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Abstract. Inspired by the success of Deep Learning (DL) in solving complex
control problems, a new DL-based approximation framework to solve the
problems of antenna muting and beamforming optimization in distributed
massive MIMO was proposed. The main purpose is to obtain a non-linear
mapping from the raw observations of networks to the optimal antenna muting
and beamforming pattern, using Deep Neural Network (DNN). Firstly, the
antenna muting and beamforming optimization problem is modeled as a non-
combination optimization problem, which is NP-hard. Then a DNN based
framework is proposed to obtain the optimal solution to this complex opti-
mization problem with low-complexity. Finally, the performance of the DNN-
based framework is evaluated in detail. Simulation results show that the pro-
posed DNN framework can achieve a fairly accurate approximation. Moreover,
compared with the traditional algorithm, DNN can be reduced the computation
time by several orders of magnitude.

Keywords: Deep learning � Distributed massive MIMO �
Deep Neural Network � Antenna muting � Beamforming

1 Introduction

In recent years, with the increasing number of smart devices, various wireless services
have been exploding, such as social networks, Internet of Things, high-quality radio
video streams, etc. The resulting wireless data flow has also been increased by dozens
of times. This has led to an increase in the cost of building, operating, and upgrading
radio access network, while revenues have grown slowly. As a result, the massive
multiple input multiple output (MIMO) technique [1], is proposed to handle the ever-
increasing mobile traffic demands.

Characterized by the large number of antennas at the front-end of the radio fre-
quency (RF) chains and the centralized signal processing, massive MIMO not only
significantly improves the spectral efficiency, but also greatly reduces the energy
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consumption. Hence the massive MIMO is deemed as one of the key techniques in the
next generation mobile networks, i.e., 5G. The massive antennas are originally
deployed on a single array in a centralized manner, which can achieve the channel
harden and favorable propagation. However, recent studies [2] find that distributing the
massive antennas not only inherent the advantage of centralized massive MIMO in
terms of channel harden and favorable propagation, but also achieve the huge diversity
gains through cooperative beamforming, which leads to superior capacity performance.

On the other hand, mobile traffic varies in the spatial and time domain. Always
keeping all antennas of the distributed massive MIMO systems active is energy inef-
ficient in the low traffic scenario. The large number of antennas would result in con-
siderable energy consumption while contribute little to the QoS guarantee of users in
such cases Hence, adaptively muting the transmission of some antennas according to
the dynamic traffic demands seems to be a promising scheme to improve the energy
efficiency.

Dynamically turning off the hardware of wireless networks, such as antennas, RF
chains at the base stations (BSs), is a commonly used method to reduce the energy
consumption, as can be seen in a survey [4]. Zhou et al. [5] proposed a traffic aware BS
sleeping control scheme, which can achieve great energy efficiency gain. Alberto et al.
[6] proposed cell wilting and blooming scheme to enable active BSs dynamically adjust
the cell size to serve the users originally located in the coverage of sleeping BSs. In
addition, cooperative beamforming based on the distributed antennas is well recognized
to improve the performance of hardware sleeping. Niu et al. [7] proposed to utilize the
cooperative beamforming technique to compensate the coverage hole caused by the BS
sleeping. Whereas Shi et al. [8] focus a distributed massive MIMO network and pro-
posed a group sparsity based joint cooperative beamforming and antenna muting
algorithm. The results show that joint optimization of antenna muting allows more
antennas stay in inactive states and hence achieves higher energy efficiency.

However, the previous works all solve the joint optimization problem of antenna
muting and cooperative beamforming from the point of numerical optimization.
Numerical optimization has played a key role in solving the problem of wireless
resource management. In the literature, many kinds of handcrafted algorithms are
developed to find a stable solution for the antenna muting and cooperative beam-
forming for certain scenarios. Nevertheless, Considering the NP hardness of the
problem, such algorithms has high computing complexity and only suitable for certain
scenarios. In addition, they also cause a serious gap between theoretical analysis design
and practical application.

Deep learning has shown great potential and advantages in feature extraction and
model fitting [9], thereby attracting a large number of scholars to study its theory and
application, and it has developed rapidly in academia and industry. Inspired by its
superior performance in solving complex control problems [9], in this paper, we aim to
design low complex deep learning solution to find the optimal antenna muting and
cooperative beamforming pattern in the distributed massive MIMO systems.
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2 System Model

In this section, a typical distributed massive MIMO is considered. Then we formulate
the signal model and power consumption model considering the antenna muting and
cooperative beamforming.

2.1 Distributed Massive MIMO System

Consider a single cell of distributed massive MIMO system, as shown in Fig. 1. The
single cell consisting of a large number of distributed antennas which jointly serve
multiple users in the form of cooperative beamforming. Let R : R = f1; 2; . . .; Rg
denote the set of antennas and U : U ¼ f1; 2; . . .; Ug denote the set of user equip-
ments (UEs). Each UE is assumed to be equipped with a single antenna. All the
distributed antennas are connected to a centralized signal processing unit (denoted as
the CPU), which is a cloudified processing pool. The CPU is able to collect and share
the channel state information and user’s requested data among the antennas in a cen-
tralized manner.

The channel between UEs and antennas are assumed to be block flat, i.e., the
channel gain is constant during a certain time slot. At each time slot, the CPU is
responsible for determining the antenna muting and cooperative beamforming pattern.
The decision made is then distributed to the antennas. Upon received the muting and
cooperative beamforming decision from the CPU, each antenna changes its state,
namely keeping transmitting the data stream or enter the muting state. The transmitted
symbols of UEs are assumed to be a Gaussian random variable with zero mean and unit
variance. UEs receive the required data symbols from all the active antennas which
performs cooperative beamforming. The corresponding signal-to-interference-plus-
noise ratio (SINR) of each UE can be expressed as

SINRu ¼
hHu wu

�� ��2P
v 6¼u hHu wv

�� ��2 þ r2
; u 2 U ð1Þ

Fig. 1. The illustration of distributed massive MIMO
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where hu : ¼ h1u; h2u; . . .; hRu½ �T represents the channel gain vector, and each element
hru represents the channel gain from antenna r to UE u; similarity, the cooperative
beamforming weights are stacked in a vector wu ¼ w1u;w2u; . . .;wRu½ �T , wherein each
element wru represents the beamforming weight from antenna r to UE u. Generally, the
channel coefficients and the beamforming weights are all complex values, but in this
study, in order to facilitate the algorithm, the modulus values of complex numbers were
taken to work in the real-value domain, r2 is background noise during transmission.

By using the Shannon Hartley theorem, the maximum data transmission rate that
each user u can achieve is given by:

Ru ¼ B log2 1þ SINRu

Cm

� �
; u 2 U ð2Þ

Where, B is the channel bandwidth; Cm is SNR (Signal-to-Noise Ratio) interval,
which depends on the specific modulation scheme.

When specifically considering a distributed massive MIMO network, the power
consumption depends on the functionality splitting between the CPU and antennas.
Herewith, we adopt a simple power consumption model similar to [10–12], which
characterize the impact of the muting antenna on the total power consumption. This
model is applicable to different types of base stations, i.e., there’s basically a linear
function relationship between the transmit power and the power consumption of the
cell, and such a relationship is also applicable to the relationship between transmit
power and the power consumption of the antennas. Therefore, an empirical linear
functional relationship can be adopted for modeling each antenna:

Pr ¼ Pr2A;active þ 1
gl
Pr;trans

Pr2S;sleep

�
ð3Þ

Where, gl is a constant, indicating the drain efficiency of the power amplifier, and it
is a constant. Pr;active is the power consumption of an antenna in active state, which is
power consumption necessary for the basic operation of maintaining the antenna in the
transmission working state. If an antenna does not have any information that can be
transmitted and is not selected to be active for transmitting signals, then it will be in
muting mode. In this mode, the power consumption of the antenna is Pr;sleep, in order to
save energy, there’s the need to transfer antenna into sleep mode as much as possible,
thus to reduce the antenna in active state as much as possible. Antenna has two states,
active and sleep, A�R and S�R represents respectively active set and sleep set of the
antennas, and A [ S ¼ R. Pr;trans is the transmit power of antenna and it satisfies the
following relationship:

Pr;trans ¼
X

r2A
X

u2U wr;u

�� ��2 ð4Þ
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Based on above analysis, the total transmission power consumption of the entire
system in the current period can be expressed as:

P A; S;Gð Þ ¼
X
r2A

X
u2U

1
gl
wr;u

�� ��2 þ X
r2A

Pr;active þ
X
r2S

Pr;sleep ð5Þ

Where, the first term represents power consumption associated with the signal
transmission process, while the second and third terms are the total power consumption
of the antenna in active and sleep states respectively to maintain basic operation.

In order to minimize the total transmission power consumption, there are two
strategies:

(1) Optimize the cooperative beamforming to reduce the transmit power;
(2) Reduce the number of active antennas and the corresponding transmission links.

However, the above two strategies are conflicting. In order to reduce the trans-
mission power consumption, more antennas need to be activated to obtain the higher
beamforming gain; but if more antennas are allowed to be activated, it will increase the
power consumption of the transmission link. Therefore, in order to minimize network
power consumption, joint optimization of the antenna (and corresponding transmission
link) selection and transmit beamforming are required.

3 Problem Formulation

A very important part of transmission power model proposed in previous section is
power consumption in the process of transmitting signals, which depends on the
cooperative beamforming weights of each antenna. In order to minimize the total power
consumption of the entire system based on meeting the user’s needs, it’s necessary to
considering the joint antenna muting and cooperative beamforming design, and this
problem can be expressed mathematically as follows:

minimize
A; wr;uf g

X
r2A

X
u2U

wr;u

�� ��2 ð6Þ

In order to ensure that the needs of each user are met, the following constraints are
required:

SINRu � cu; u 2 U ð7Þ

cu ¼ Cmð2Ru=B � 1Þ ð8Þ

Total transmit power sum of each antenna r is constrained by the following
equation: X

u2U
wr;u

�� ��2 � Pr; r 2 A ð9Þ

Where, Ru is the requirement of each user u, and Pr is the maximum allowed
transmit power of all antennas. As can be seen, the optimization variables of the above
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combination optimization problem are the antenna muting decision A, and also the
cooperative beamforming weights from each antenna to each UE fwr;ug. The overall
goal is to minimize total power consumption. It should be noted that the factor gl in the
power model (5) and other related parameters are ignored here because they are just
constants. Herewith, the inequality (7) can also be rewritten as:

X
v2U

hHu wv

�� ��2 þ r2 � 1þ cu
cu

hHu wu

�� ��2 ð10Þ

Given the need Ru of each user u, cu can be calculated according to Eq. (10)
accordingly. Note that, if the antenna muting pattern A is known, this optimization
problem can be transformed into a second-order cone programming (SOCP) problem,
which can be efficiently solved by the convex optimization tools such as the CVX
toolbox in the MATLAB. However, here the antenna muting pattern A and the
cooperative beamforming weights need to be simultaneously solved. This makes this
problem NP-hard and difficult to solve.

4 DNN Based Joint Antenna Muting and Beamforming
Optimization

In this section, a brief introduction of DNN and DNN approximation theory is first
present. Then a DNN approximate framework is constructed in order to establish a non-
linear mapping between the network states and the optimal antenna muting and
cooperative beamforming solution.

4.1 DNN Approximation Theory

For any deterministic algorithm that uses iteration to represent continuous mapping, its
initial value can be used as an additional input variable, and then the trained neural
network can be used to learn the given algorithm behavior [13]. If the potential opti-
mization problem is a nonconvex problem with the multiple solutions, then it is nec-
essary to use the initial value as one of the input variables, because if there is no initial
value, the mapping cannot be well defined, that is, it may converge to multiple isolated
solutions. Or one can learn the mapping relation well by fixing the initial value of the
solution.

It can be verified that the iteration in each of the convex optimization problem
solving processes represents a continuous mapping, and the optimization variables are
in a compact set [14]. Therefore, if the channel implementation set hij

� �
is assumed to

be in a compact set, the solution can be arbitrarily approximated by the feedforward
network with multiple hidden layers.
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4.2 Construction of DNN Optimization System

DNN Structure Setting
The method proposed in this study uses a fully connected neural network with an input
layer, multiple hidden layers and an output layer. The specific structure is shown in
Fig. 2. The input of the neural network is a vector hu : = h1u; h2u; . . .; hRu½ �T of the
magnitude of the channel coefficients. There are three network outputs, which are
respectively beamforming matrix wu ¼ w1u;w2u; . . .;wRu½ �T , the antenna state (even if
each antenna in the network is on or off), and the optimal transmission power. In
addition, the ReLU function is used as the activation function of the hidden layer.

Data Generation

The data is generated in the following manner. The modulus value f hðiÞRu
��� ���g of channel

coefficients is first generated according to a particular distribution (described in more
detail below), wherein superscript ið Þ is used to represent the index of training sample.
For the sake of simplicity, the fixed maximum power Pmax and ambient noise r2 for all

the antennas were obtained. Then for each input tuple ðPmax; f hðiÞRu
��� ���g; rÞ, there is a

corresponding optimal control result. In other words, the state set of the optimal node
antenna, the beamforming matrix and the power allocation vector. Using v0k ¼ffiffiffiffiffiffiffiffiffi
Pmax

p
; 8k as a fixed initial power value. Regarding the termination of the iteration,

objnew � objold\10�5 or iteration with times >500 can be chosen as the standard. The

corresponding input-output relationship tuple hðiÞRu
��� ���n o

; wðiÞ
Ru

��� ���n o
;PðiÞ;AðiÞ �R

	 

is

called as ith training sample. Then is to repeat above process for multiple times, the
entire training data set can be generated.

In the training phase of the neural network, the main function of verifying data set is
to cross-validate the accuracy of generated network. Namely, randomly extracting a
part from a set of measured data for modeling, and the rest of the data is used to verify
the model to make the model selection. For the different models trained in the training

Fig. 2. Structure of DNN
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set, their errors are counted, and the model with the smallest error is taken as the final
model; and the network training should be terminated in time to avoid making the
training depth too deep. In particular, the verification data set is relatively small
compared to the amount of data in the training data set. In addition, T and V are
respectively used to collect the index of the training set and data set.

Training Phase

In the training phase, the data set hðiÞRu
��� ���n o

; wðiÞ
Ru

n o
;PðiÞ;AðiÞ �R

	 

i2T

generated by the

above process is first used to optimize the weight of the neural network. The loss
function used is mean-square error between the modulus values of each element cor-
responding to the algorithm of solving the convex optimization problem and the
beamforming matrix of the neural network output. The loss function (or cost function)
is used to measure the extent of fit to a function. The smaller the value of the loss
function, the higher the fit of the model is. The optimization algorithm used is an
effective implementation of the small batch stochastic gradient descent algorithm,
which is known as the RMSprop algorithm [10], which is an adaptive learning rate
method that divides the gradient by the running square value of its nearest corre-
sponding amplitude. By introducing an attenuation coefficient, the gradient cumulant is
attenuated by a certain ratio per turn. Specifically, it first randomly extracts a set of
samples with the capacity of m from the training data set and its corresponding output.
Then is to calculate the gradient and error, and update the gradient cumulant r, and
update other variables according to r and the calculation parameters of the gradient at
this time. The specific update steps are shown in Table 1. The algorithm can auto-
matically change the learning rate and alleviate the rapid change of the learning rate.
That is, if the gradient is too large, the learning rate should be attenuated faster, and if
the gradient is smaller, the learning rate should be slower. Moreover, if the depth is
deep in the learning process, the algorithm does not have the problem of learning to end
prematurely, which is very suitable for dealing with non-stationary targets.

Specifically, the layer-by-layer training method should be used to initialize network
weights in the training process. First is to train a network with only one hidden layer.
Only after this layer of network training is finished, the training of a network with two
hidden layers can be started, and so forth [11]. Through this method, the problem of
data acquisition can be solved effectively, thus to obtain a better local extremum.
Regarding the network construction, it is necessary to train the first self-encoder with
the original input data and learn the first-order feature of the original input. The first-
order feature is used as the input of the self-encoder to learn and obtain the second-
order feature; then the second-order feature is used as the input of the classifier, thus to
obtain a model of mapping the second-order feature through training. Finally, these
three layers are combined to construct a self-coded deep neural network with the two
hidden layers [12].

In this study, the attenuation rate was chosen to be 0.9 according to the recom-
mendations in literature [9]. In addition, the appropriate maximum training number
(max epoch) and L2 regularization coefficient were chosen through the cross-validation
of the training set and the verification set, the verification data was used for multiple
times to continuously adjust parameters. In order to further improve the network
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performance generated by the training, the truncated normal distribution generation
variable is used to initialize the network weight. Namely, first is to generate a variable
according to the standard normal distribution, and then is to judge its absolute value. If
it is greater than 2, it will be discarded and regenerate the new variable. In addition, the
weight of each neuron is divided by the square root of its input number, which is to
normalize the variance of each neuron output.

Test Phase
In the test phase, the performance of the trained neural network will be tested, and the
channel parameters will be generated as the test data set according to the same dis-
tribution as the training phase. The function is to detect constructed neural network and
effectively measure the deviation of the algorithm to evaluate the model accuracy. This
method can test the performance of the neural network, and evaluate the performance
of the results obtained based on the robustness of the model obtained through the
training phase.

During the test, the first is to make the generated test data set pass through the
trained neural network, and the optimized power distribution and beamforming results
are also collected. Followed by is to compare the similarities between the resource
allocation results generated by the DNN and the results of the numerical optimization
algorithm. The higher the similarity, the more accurate the DNN is constructed.

Table 1. RMSProp algorithm
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5 Simulation and Performance Evaluation

5.1 Simulation Environment

Joint antenna muting and cooperative beamforming problem solving
This problem belongs to a class of non-convex optimization problems. Hence to

find an optimal solution, we use the greedy scheme, where each combinations of
antenna states (on/off) are explored, and for each given antenna muting pattern, we
transformed the cooperative beamforming problem into a convex problem and solved it
using mature toolbox.

DNN model construction
The model constructed in this study is a neural network with multiple hidden layers,
which can be used to solve the problem of processing complex data. The method of
training the multilayer neural network is to train one layer at a time, and a special
network type called Auto encoder for each hidden layer can be trained. An automatic
encoder is a layer in a neural network, and the goal is to copy its input at the output of
the neural network. When the number of neurons in the hidden layer is less than the
size of its input, the auto-encoder compresses it to express its input. The auto-encoder
uses regularizer to learn the sparse representations in the first layer of the network,
which can control the effects of the regularizer by setting various parameters. After
building a complete DNN using the training data, the network is optimized by using the
validation set data, which performs the backpropagation over the entire multi-layer
network to improve network performance and minimize the loss function. In this study,
the mean-square error of the modulus value of each element in the beamforming matrix
was chosen as the loss function.

5.2 Channel Models

Each channel coefficient is generated according to a standard normal distribution, that
is, a Rayleigh fading distribution with the zero mean and unit variance. Rayleigh fading
distribution is a reasonable channel model and is widely used to simulate the perfor-
mance of various resource allocation algorithms [13]. In the simulation of this study,
five different network scene settings were considered, the numbers of antenna and user
were respectively (32,8), (64,8), (128,16). In these different scene settings, the calcu-
lation will be conducted, and the similarity of the traditional optimization algorithm,
DNN power consumption and beamforming matrix will be compared to evaluate its
performance. So as to verify whether the input-output relationship learned by DNN can
accurately approximate to the optimization algorithm, that is, to minimize the power
consumption while satisfying user requirements.

5.3 DNN Parameter Selection

This section selected the following parameters for the deep neural network: maximum
number of training options was five parameters from 50 to 1000, and the selection of
L2 regularization coefficient was five parameters from 0.5 to 0.001. For all simulation
numerical results, the constructed DNN has one input layer, three hidden layers, and
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one output layer, each hidden layer is with 200 neurons. The network input is a set of
channel coefficient matrices. The channel coefficient matrix is a complex matrix.
However, in order to facilitate the training of network, the modulus value of the
channel coefficients will be used as input, so that the DNN works in the real domain.
The size of the matrix depends on the number of users, the number of antennas and the
number of antennas. The output of the network is the result of node control, the optimal
beamforming matrix and the optimal power consumption. The beamforming matrix is
usually a complex matrix, but in order to uniformly process in the real domain, this
study took modulus values of each element of the matrix.

5.4 DNN Performance Evaluation

The evaluation was made in following three aspects: (1) the fit of beamforming matrix
w generated by the DNN method and the traditional optimal algorithm, and the mean-
square error of modulus value of the elements of two w were taken. If the sum of the
mean-square error is smaller, showing the constructed DNN is more compatible with
the traditional optimal algorithm; (2) For the total power generated by the two methods,
the two powers are compared, if two power are almost the same, it proves that the
constructed DNN can achieve optimal nodes management and beamforming; (3) When
the two methods are used to solve the same problem, if the time spent on the con-
structed DNN is significantly less, then it is meaningful to apply it to solve the practical
problem.

Figure 3 shows the power consumption similarity obtained by the traditional
algorithm and the DNN method when the number of antenna and UE are configured as
(32,8). The x-axis is the channel realizations while the y-axis denotes the total con-
sumed power. The circle and plus sign represent respectively total transmission power
obtained from the traditional method and DNN method. It can be seen through 500 data
points of the test set that the power consumption at each point can be well studied, and
there are few points that have not been learned, indicating that the fit of the two
methods is higher, and the compatible accuracy of the two is shown in Fig. 4.

In order to demonstrate the similarity of the two methods, the mean-square error
and a joint scatter plot of the power consumption difference-beamforming matrix in
Fig. 4 is used, where the configuration of antenna number and user number is set as
(64,8), (128,16), respectively. It can be seen from the figure that accuracy of power

Fig. 3. Power scatter plot
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consumption difference reaches the magnitude of 10�15 order, which can be completely
coincident with almost every point learned; and the sum of the mean-square error of the
elements of the beamforming matrix is at most 0.1, and the accuracy of most points is
less than 0.05, proving every point can be learned very accurately.

6 Conclusion

In summary, DNN as a substitute for the traditional optimization algorithm which has a
small amount of calculation and a short processing time. The DNN can precisely
approximates the traditional algorithm, and the accuracy can reach the magnitude of
10−15, achieving expected goal. This can well meet actual needs and significantly save
energy consumption while satisfying user needs, thereby reducing operating costs to
meet requirements of green communication. On the other hand, compared with the
traditional numerical optimization method, the calculation process of DNN is low in
complexity. This can significantly reduce calculation time, which is suitable for dealing
with the complex combination optimization problems in dynamic scenes, thereby
meeting needs of reality, having great guiding significance for solving real-time
communication problems.

(64,8) 

(128,16) 

Fig. 4. Power difference and mean-square error joint scatter plot
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