribution of mobile users. Thus, the cache hit ratio is not
maximized.

With the popularity of the mobile Internet, the diversity of user content
access behavior reflects to the heterogeneity of users [5]. With certain numbers
of BSs, the distribution of mobile user interest and the effect of spatial-temporal
information are predictable [6]. Therefore, we can apply cooperative caching
based on user access patterns at the network edge to facilitate familiar content
access behavior in clusters of BSs and achieve more efficient utilization of net-
work resources. In next-generation cellular networks, the distance between small
cells decreases and while physical layer technology is already at the boundary of
Shannon capacity [7,8]. The proposed method would decrease the cost of collab-
oration, making cooperation caching based on user access patterns reasonable
and feasible.

This paper proposes a cooperative caching algorithm based on user access
patterns at the network edge. Local caching by cooperative base stations at the
network edge constitutes a cooperative domain, in which base stations share
contents. The cooperative domain is determined by clustering based on multiple
aspects of mobile user content requests at the network edge. We have designed
an efficient content placement and delivery algorithm that maximizes the cache
hit ratios. Based on a dataset of real usage detail records (UDRs), results demon-
strate that the proposed algorithm achieves a higher hit ratio while controlling
the cooperative cost and improving QoE.

2 Related Work

Cooperative caching eases the traffic in the core network and reduces the overall
download time, hence enhancing user perceptions of QoE [9]. Some studies have
focused on cooperation between caching nodes, grouping them to improve the
efficiency of network resource utilization and QoE.

Chen et al. [10,11] proposed a cluster-centric small cell network with a com-
bined cooperative caching and delivery algorithm. Small base stations (SBSs)
were grouped into disjoint clusters based on geographic position information, in
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which in-cluster cache space was utilized as an entity. Wang et al. [12] proposed
a beamforming scheme that coordinates multiple remote radio heads (RRHs) in
C-RAN to improve the quality of experience (QoE) of users by maximizing their
aggregate weighted quality of service (QoS). Hu et al. [13] presented a general
framework to model the video diffusion among mobile users and user QoS of
the MSVS service over the wireless infrastructure. Li et al. [14] focused on the
cooperative cell caching for future mobile networks, where each cell (e.g., base
station) can cache popular contents for improving QoS. Fan et al. [15] proposed
a clustering-based downlink resource allocation algorithm to allocate downlink
spectrum resources in small cell networks. Yan et al. [16] proposed a hierarchi-
cal clustering-based caching strategy that improved caching efficiency by using
cooperative caching for BS communication.

Another well-known strategy is cooperative caching based on user clustering.
In [17,18], the users within the network were clustered according to their content
popularity distribution and caching was executed accordingly to maximize the
hit ratios. Unlike clustering algorithms based on user interest distribution, in [19],
users were grouped based on their locations. To maximize the cache hit ratios,
BSs used joint caching and delivery policies for users within communication
range.

Cooperative content placement and delivery algorithms for known coopera-
tive BSs is a popular research topic in cooperative caching. These studies gen-
erally assume or emulate the cooperation relationships of BSs directly, using
this as basis of efficient algorithms designed to improve QoE. In [20], Scalable
Video Coding (SVC) with cooperative caching was used to enable caching and
serve sliced video layers that can serve different bitrates to improve utilization
of caching resources. In [21,22], the authors developed light-weight cooperative
cache management algorithms based on a heterogeneous cellular network (Het-
Net). These algorithms are considered promising architectural techniques for 5G
as they maximize the traffic volume served by caching while minimizing the
bandwidth cost.

The prior studies explore cooperation caching design content replacement
and delivery algorithms for cooperative BSs to maximize QoE. Though diverse
results have been acquired, the determination of cooperative relationship must be
revised. When the cooperative relationship of base stations is directly assumed,
cooperative BSs are not grouped and only a few base stations are considered
in the simulation. Conversely, in cooperation caching, in which BSs are grouped
based on geographical positions, user mobile access behavior is ignored. Coopera-
tion caching, that is, grouping users based on interest distribution or placement,
should inform the cooperative relationship with BSs. However, this approach
generates suboptimal results in terms of precision.

Inspired by the preceding studies, we assert that grouping BSs into clus-
ters is more direct because the cooperation caching occurs on the caching unit.
Cooperative BSs with close geographical distances access similar content, thus
efficiently utilizing caching resources. The method proposed in this paper can
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cluster BSs based on mobile user content access behavior at the network edge
by considering multiple aspects to determine a suitable set of cooperative BSs.

3 User Behaviour Analysis

Before introducing the cooperative caching algorithm, we will analyze user access
patterns and show the feasibility of our method.

We considered a real dataset of UDRs obtained from a mobile network opera-
tor in Jinhua, China. The dataset contained the data access records of 1.6 million
mobile phone users over 23 days, covering 8,845 base stations, and involving up to
172,324 contents.

The dataset, which was stored in MySQL, contained information about the
content access behavior of mobile users and as described by the fields listed in
Table 1. Note that user information privacy was preserved by encrypting sensitive
data.

Table 1. Data of the usage detail records.

Fields Description

UID An encrypted telephone number indicating a mobile user

Time start The time that a user begins the content request

Time end The time that a user ends the content request

LAC & CID The base station providing content resources

URL The identity of the content access

The UDR dataset also contained the geographical position information provided
by the corresponding relationship of local area code (LAC) and cell ID (CID)
and position as depicted in Table 2.

Table 2. Description of BSs geographical position information.

Fields Description

LAC & CID The base station providing content resources

Longitude Longitude of BSs

Latitude Latitude of BSs

First, we consider content popularity. Various types of content are available to
mobile users. But, owing to the individuality reflected by user preferences and
the demonstration effect, the popularity of diverse content differs among users.

Figure 1 shows the diversity content popularity distribution. Content popu-
larity reflects average interests of multiple users.
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From Fig. 1(b), we observe that within 23 days, the content with a total visit
frequency greater than 100 accounted for only 4.659% of traffic, and the content
with a total visit frequency greater than 1000 accounted for only 1.166% of traffic.
This demonstrates that content popularity follows the power-law distribution.
Fewer popular contents are accessed by larger numbers of users. This imbalance
in content popularity follows the Pareto principle, that is, roughly 80% of traffic
is attributed to 20% of the content. Thus, it is sensible to cache content with
high popularity at base stations, as this practice would consume little cache space
relative to the vast majority of user interests covered, thereby greatly improving
the utilization of cache resources and enhancing QoE.

Fig. 1. Content popularity: (a) statistical distribution and (b) cumulative distribution
function (CDF).

From Fig. 1 also note that the content popularity distributions exhibited a long-
tail effect, and the second gradient of access, in which access frequency was
less than 100, contained many types of content. Although the number of visits
did not reach the maximum, the total number of visits and the coverage of the
mobile user group cannot be ignored [23]. The long tail effect is fully utilized
in recommender systems [24]. Based on this observation, we suggest that when
considering edge caching, we should increase content diversity as much as possi-
ble while still guaranteeing the popularity of cached content. Thus, we maximize
the limited cache size to satisfy more users’ requests locally. The second consid-
eration concerns user behavior. Mobile networks offer a broad range of content,
available anywhere at any time, without any cost difference. But, whether every
user will access the majority of network content is questionable. We use the UDR
dataset to answer this question. Per Fig. 2, a total of 84.835% of mobile users
had fewer than 10 visits during the 23-day observation period. This indicates
that most mobile users were interested in a low variety of content. From Fig. 2,
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we learn that every user prefers certain content, but that less popular content is
accessed by most mobile users. Hence, there must be an overlap of the individual
user preferences, making the sharing of cached content feasible.

Fig. 2. Mobile user preference: (a) statistical distribution and (b) cumulative distribu-
tion function (CDF).

Regarding the content to be cached at BSs, we explore whether there are dif-
ferences or similarities in the distribution of content requested by mobile users
under different base stations. For this study, we collected the statistics of content
accessed via different base stations, and the cosine similarity [25] was used to
measure the similarity of content popularity distributions at BSs. Cosine simi-
larity characterizes similarity by measuring the cosine of the angle between the
vectors characterizing individual characteristics. The value range was [−1, 1],
where greater values reflect stronger similarity in the individual. The heat map
shown in Fig. 3 visually demonstrates the similarity of content popularity at dif-
ferent base stations. Overall, there is a certain degree of similarity in the user
preference at different base stations. Each base station has a certain coverage
area where mobile users access different contents. Although each user has a per-
sonalized preference [11], the role of the group reduces this difference. Hence,
the requested contents at different BSs share similarities. At the same time, it
can be observed that there is a non-negligible difference in the content popular-
ity at base stations. Different base stations serve different users. As observed in
Fig. 2, most users have a low diversity of interests, which produces differences in
content popularity among base stations with small intersections of user groups.
Furthermore, similarities and differences also exist in the interest distribution
of Internet content served by base stations. Hence, base stations with similar
distributions of content interests can be clustered together to respond to more
requests for user content by employing content-sharing. Thus, the core network
traffic can be uploaded and user QoE is improved.
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Fig. 3. Similarity of content popularity at different base stations (BSs).

Based on the above, we cache content with high popularity at BSs. Given that
the content accessed is dynamic and changes over time, then how does content
popularity changes with time? To answer this question, we measured the simi-
larity of the content popularity of any two days within the 23-day observation
period for the entire dataset using Jensen-Shannon (JS) divergence. The result
is as depicted in Fig. 4.

The JS divergence, with range [0, 1], measures the difference between the two
probability distributions using the arithmetic mean of the correlation entropy of
each probability distribution and the mean of the two probability distributions.
When the two probability distributions are the same, the JS divergence is 0,
otherwise it is 1. In this paper, 1-JS divergence is used as a measure of the
degree of similarity between two probability distributions of content popularity.
As observed in Fig. 4, the similarity is exhibited scores of 0.93 and higher. Note
that the closer the two dates, the higher the similarity. Hence, the distribution
of content popularity is stable over time, which probably results from the low
diversity of user preference and the strong stickiness of Internet content. Based
on this observation, we suggest that it is feasible to use online records from the
previous day to guide follow-up cooperative caching.
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Fig. 4. Temporal stability of content popularity.

To summarize, we observe that the preferences of different users overlap and that
similarities and differences exist in the interest distribution of Internet content
served by base stations. As much high popularity content as possible can be
cached at BSs within constraints of storage size if BSs with similar content
popularity distribution can share the cached content to reduce the storage size.
The stability of the content popularity distribution guarantees the feasibility
of caching content with high popularity at BSs using the proposed cooperative
caching and delivery algorithm.

4 System Model and Problem Analysis

4.1 System Model

The cooperative edge caching architecture focused on cooperation among BSs
is illustrated in Fig. 5. Outside the mobile network operator (MNO) network,
some service providers (SPs), such as YouTube and Facebook, offer content files
over the Internet. Inside the MNO network, numerous BSs cover the service
area. Mobile user content requests are received and served by their associated
BSs, while SPs cache content onto the core network supported by the MNO.
These contents are transmitted to BSs via backhaul link to satisfy the content
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requests of mobile users served by the BSs. Because the content requests made
by different users or from different locations are inevitably intersected [5], the
transmission of contents increases backhaul traffic and is frequently duplicated.

To alleviate backhaul congestion and enhance QoE, cache-enabled Cloudlets
can be combined with traditional base stations distributed at the edge of the
network. Each Cloudlet provides content services for mobile users in their respec-
tive regions. Data Centers (DCs) and Distributed Cloudlets use backhaul links to
control information transmission and distribute content to various local caches.
Each Cloudlet communicates with each other Cloudlet to transfer information
and share content, reducing data traffic to and from remote DCs and improving
caching capability.

Cloudlets and their neighboring BSs constitute cooperative caching domains.
As shown in Fig. 5, several cooperative caching domains exist at the network
edge. The caching-enabled BSs are connected and communicate with each other
via X2 link [26]. To satisfy as many content requests from mobile users in the
network edge as possible, the associated local BS either returns the content if it
is locally available or retrieves the content from other BSs. In this way, some of
the congested and costly backhaul link traffic becomes lower cost, internal traffic
between BSs, reducing content access latency and increase quality of service
(QoS).

Under this architecture, data content services are implemented. This paper
focuses on two problems:

1. The definition of cooperative caching domains and storage of valuable contents.
2. Intercommunication between neighboring BSs in limited-capacity local

caching within a cooperative domain.

In response to above issues, this paper tends to make an analysis and discus-
sion in the following sections.

4.2 Problem Statement

Through the tensor decomposition of multi-source relational data, base station
clustering with relatively consistent content access patterns and close spatial
distances was achieved and base station clustering was correlated with content
clustering. If the content accessed via the base station was relatively similar, and
the set of users served by the base station also exhibited similarity, then these
base stations were considered to have a large overlap in the content that can be
cached because of the low diversity of user interests and the reduced variation in
services requested by similar user sets. As content access increases in similarity,
increasing portions of base station collections of user interests may be cached
by each base station, without having to cache the same or similar content on
each base station. Thus the base stations use surrounding base stations collabo-
ratively. The cached content can substantially increase the heterogeneity of the
content of the edge base station cache and greatly increase the utilization of
cache resources, which is equivalent to expanding the cache size.
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Fig. 5. Illustration of the cooperative edge caching architecture focused on collabora-
tions among back stations (BSs).

It is worth noting that to mitigate the negative influence of content sharing
between the base stations on request delay and user experience, the base sta-
tions with content sharing relationships should have shorter duration transmis-
sion time. This indicator is measured by attributes such as transmission band-
width, transmit power, data rate, path loss index, transmission power, signal-
to-interference-plus-noise ratio (SINR), channel fluctuation, and geographical
distance [27]. This study defines the cost of collaboration as the effect of net-
work content sharing among base stations on user experience. When hitting the
user experience quality index and optimizing it, the negative impact of collab-
oration costs cannot be ignored. In this paper, the cost of content transmission
between the base stations is measured by the geographical distance between base
stations, as shown in (1).

costij = cost(BSi, BSj) = f(dij) (1)

Intuitively, to minimize the impact of content delivery on the average request
latency of mobile users, the geographical distance between the base stations
attempting to cooperate should also be minimized. In the case of transmission
bandwidth, data rate and other parameters, the cost of cooperation can be more
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complex and refined. Therefore, the collaboration cost defined in this paper is
universal, and can be used in applications that consider additional factors by
introducing new parameters to further describe collaboration cost.

To simplify the problem complexity and highlight the content placement and
transmission strategies that this study attempted to optimize, we assumed that
each content file was of equal length and normalized this length to one byte.
As do many papers on cooperative caching [19,28–30], we assume that it is
reasonable to set the value of all file lengths to one byte because files of different
lengths may be segmented into equal-length fragments that implement code-
based cooperative caching [30]. Hence, the maximum amount of content that
can be stored on each base station is the number of cache units.

Base station clustering is applied to form cooperative cache domains by iden-
tifying clusters of base stations with cooperative relationships. After determining
the cooperation cache domain and selecting the content collections to be cached
in this domain, it was necessary to determine which contents should be cached
given the limited cache capacity and how the base stations should execute rout-
ing to maximize the hit rate while controlling the cooperation cost. Hence, the
importance of determining the types and contents to be cached.

5 Cooperative Content Caching and Delivery Algorithm

5.1 Framework

The framework of algorithm proposed in this paper is diagrammed in Fig. 6. The
framework of the method can be divided into three stages. In the first stage, the
content access behavior will be extracted from the original UDRs through a
3-order tensor while simultaneously obtaining the geographical distribution of
BSs. In the second stage, we use tensor decomposition to mine content access
patterns. The tensor can extract and model interaction relationships between
base stations, users, and content. Hence, BS clustering based on similar content
access patterns that considers geographical distances informs the construction
of various cooperative caching domains. In the final stage, after comprehensive
consideration of the cache ratio and the content transmission cost, a distributed
optimization cooperative caching and delivery algorithm is proposed.

5.2 Cooperative Caching Domain

Cooperative caching domain consists of several cooperative BSs. Base station
cooperation occurs when the BSs share content by caching content at one BS
and using it to satisfy content requests from mobile users served by other BSs in
the same cooperative caching domain. This efficiency is based on the expected
similarity of the content served by different BSs in the same caching domain.

Our previous research demonstrated that mobile user content preferences
exhibit individual characteristics and stability [5]. Correspondingly, content
access at BSs serving similar mobile users is expected to be similar. Therefore,
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Fig. 6. Algorithm framework.

we assert that BSs with similar requested content and users share similar user
access patterns. Thus, cooperative caching domains can be determined based on
the aspects of content access and mobile users.

Like [27], we assume that caching-enabled BSs in the same cooperative
domain are connected via X2 link. To reduce the transmission cost, coopera-
tive BSs operating in the same cooperative caching domain should be close in
geographical distance.

In conclusion, BSs in a single cooperative caching domain should satisfy
requests for similar user access patterns within a smaller geographical distribution.

As mentioned previously, content access behavior of the base station from
the service user and content must be mined and analyzed. All three dimensions,
base station, user, and content, must be considered. The traditional matrix can
only capture two dimensions of information [31]. In the application scenario of
this paper, it is necessary to perform two-dimensional data analysis and then
integrate it. In the analysis of two-dimensional data, other dimensions of infor-
mation were not involved, thus introducing errors. Hence, this paper attempts
to capture and analyze multiple dimensions of information simultaneously, to
better examine interactions between different dimensions of information.
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To discover neighbor BSs accessing similar content requested by similar users,
this paper used tensor decompositions [32] to achieve pattern mining. It extended
data analysis to multiple dimensions and captured multiple facets of access pat-
terns, thus outweighing the two-dimensional representation of data [31]. Tensors
captured users content access behavior at BSs while Tucker decompositions real-
ized multi-faceted analysis for content access behavioral pattern discovery.

Using the mobile user UDR dataset, we focused on identifying patterns of
content access behavior at the network edge. Let the dataset be a list of tuples
(u, b, c) denoting that a mobile user via BS visits content c. We model the data as
a 3-order tensor X ∈ R

n(a)×n(b)×n(c) , where n(u) is the number of mobile users,
n(b) is the number of BSs, and n(c) is the number of contents. Tensor X(u, b, c)
has a value of the number of existing tuples (u, b, c). Our goal is to factorize the
tensor

X ≈ G ×(u) U ×(b) B ×(c) C (2)

where G ∈ R
R(a)×R(b)×R(c) is the core tensor, which encodes the behavioral pat-

terns, i.e., the relationships among users, BSs, and content groups. The proba-
bility represented by G(r(u), r(b), r(c)) indicates the behavior of the r(u)-th user
group via the r(b)-th BS group visits the r(c)-th content group, which can be
expressed by simple mathematical formulae as (3)

G(r(u), r(b), r(c)) ≈
p(user ∈ r(u), BS ∈ r(b), content ∈ r(c) | (user,BS, content)happens)

(3)

The user projection matrix is given as U ∈ Rn(u)×R(u). where U(i(u), r(u))
represents the probability that the i(u)-th user belongs to the r(u)-th group,
which can be formulated as (4)

U(i(u), r(u)) = p(useri(u) | r(u)) = p(useri(u) ∈ r(u)) (4)

where B ∈ Rn(b)×R(b) is the BSs’ projection matrix and B(i(b), r(b)) represents
the probability that the i(b)-th BS belongs to the r(b)-th group, which can be
formulated as (5)

B(i(b), r(b)) = p(BSi(b) | r(b)) = p(BSi(b) ∈ r(b)) (5)

where C ∈ Rn(c) × R(c) is the contents’ projection matrix and Ct(i(c), r(c))
represents the probability that the i(c)-th content belongs to the r(c)-th group,
which can be formulated as (6)

C(i(c), r(c)) = p(contenti(c) | r(c)) = p(contenti(c) ∈ r(c)) (6)

Note that in many applications including UDRs, the tensor is highly sparse, that
is, many of the values are zero, because of the very nature of the application
[32]. Commonly, elements in the tensor may be constrained by practical factors,
such as distance constraint in this paper, which considers distance factors in the
proposed cooperative content caching and delivery algorithm.
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To solve the sparsity problem and introduce realistic constraints in tensor
decompositions, as well as to guide the decomposition to identify the correct
structure coinciding with features of cooperative caching domain, we introduce
the BSs’ geographical distance as side information and impose regularization to
tackle sparsity and constraints. The regularizers can be encoded as Laplacian
matrices L(b), where the (i, j)-th element represents the similarity between the
i-th and j-th entities, i.e., BSs. The similarity should be inversely proportional
to how far apart the BSs are located.

Referencing multi-faceted analysis method for behavioral pattern discovery
proposed in [33], we incorporate the multi-faceted information and constraints
into the tensor decomposition. We denote by µ(b) the weight of the BS-pattern
Laplacian matrix L(b). The covariance matrix of the m-th pattern is

C(m) = X(m)X(m)T + μ(m)L(m) (7)

where X(m) is the pattern-m matricizing of the tensor X. The projection matrices
can be computed by diagonalization: they are the top r(m) eigenvectors of the
covariance matrix C(m).

At the same time, benefiting from the tensor’s extreme sparsity, the compu-
tational complexity of the algorithm in [33] appears as a linear relationship with
the sum of the number of elements in each dimension. Additional details about
multi-faceted tensor decomposition are available in [33].

To summarize, after incorporating the multi-faceted information and con-
straints into the tensor decomposition, clustering is executed based on BSs, con-
tent, and their interactions. The in-cluster BSs serve similar content to similar
mobile users [34]. In addition, the distance constraint minimizes the in-cluster
geographical distribution of BSs. As a result, BS clusters can be used to deter-
mine cooperative caching domain, while simultaneously clustering users with
strong interactions with clustered BSs establishes the caching content set in a
given cooperative domain.

5.3 Cooperative Content Caching and Delivery Method

After determining the cooperative caching domain and its content set, we should
consider efficient content placement and delivery algorithm with limited caching
capacity to maximize cache hit ratios and reduce cooperative cost. It is crucial
to decide which files should be cached and where to cache them.

Given N BSs composing R collaboration caching domains, where the r-th
collaboration caching domain contains Nr BSs. The frequency of an interac-
tion involving BSj in one cooperative caching domain is ωj , considered to
be the probability of BSj belonging to this cooperative caching domain. The
content set associated strongly with the r-th cooperative caching domain is
{f1, f2, ...Fn, ...fFr

} ,where Fr = Nr ∗ cachesize, cachesize denotes the size
of the space available for BS caching. The number of files involved is F, the
popularity of fn at BSj is (pj)n.
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For convenience, we assumed that each file has the same file length and
normalized to 1 byte. This is reasonable because files of different length can
be divided into groups of the same length. Thus, the maximum number of
files each BS can store is also the cache size. Constraint to the feature of
dataset, we measure transmission cost in terms of geographical distance, namely,
costij = cost(BSi, BSj) = f(dij). In real-world experience, the cooperative cost
is related to many factors such as transmission bandwidth, data rate, path loss
index, signal-to-interference-plus-noise (SINR) ratio, and geographical distance.
With these factors obtained, the cooperative cost realizes greater complexity and
sophistication. The cost we defined here has universality. In applications consid-
ering more factors, we can incorporate the additional factors in the definition of
cooperative cost.

To achieve a distributed caching mechanism aimed at maximizing the cache
hit ratio and reducing the cooperative cost, we must determine which files are
to be cached and where to cache them in every cooperative caching domain.
Meanwhile, we must also determine which BSs can satisfy the content requests
that cannot be served locally. That is, we must solve the problems of what to
cache, where to cache, and how to cooperate, which is realized by the proposed
caching placement and delivery algorithm.

Content placement matrix (xf
j )N×F , where xf

j ∈ 0, 1 denotes whether or not
f is cached at BSj .

Content delivery matrix δ = δf
jkN×N×F

, where δf
jk ∈ {0, 1} denotes that

whether BSj will ask BSk to transfer the file f which is stored not in BSj but
in BSk and is requested by users serviced by BSj .

max
xf
j ,δf

jk

R∑

r=1

(
Nr∑

j=1

ωj

Tr∑

f=1

pf
j (xf

j +
Nr∑

k=1

δf
jk)) (8a)

min
δf
jk

R∑

r=1

(
Nr∑

j=1

Nr∑

k=1

Tr∑

f=1

δf
jk · pf

j · edjk) (8b)

s.t. xf
j +

Ni∑

k=1

δf
jk ≤ 1 ∀i,∀f (8c)

deltaf
jk ≤ Xf

k ∀i,∀k,∀f (8d)
F∑

f=1

xf
j ≤ cachesize ∀j (8e)

δf
jj = 0 ∀j,∀f (8f)

xf
j ∈ 0, 1, δf

jk ∈ 0, 1 ∀i,∀k,∀f (8g)

– Our objective is measured in terms of both the hit ratio and cost of the
information exchange between BSs incurred by the users of each cooperative
caching domain. The objective is to maximize the hit ratio for serving users,
while minimizing the cooperation cost, as shown in (8a) and (8b).
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– The constraints in (8c) denote the cooperation among BSs and guarantee that
any content request will not be routed to other BSs if the content is locally
available.

– Constraint (8d) states that a content can be fetched from the BS only if the
BS caches that content.

– The constraints in (8e) enforce resource limits at each BS, stating that all the
items cached at a BS cannot exceed its cache capacity.

– Constraint (8f) guarantees the nonexistence of the content request transfer-
ring to local BS.

– Constraint (8g) defines this problem as 0–1 integer programming.

The problems expressed in (8a) and (8b) constitute a multi-objective optimiza-
tion problem. The value range and dimension of the hit ratio and cooperative
cost are not uniform. Therefore, we first set the min-max standardization of the
collaboration cost to be in the range of [0, 1]. Then we used the linear weighted
method to integrate the two optimization goals into a single optimization for-
mula, given as (9).

minxf
j ,δf

jk

R∑

r=1

(S(
Nr∑

j=1

Nr∑

k=1

Tr∑

f=1

δf
jk · pf

j · edjk)) (9)

The standardization of the collaboration cost is shown in (10).

S(x) =
x − min(x)

max(x) − min(x)
(10)

In the application scenario of this article, as expressed in (10), min(x) = 0,
maxj,k∈Br

f∈Cr

∑Nr
j=1

∑Nr
k=1

∑Tr
f=1 pf

j · edjk .

When the linear weighting method is used to solve multi-objective optimiza-
tion problems, the weighting coefficients must be carefully selected according to
the problem scenario. However, in this paper, the coordination cost is normalized
so that it is within the range of fluctuations that are equivalent to the hit rate,
effectively avoiding problem-dependent weight coefficient selections that could
introduce excessive subjectivity.

To obtain the optimal solution under the constraint conditions described by
(8c) through (8f) for the optimization goals declared in (8a) and (8b), this paper
uses Lagrangian duality to convert the original problem into a dual problem and
then apply the solution to the dual problem to obtain the solution to the original
problem. By introducing the Lagrangian multiplier, the optimization problem
with d variables and k constraints can be transformed into an unconstrained
optimization problem with d + k variables.

First, we investigate the feasibility of solving the dual problem instead of
solving the original problem. If the decision variable is a continuous value in the
range [0, 1], then the optimization objectives of (8a) and (8b) and the inequality
constraints given in (8c) through (8e) are all linear functions related to the
decision variable, belonging to the convex function. One function, the equality
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constraint (8f), belongs to the affine function, and the presence of a certain value
of the decision variable makes the inequality constraint strictly feasible, so there
is a precondition for solving the original problem by solving the dual problem
[32]. To take advantage of the computational simplicity of the dual problem, we
relaxed the original problem into a generalized linear program (LP)-type problem
that does not contain integer constraints. Then, we used the Lagrangian duality
to convert it into a dual problem, as delineated in (11).

L(x, δ, α, β, γ, ω, μ, η, ν, σ) =
R∑

r=1

(S(
Nr∑

j=1

Nr∑

k=1

Tr∑

f=1

δf
jk · pf

j · edjk)

−
Nr∑

j=1

ωj

T∑

f=1

pf
j (xf

j +
Nr∑

k=1

δf
jk

+αk
j (xk

j +
Nr∑

k=1

δf
jf − 1) + βf

jk(δf
jk − xf

k)

+γj(
Tr∑

f=1

sf
j − cachesize) − ωf

j xf
j − μf

jkδf
jk

+ηf
j (xf

j − 1) + νf
jk(1 − δf

jk + σf
j δf

jj)) (11)

where are Lagrange multipliers and non-negative. Then, in (12), we solve the
dual problem.

max
α,β,γ,ω,μ,η,ν,σ
α,β,γ,ω,μ,η,ν≥0

min
x,δ

L(x, δ, α, β, γ, ω, μ, η, ν, σ) (12)

Solving the dual problem can obtain an analytical solution without having to
iterate to obtain the numerical solution, which can greatly reduce the solution
complexity. Finally, the connection between the solution to the original problem
x∗, δ∗ and the optimal solution to the dual problem α∗, β∗, γ∗, ω∗, μ∗, η∗, ν∗, σ∗

is established through the Karush-Kuhn-Tucker (KKT) condition [35].
Because of the relaxation of the original problem, in using the sequential

minimal optimization (SMO) algorithm to solve, we must integerize the non-
integer solution. Assume that the non-integer values between [0, a] and [a, 1]
(0 ≤ a ≤ 1) are integerized to 0 and 1 respectively, and then driven by the
optimization goal expressed in (11). A grid search is used to determine the
rounding decision boundaries of content placement decision variables and content
delivery decision variables. Based on this, the content placement matrix and
routing matrix can be obtained. While controlling the collaboration cost, the hit
rate of the cache resources is high, thus satisfying more user content requests at
the edge of the network.
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6 Performance Evaluation

6.1 Simulation Setup

We used the UDR dataset introduced in Sect. 3 to evaluate the proposed algo-
rithm. Because of limited cache space and the power-law distributions of access
popularity, most contents are rarely accessed. Hence, we preprocessed the data to
remove contents with small popularity values. To reduce the complexity of ten-
sor decomposition and the distributed caching mechanism, contents with large
popularity values were selected for caching. In this paper, the first three days
of UDRs were used as a training set and the test set comprised the remaining
twenty days of data. The tensor was obtained based on the training set. The
proportion of non-zero elements in the tensor was as low as 5.194e−09. After
preprocessing the dataset, the proportion of non-zero elements in the tensor was
as low as 2.17943605808e−05. This demonstrates that the tensor representing
the interactions among users, BSs, and contents derived from UDRs is extremely
sparse and well-suited to storage and decomposition.

In this experience, we obtained a BS distance matrix based on the geograph-
ical position information of BSs. The user access patterns at the network edge
were calculated using the Tucker decomposition subject to distance constraints.
Per the objective of (7), we have designed a content placement and delivery
algorithm. We evaluated the performance of the proposed algorithm using the
test set.

6.2 Performance Results

We considered the following four content caching schemes:

1. User Cluster: Users are clustered and BSs providing contents are allocated to
maximize the hit ratio [17].

2. BS Cluster Geo:Base stations are clusteredbasedongeographical position [11].
3. BS Cluster ContentModePattern: Based on user access patterns at the net-

work edge, the purpose is to identify cooperative caching domains and the
content contained in each domain without considering a distance constraint.

4. BS Cluster ContentModePattern Geo: Based on user access patterns at the
network edge and a distance constraint, the proposed algorithm attempts to
identify cooperative caching domains and their respective contents.

We compare the efficiency of the four content caching schemes using the UDR
dataset. After determining the cooperative domain, all four schemes designed
content placement and delivery algorithms that were evaluated based on their
performance on the test set as defined by the content distribution mechanism
in (7). Specifically, we compared performance using three metrics, the hit ratio,
cooperative cost, and the content utilization ratio, and then considered stability
over time.
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Fig. 7. Cache hit ratio versus cache size.

Hit Ratio. First, we investigated the hit ratio. Figure 7 depicts the total cache
hit ratio of UDRs collected during the 20-day period covered by the test set,
for different cache sizes C, we considered BS cache sizes of two to fifty contents.
The simulations suggest that the cache ratio of all the cooperative caching mech-
anisms is positively related to the cache size. With the increase of cache size,
the impact on the hit ratio slows down. Overall, in terms of satisfying user con-
tent requests, cooperative caching that considers user access patterns achieves a
hit ratio increase of approximately 25% compared to cooperative caching based
on BS or user clustering. However, enforcing distance constraints resulted in a
slight decrease in the hit ratio. This demonstrates the superiority of the proposed
method in satisfying user content requests.

Furthermore, we note that even when the cache storage size was small, many
user content requests were satisfied. For example, when cache size was 10,0 63%
of user content requests were satisfied. This demonstrates that less popular con-
tent can cover most user interests, which is consistent with the power-law char-
acteristic of content access behavior [4].

Cooperative Cost. The definition of cooperative cost is in part D of Method.
The cooperative cost which is for all UDRs in the test set in Fig. 8 show a trend
of increasing first and decreasing then with the increase of cache size. When
the cooperative size is small, the most popular contents are cached and BSs
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can achieve more cooperative probability. With the increase of cache size and
constraints of cooperative cost, the most popular contents are cached at BSs
locally and the content transfer is decreased gradually.

Fig. 8. Cooperative cost versus cache size.

The transmission cost of cooperative caching that considers user access pat-
terns is higher than that based on BS clustering and lower than that based on
user clustering. When setting the file size to 1 byte, cooperative caching based on
the geographical positions of BSs has a lower transmission cost, but this is paired
with a lower hit ratio, as observed in Fig. 7. Cooperative cost increases for coop-
erative caching based on user clustering, as this approach does not consider the
geographical distribution of users, and thus clusters users with varied geograph-
ical distances and similar interests. Although the proposed method includes a
distance constraint that slightly reduces the hit ratio, the constraint also reduces
the cooperative cost.

Content Utilization Ratio. The hit ratio indicates the probability of
responses to user content requests, while how many the cached files users can
access is referred to as the content utilization ratio. Figure 9 depicts the content
utilization ratio achieved by each algorithm with various cache sizes. As cache
size increases, the utilization ratio of cached content correspondingly decreases.
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Fig. 9. Caching utilization ratio versus cache size.

Fig. 10. Stability of hit ratio over time.
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Cooperative caching based on user access patterns achieves the highest utiliza-
tion ratio. As previously demonstrated, consideration of distance constraints
balanced the hit ratio against cooperative cost. When the cache size was small,
the distance constraint lowered transmission cost while raising content utiliza-
tion ratio. As cache size increased, so did the diversity of the contents, which
then decreased the possibility of sharing contents. We highlight the inference
effect of the distance constraint on the similarity of BSs and the corresponding
decrease in content utilization ratio.

When the cached files are few, the corresponding utilization ratio and the
hit ratio are both high. This indicates that these files are the most frequently
requested and that the cache space is fully utilized [4].

Based on our analysis, the proposed method improved the cache hit ratio
while balancing the hit ratio and the cooperative cost using the distance con-
straint. Although the distance constraint slightly decreased the hit ratio and
content utilization ratio, these losses were offset by benefit of decreased cooper-
ative cost.

Stability over Time. We use the content placement matrix and delivery matrix
in derived from the test set to evaluate the stability over time, as depicted by
Figs. 10 and 11. Note that cooperative caching based on user access patterns has

Fig. 11. Stability of cooperation cost over time.
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a higher hit ratio, which is consistent with observation regarding Fig. 7. In terms
of stability over time, cooperative caching based on user access patterns was
superior to that based on user clustering, while slight fluctuations were observed
in cooperative caching based on BS clustering.

From the results, we establish that the proposed method improves user QoE
and is stable over time. The content placement caching algorithm also guar-
antees the long-term popularity of cached contents. Meanwhile, the long-term
stabilization effect can also be observed using the three days of training data,
underscoring the stability of the proposed caching algorithm even when applied
to small datasets. This attribute indicates that the proposed method could be
applied to mobile big data scenarios.

7 Conclusion

This paper proposed cooperative caching based on user access patterns at the
network edge. Tensor decompositions of multi-aspect data were applied. We find
that BSs with close geographical distances accessed similar content at the request
of similar users. There was a greater demand for content sharing among these BSs
and the costs were not high, thus hey constituted cooperative caching domains.
Furthermore, we designed a content placement algorithm that simultaneously
considered the hit ratio and the cooperative cost. In every cooperative caching
domain, the contents that frequently interacted with the BSs in the domain were
placed and shared accordingly.

We evaluate the performance using a real UDR dataset. The results show
that the method proposed in this paper can improve the caching hit ratio and
the content cache utilization ratio while moderating cooperative cost and main-
taining stability overlong time. The overall performance was superior, and thus
able to meet user content access demand and be applied to mobile data.
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