
Improved Flow Awareness by Intelligent
Collaborative Sampling in Software

Defined Networks

Jun Deng, He Cai, and Xiaofei Wang(B)

Tianjin Key Laboratory of Advanced Networking,
College of Intelligence and Computing, Tianjin University, Tianjin, China

xiaofeiwang@tju.edu.cn

Abstract. To improve the specific quality of service, internal network
management and security analysis in the future mobile network, accu-
rate flow-awareness in the global network through packet sampling has
been a viable solution. However, the current traffic measurement method
with the five tuples cannot recognize the deep information of flows, and
the Deep Packet Inspection (DPI) deployed at the gateways or access
points is lack of traffic going through the internal nodes (e.g., base sta-
tion, edge server). In this paper, by means of Deep Q-Network (DQN)
and Software-Defined Networking (SDN) technique, we propose a flow-
level sampling framework for edge devices in the Mobile Edge Computing
(MEC) system. In the framework, an original learning-based sampling
strategy considering the iterative influences of nodes is used for maximiz-
ing the long-term sampling accuracy of both mice and elephant flows. We
present an approach to effectively collect traffic packets generated from
base stations and edge servers in two steps: (1) adaptive node selection,
and (2) dynamic sampling duration allocation by Deep Q-Learning. The
results show that the approach can improve the sampling accuracy, espe-
cially for mice flows.

Keywords: Edge Computing · Deep Q-Learning · SDN ·
Flow-awareness · Resource allocation

1 Introduction

With the increase of wireless access devices and traffic load in 5G networks,
many traffic flows will not pass through the backbone or gateway, but only exist
among the base stations (BSs) and the edge servers, such as cooperative caching,
content sharing and intensive-computation offloading. Therefore, global accurate
flow awareness in Mobile Edge Computing (MEC) system is an urgent need for
fine-grained quality of service guarantee, security analysis, content awareness,
internal network management and so on. These applications in MEC business
model requires more flows, with their deep information (e.g., security, applica-
tion type, flow behavior) which is brought by the payload of sampled packets.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

V. C. M. Leung et al. (Eds.): 5GWN 2019, LNICST 278, pp. 182–194, 2019.

https://doi.org/10.1007/978-3-030-17513-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17513-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-17513-9_13

Learning-Based Sampling Strategy 183

Especially for security of network edge devices, DOS attacks could be packet-
based with only a small amount packets and hide in short-life mice flows [1,2],
which makes themselves hard to capture.

It is challenging to deeply obtain flow information while sampling network-
wise flows accurately under DPI technology [3] or statistics-based reports created
by other measurements based on telemetry or sketch [4–6]. DPI is used to inspect
packet payload at the gateways or access points, which is, however, hard to be
deployed on all nodes [7]. This leads to a lack of the global detailed flow infor-
mation. Meanwhile, statistics-based reports are short of payload and flow-level
recognition of internal traffic. In addition, sFlow-based solutions can capture
the packet with payload in a probability [8,9]. However, the sampled packets of
the same flow is non-consecutive, which is useless for recognizing the flow-level
deep information. Fortunately, systematic packet sampling (SPS) which sam-
ples within a certain duration can capture consecutive packets [10,11]. The SDN
with SPS is conducive to the global and cyclical sampling, which can achieve
high-accuracy flow-level sampling. Besides, the MEC concept along with SDN
can enable more applications requiring computing and storage resources [12].

However, due to restrictions on the resources (e,g., the processing capacity
of collector) of MEC system, the selected sampling nodes should not be too
many and the sampling duration cannot be assigned unlimitedly. Existing stud-
ies [10,11,13] have proposed different approaches by SPS to select the sampling
nodes or allocate the resource in a real network, but they are limited to a cer-
tain extent. For example, study [10] selects K nodes with the most active flows
currently passing through the node as the sampling nodes, and then assigns a
equal sampling rate to the K nodes. However, the fixed K nodes are not guar-
anteed to cover all the flows in the network, and the decision of sampling rate
cannot change dynamically according to the active flows covered by the nodes.
In addition, study [13] selects sampling nodes based on a greedy strategy which
can cover all the active flows, and it proposes a adaptive scheme to adjust the
sampling rate considering the bandwidth resource. But its algorithm results in
a reduced accuracy. Fortunately, a new technology, namely deep reinforcement
learning (DRL), has an advantage to obtain the resource allocation policy for
solving the complexity problem in real wireless environment [14,15].

In this paper, we focus on adaptively selecting sampling nodes and dynam-
ically setting sampling strategies for each sampling period, aiming to improve
network-wise flow-level sampling accuracy by SPS.

For this purpose, based on DRL and SDN, we propose a framework con-
sidering the iterative influences of global nodes and the dynamic allocation of
sampling duration. The influence which is decided by the current active flows
covered by each node can be used to measure the importance of a node and deter-
mine the sampling nodes. The allocation is decided by the centrally controlled
learning-based strategy, which can allocate appropriate sampling duration to
selected nodes, and finally lead to a great advantage in capturing mice flows.
Our main contributions are summarized as follows:

184 J. Deng et al.

– we propose a learning-based flow-level sampling strategy with SPS, which
can cover all the active flows in the network and guarantee data integrity for
training process of artificial neural network.

– we model flow-level sampling and the resource allocation as a Markov Decision
Process (MDP) and propose a framework based on SDN and Deep Q-Network
(DQN) for centrally controlled learning-based sampling strategy among BSs
and edge servers.

– We evaluate the method by a relatively realistic topology and a real trace.
Finally the results show that our learning-based method can improve the
sampling accuracy by 5.9% and the accuracy of mice flows by 8.1%.

The remainder of this paper is organized as follows: The system model and
problem formulation is discussed in Sect. 2. Then the learning-based sampling
strategy and the resource allocation algorithm will be discussed in Sect. 3 in
detail along with experiments in Sect. 4. Finally, conclusions are given in Sect. 5.

2 System Model and Problem Formulation

2.1 Flow-Awareness Architecture Based on SDN in MEC

The flow-awareness architecture based on SDN in MEC is illustrated in Fig. 1.
In MEC environment, users receive services by sending requests to a base station
with a fixed radio coverage, where each base station is linked to only an edge
server. In our flow-awareness architecture, any base station and edge server can
be selected as a sampling node. Besides, the SDN controller gathers and sends
the flow information generated by these nodes to the learning-based neural net-
work, after which the controller can receive a feedback about sampling duration
allocation. Another component, traffic collector is responsible for collecting the
sampled packets and informing the controller of the number of flows.

2.2 Sampling Modeling and Objective

First, we quantify the influence and the cost of each node in the unit sampling
time. And next, the objective is given in detail.

Quantification of the Influence and Cost. The quantization of influence is
based on the Flow Betweenness Centrality (FBC) [10,16], and we extended it.
We define the set R including all nodes, so the number of nodes is n = |R|. Let
F c

i be the set including all active flows currently passing through Ri, and F c

is the set including all current active flows in the network, and F c =
⋃n

i=1 F c
i .

For each fk ∈ F c
i , suppose fk transmits packets as a Poisson process with a rate

λk in a unit time t [17], and λk is independent of the other flows. Thus, the
probability that fk is captured by Ri within t is

P{Nk(t) > 0} = 1 − P{Nk(t) = 0} = 1 − 1
eλk·t . (1)

Learning-Based Sampling Strategy 185

Fig. 1. Illustration of flow-awareness architecture in SDN.

and the expected number of active flows captured by Ri is
∑

fk∈F c
i

P{Nk(t) > 0}.
The influence of Ri within t can be quantified as (2), which describes the rate of
the number of flows that a node can capture within t to the number of network-
wise current active flows.

Ii(t) =
∑

fk∈F c
i

P {Nk (t) > 0}/|F c|. (2)

Cost wi is the total number of packets captured from Ri during t, which
can be expressed as wi = vi

T/t , where vi is the current packet speed (packets/T)
during the sampling period T .

Objective. We formulate the influence-based sampling model in (3), with the
constraints (4) and (5), where t̂i is the sampling duration allocated to Ri, and
C is the capacity of collector (packets/T).

max
n∑

i=1

Ii(t̂i). (3)

s.t.
∑n

i
wi · (t̂i/t) ≤ C. (4)

0 ≤ t̂i ≤ T. (5)

186 J. Deng et al.

The goal is to work out corresponding t̂i for each Ri to maximize the total
influences of the system during T under the constraints of C. Maximizing the
value of (3) means capturing the most flows, which is equivalent to optimizing
sampling accuracy.

The complexity for solving the problem is O(2n) considering whether a node
is assigned sampling duration or not. Nonetheless, the lacking of the exact packet
arrival strength λk make the solution is not completely practical. In this paper,
we find a reinforcement learning method to replace the traditional solution.

2.3 Specifics of MDP Model

In this section, we describe a brief review of reinforcement learning and Q-learning,
and then the specifics of Markov Decision Process is presented.

Q-Learning. Q-Learning is one of widely-used model free method in Rein-
forcement learning, where an agent can gain reward and automatically learn to
behave by interacting with the external environment and constantly trying to
act. The Q-Learning algorithm which is used for bandwidth resource allocation
here can be modeled as a MDP with followed components: state space, action
space and reward function.

State Space. We regard the whole of network nodes in the sampling environ-
ment as an agent. The sampling process is periodic, and state changes period-
ically with decision epoch. Therefore, for the agent in sampling environment,
the j-th sampling period is equivalent to decision epoch. Let qj

i is the number
of the flows covered by any node Ri, and each node is assigned a ratio of sam-
pling duration rj

i . Under the constraints of node’s packet speed and collector’s
processing capacity, rj

i is used to calculate the unit sampling duration, and then

the sampling duration of each node ̂
tji is also calculated. As shown below, during

the j-th period, the packet speed of Ri is vj
i , so the unit sampling duration t̂j

can be expressed as

t̂j =
C · T

∑n
i rj

i · vj
i

, i, j ∈ Z, (6)

then,
̂
tji = rj

i · t̂j . (7)

Based on the above computing method, the state vector should include the
vector of flow number qj and the vector of sampling duration ratio rj . Therefore,
the observed state vector si during decision epoch j can be denoted as

sj = [qj , rj] ∈ S, (8)

where S is the state space, and qj = [qj
1, q

j
2, ..., q

j
n], rj = [rj

1, r
j
2, ..., r

j
n], qj

i , r
j
i ∈ Z.

Learning-Based Sampling Strategy 187

Action Space. The goal of one action is to allocate resources to one of the
nodes in one of the three ways: increase, decrease and keep unchanged. When
the agent is in the state sj , it will decide which node to execute the action φ(sj),
and then rj

i of the node will be changed. So the action space A is expressed as

A = [a1
j , a−1

j , a0
j], (9)

where a1
j , a

−1
j , a0

j are defined as follow:

(1) The action vector a1
j = [a1

j,1, a1
j,2 , ..., a1

j,n], where any element a1
j,i = 1

represents increasing rj
i by one.

(2) The action vector a−1
j = [a−1

j,1 , a−1
j,2 , ..., a−1

j,n], where any element a−1
j,i = −1

represents decreasing rj
i by one.

(3) The action vector a0
j = [0] means that any rj

i remains unchanged.

Reward Function. The reward function needs to take into account the objec-
tives of flow-awareness framework. As the (3) shows, the goal is to maximize the
sampling accuracy of the whole sampling process by capturing the most flows
in each sampling period. In order to achieve the goal through learning-based
method, during the j-th period, we define F s

j as the non redundant flows sam-
pled by all the node in the network, and F t

j is all flows covered by all the nodes.
So the sampling accuracy in the j-th period is denoted as

ρ =
F s

j

F t
j

. (10)

Then, in our flow-awareness architecture, reward function R(sj , φ(sj)) is defined
as

R(sj , φ(sj)) = eρ, (11)

when the agent perform the action φ(sj) upon the state sj .

2.4 Problem Formulation

Q-Learning solution is proposed here. Based on (11), taking into account the
lone-term discount rewards, the expectation of maximizing objective upon the
initial state sj = s is defined by a state value function, called Q-function:

Q(s, ϕ) = E

⎡

⎣
J→∞∑

j=1

(γ)j−1 · R(s, ϕ)|s1 = s

⎤

⎦ (12)

where γ ∈ [0, 1) is the discount factor, and ϕ = φ(sj).
The Q-function obeys a Bellman criterion. Let the s

′
= sj+1 is the next state

after taking the action ϕ, so the (12) can be optimized as:

Q(s, ϕ) = R(s, ϕ) + γmax
ϕ′

Q(s
′
, ϕ

′
). (13)

188 J. Deng et al.

After taking the optimal action, the iterative formula of Q-function can be
obtained as:

Qj+1(s, ϕ) = Qj(s, ϕ) + α ·
(

R(s, ϕ) + γmax
ϕ′

Qj(s
′
, ϕ

′
) − Qj(s, ϕ)

)

, (14)

where α ∈ [0, 1] is the learning rate. The (14) expresses that after the agent
performs the current optimal action φ(sj), the state sj turn to the state sj+1

and the corresponding reward is fed back.
Q-Learning use a Q-Table store the Q value of each state-action pair. How-

ever, in the real sampling environment, the state space and action space are
huge. Thus, the approach based on Q-Learning will lead to a high-dimensional
Q-Table, with which the learning process will be extremely slow. Here, a deep
reinforcement learning method is used to solve this problem.

3 Sampling Strategy Based on DRL

In this section, we formulate the dynamic sampling duration allocation problem
as a deep reinforcement learning process.

3.1 Double Deep Q-Learning for Resource Allocation

During the application of deep Q-learning, the state-action Q-function is replaced
by a deep neural network, called Q-network. It have the possibility to generalize
unseen states and narrow the state space, which is beneficial for accelerating
the learning process. In the Q-network, the value in the Q-Table is replaced by
multi-layer weight θj which will update after any policy decision j. Thus, the
Q-function is changed as

Q(s, ϕ) = Q((s, ϕ); θj). (15)

In addition, the corresponding state transition T̂j = (sj , φ(sj),R(sj , φ(sj)),
sj+1) will be stored in experience pool with a pre-defined capacity M at each
training step. After the samples in the pool have accumulated to a certain num-
ber, the agent will sample the Mj batches (past experience) randomly for the
reflective learning, which is what we called experience replay.

In our model, a more reliable algorithm Double Deep Q-Network (Double
DQN) [18] is used for training to achieve appropriate resource allocation, which
can address the issue of over-estimation Q-value in DQN, and then acceler-
ate convergence velocity of iteration. It is because Double DQN use different
Q-network, known as main network Q(s, ϕ; θj) and target network Q̂(s, ϕ; θ̂j)
respectively, to select action and evaluate action.

Then at the training process, the network Q will approximate gradually to
the network Q̂ by the Stochastic Gradient Descent (SGD) algorithm with the
objective of minimizing the loss function as follow:

L(θj) = E(s,ϕ,R(s,ϕ),s′)∈Mj

[
(ŷj − Q(s, ϕ; θj))

2
]
, (16)

Learning-Based Sampling Strategy 189

where ŷj = R(s, ϕ) + γ · Q̂(s
′
, arg max

ϕ′
Q(s

′
, ϕ

′
; θj); θ̂j) is the target value.

Algorithm 1 shows the details of training process based on Double DQN.

Algorithm 1 Double DQN-based Sampling Resource Allocation Algorithm
Initialization:

Initialize action space A.
Initialize experience replay memory M .
Initialize main network Q with random weights θ.
Initialize target network ̂Q with ̂θ = θ.

Iteration:
1: The learning system receives the flow number q1 from SDN controller, then com-

bines q1 and the initial ratio of resource allocation r1 into the first observed state
s1.

2: for episode j = 1 to J do
3: Generate a random number g
4: if g ≤ ε
5: randomly choose an action φ(sj)
6: else
7: choose action arg maxφ(sj)

Q(sj , φ(sj); θj)

8: Execute action φ(sj), gain the reward R(sj , φ(sj)), and the new observation
sj+1.

9: Construct the transition ̂Tj = (sj , φ(sj), R(sj , φ(sj)), sj+1), and store ̂Tj in M .
10: Sample Mj mini-batch of transitions from M randomly.

11: Update θj by minimizing loss with partial derivative
∂L(θj)

∂θj
.

12: Every κ update ̂θj = θj .

4 Trace-Driven Evaluation and Results

4.1 Experiment Settings

To verify the performance of learning-based method, we built a experimental
bed based on Floodlight controller, Tensorflow, OpenVswitch and Mininet. The
test bed contains 6 Dell servers, and each server has a 20-core CPU and runs
Ubuntu 16.06.2 LTS. One of the servers runs the Floodlight which is mainly
responsible for the statistics of flow information of nodes. Another one performs
the Double DQN-based algorithm with TensorFlow and the collector runs on
another different ones. With respect to the parameter settings on neural network,
the two fully-connected hidden layers with the first-layer 128 neurons and the
second-layer 64 neurons is used to serve as the eval and target Q network. Table 1
gives the remaining parameter setting.

The network topology we deploy on the remaining 3 servers comes from the
open dataset provided by Shanghai Telecom1 [19]. In order to simulate data
1 http://sguangwang.com/TelecomDataset.html.

http://sguangwang.com/TelecomDataset.html

190 J. Deng et al.

Table 1. Parameter setting

Symbol Range Description

M 2000 Experience pool capacity

Mj 128 Minibatch size

γ 0.9 Discount factor

ε 0.1 Final exploration probability

α 0.05 Learning rate

κ 250 The period of replacing target Q network

packet transmission, virtual switches are used to replace base stations and edge
servers. This is equivalent to deploying a switch upon each base station or edge
server. As shown in Fig. 2, a grey node is regarded as a base station and a blue
one is an edge server, and a host is mounted to each base station node. In the
experiments, we let T = 1 s. The real trace collected by “the WIDE Project”2 in
2018/09/27 is used. We reserve the TCP and UDP flows, and select up to 13000
flows from the trace for different sets of experiments. The radio of elephant flows
to mices flow obeys the 2–8 principle [1].

Fig. 2. Experimental topology.

4.2 Results and Analysis

We implement three algorithms for selecting nodes.

(1) Top-k based on Flow Betweenness Centrality (FBC) [10]: Select the fixed
K sampling nodes covering the most current active flows.

2 http://mawi.wide.ad.jp/mawi/.

http://mawi.wide.ad.jp/mawi/

Learning-Based Sampling Strategy 191

(2) Random-k: Select K nodes randomly.
(3) Adaptive selection based on the extend FBC: Select the sampling nodes by

an iterative computing method. In the first iteration, the node with the most
current active flow is selected, which is the same as Top-k based on FBC.
But at the subsequent iteration, the flows covered by the selected nodes
is no longer considered when the remaining nodes calculate the number of
flows covered by their own. The iterative selection rounds will not stop until
the number of flows at a node is calculated to zero. This original method
can ensure coverage of all the flows in the network while reducing sampling
nodes.

Then, the SDN controller will send the flow number of selected nodes to
the neural network. For evaluating the sampling accuracy through a complete
experiments, the three node selection algorithms should be combined with equal
sampling duration or dynamic learning-based sampling duration respectively.
The flow-level sampling accuracy is expressed as the rate of the number of cap-
tured flows to that of the total flows in the network throughout the experiment.

(a) Accuracy of total flows in a equal
sampling duration

(b) Accuracy of total flows in a learning
-based duration allocation

Fig. 3. Comparison with respect to different algorithms.

Figures 3 and 4 show the performance comparison after applying multiple
approaches with different flow number at the same time of packet transmission
when K = 6 and the collector’s capacity C is 2000 packets/s. Obviously, as shown
in Fig. 3(a), the sampling accuracy is in a downward trend. Besides, the adaptive
method has the highest accuracy when the flow number is no more than 6000
compared with the other three traditional algorithms. However, the accuracy
of Top-k based on FBC becomes higher with the increase of flow number. For
example, when flow number rises to 8000, the accuracy of adaptive method
decreases significantly. It’s probable because many low-impact nodes are born in
the network, even through iterative computing. In this way, the method of equal

192 J. Deng et al.

sampling duration we use here wastes the finite sampling resource, which leads
to a low accuracy.

Hence, for addressing the issue, a Double DQN-based resource allocation
algorithm is introduced, with an appropriate training episodes after multiple
offline testing. We choose the two best algorithms in Fig. 3(a) to combine with
the learning-based method.

Figure 3(b) shows that the adaptive learning-based method increases the
accuracy by around 5.9%, 4.2% and 11.4%, compared with the basic Top-K,
learning-based Top-k and basic adaptive method when the flow number is 8000.
It is quiet possible that the adaptive learning-based method precisely identifies
the nodes that actually covers more flows without the interference of redun-
dant flows, and allocates more sampling resource to these nodes. However, the
learning-based Top-k has only a few improvements in accuracy, which indicates
the learning-based method does not work when the K is too small, e.g. K =
6. Meanwhile, the learning-based adaptive method can improve the accuracy
of mice flows by 8.1% while maintaining the accuracy of elephant flows, which
can be observed from the Fig. 4(a) and (b). In fact, the raises of total sampling
accuracy mainly due to that of mice flows.

(a) Accuracy of mice flows (b) Accuracy of elephant flows

Fig. 4. Comparison with respect to different algorithms.

Also, we compare the sampling accuracy at different K for each algorithm
when flow number is 8000. As Fig. 5(a) shows, for the traditional algorithm, many
flows cannot be sampled when K is too small. On the contrary, the sampling
resources allocated to each node will be relatively limited, which also results
in a lower accuracy. The basic adaptive method has no relation to K, and its
performance is inferior to the others sometimes. However, through a reformed
learning way, the accuracy can be improved obviously and keep a stable value,
as shown in Fig. 5(b). Moreover, when K = 9, the accuracy of learning-based
Top-k reaches a maximum but is still less than the learning-based adaptive
method, from which we can infer that the iterative selection can indeed distribute
resources more centrally to high-impact sampling nodes.

Learning-Based Sampling Strategy 193

(a) Accuracy of total flows in a equal
sampling duration

(b) Accuracy of total flows in a learning
-based duration allocation

Fig. 5. Effect of K.

5 Conclusion

In this article, we proposed a flow-awareness framework based Double DQN
and SDN techniques among MEC nodes, with a learning-based sampling strat-
egy, for adaptively selecting sampling nodes and dynamically allocating sampling
resource. We carried out the detailed experiments based on realistic traffic traces.
Finally, compared with two traditional algorithms, our proposed approach can
achieve excellent performance in terms of the flow-level sampling accuracy, espe-
cially for mice flows.

References

1. Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers
in the wild. In: ACM SIGCOMM Conference on Internet Measurement, pp. 267–
280, November 2010

2. Patel, M., et al.: Mobile-edge computing–introductory technical white paper.
White Paper, Mobile-Edge Computing (MEC) Industry Initiative (2014)

3. Bremler-Barr, A., Harchol, Y., Hay, D., Koral, Y.: Deep packet inspection as a
service. In: ACM CoNEXT, pp. 271–282, December 2014

4. Zhu, Y.B., Kang, N.X., Cao, J.X., Greenberg, A., Lu, G.H.: Packet-level telemetry
in large datacenter networks. ACM SIGCOMM 45(4), 479–491 (2015)

5. Su, Z.Y., Wang, T., Hamdi, M.: COSTA: cross-layer optimization for sketch-based
software defined measurement task assignment. In: IEEE IWQoS, pp. 183–188,
June 2015

6. Yu, M., Jose, L., Miao, R.: Software defined traffic measurement with OpenSketch.
In: USENIX NSDI, pp. 29–42, April 2013

7. Bouet, M., Leguay, J., Conan, V.: Cost-based placement of virtualized deep packet
inspection functions in SDN. In: IEEE MILCOM, pp. 992–997, February 2014

8. Suh, J., Kwon, T.T., Dixon, C., Felter, W., Carter, J.: OpenSample: a low-latency,
sampling-based measurement platform for commodity SDN. In: IEEE ICDCS, pp.
228–237, July 2014

194 J. Deng et al.

9. Xing, C.Y., Ding, K., Hu, C., Chen, M.: Sample and fetch-based large flow detection
mechanism in software defined networks. IEEE Commun. Lett. 20(9), 1764–1767
(2016)

10. Yoon, S., Ha, T., Kim, S., Lim, H.: Scalable traffic sampling using centrality mea-
sure on software-defined networks. IEEE Commun. Mag. 55, 43–49 (2017)

11. Ha, T., Kim, S., An, N., Narantuya, J., Jeong, C., Kim, J.W.: Suspicious traf-
fic sampling for intrusion detection in software-defined networks. Comput. Netw.
109(2), 172–182 (2016)

12. Abbas, N., Zhang, Y., Taherkordi, A., Skeie, T.: Mobile edge computing: a survey.
IEEE Internet Things J. 5(1), 450–465 (2018)

13. Su, Z., Wang, T., Xia, Y., Hamdi, M.: CeMon: a cost-effective flow monitoring
system in software defined networks. Comput. Netw. 92(1), 101–115 (2015)

14. He, Y., Zhao, N., Yin, H.X.: Integrated networking, caching, and computing for
connected vehicles: a deep reinforcement learning approach. IEEE Trans. Veh.
Technol. 67(1), 44–55 (2018)

15. Li, H., Gao, H., Lv, T.J., Lu, Y.: Deep Q-learning based dynamic resource alloca-
tion for self-powered ultra-dense networks. In: IEEE ICC, pp. 1–6, July 2018

16. Lu, L., Chen, D., Ren, X.L., Zhang, Q.M., Zhang, Y.C.: Vital nodes identification
in complex networks. Phys. Rep. 65, 1–63 (2016)

17. Vanini, E., Pan, R., Alizadeh, M., Taheri, P., Edsall, T.: Let it flow resilient asym-
metric load balancing with flowlet switching. In: USENIX NSDI, pp. 407–420, May
2017

18. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double Q-
learning. In: Proceedings 30th AAAI Conference Artificial Intelligence, pp. 2094–
2100 (2016)

19. Wang, S., Zhao, Y., Xu, J., Yuan, J., Hsu, C.H.: Edge server placement in mobile
edge computing, June 2018. https://doi.org/10.1016/j.jpdc.2018.06.008

https://doi.org/10.1016/j.jpdc.2018.06.008

	Improved Flow Awareness by Intelligent Collaborative Sampling in Software Defined Networks
	1 Introduction
	2 System Model and Problem Formulation
	2.1 Flow-Awareness Architecture Based on SDN in MEC
	2.2 Sampling Modeling and Objective
	2.3 Specifics of MDP Model
	2.4 Problem Formulation

	3 Sampling Strategy Based on DRL
	3.1 Double Deep Q-Learning for Resource Allocation

	4 Trace-Driven Evaluation and Results
	4.1 Experiment Settings
	4.2 Results and Analysis

	5 Conclusion
	References

