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Abstract. In this paper, we focus on an unmanned aerial vehicle
(UAV)-aided wireless power transfer (WPT) system, where an energy
transmitter is deployed on UAV and sends wireless energy to multiple
energy-limited sensor nodes (SNs) for energy supplement. How to exploit
the UAV’s mobility via trajectory design and adopt suitable scheduling
scheme of SNs will directly influence the whole charging efficiency over a
given charging period. From the perspective of fairness among SNs, our
aim is to maximize the minimum energy received by all SNs by jointly
optimizing the UAV’s trajectory and SNs’ scheduling scheme with the
UAV’s maximum speed constraint as well as the initial/final location
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constraint. However, the established problem is in a non-convex mixed
integer form, which is difficult to tackle. Therefore, we first decompose
the original problem into two subproblems and then develop an effi-
cient iterative algorithm by using the successive convex optimization
technique, which leads to a suboptimal solution. Numerical results are
provided to demonstrate the superiority of our proposed algorithm over
the benchmarks.

Keywords: Unmanned aerial vehicle (UAV)
Wireless power transfer (WPT) · SNs scheduling
Trajectory optimization

1 Introduction

Wireless senor networks (WSNs) have been widely used in every aspect of society
due to its low cost and convenient deployment on variety scenarios, such as
environmental monitor, biomedical observation, data collection and so on [1,8].
However, the vast majority of sensor nodes (SNs) always have limited physical
size, which leads to the lack of energy storage capacity. Therefore, how to charge
the SNs plays on important role on prolonging the effective lifetime of the WSNs.
Many attentions have paid to explore the natural energy for the SNs’ energy
harvesting, such as solar, thermoelectric or other physical phenomena [3,4,6,13].
Whereas, such schemes are usually subject to the weather and environment
conditions to a large extent.

An emerging and promising solution is to utilize the radio-frequency (RF)
transmission technique, namely wireless power transfer (WPT) system, whose
advantage lies in that the SNs can directly harvest the energy from the energy
transmitter (ET) via the RF signal. However, the RF signals will suffer from
due serious path loss over long propagation distance, which results in severe
performance loss in practical WPT systems in terms of the end-to-end WPT
efficiency and the energy supply range. Consequently, in order to improve the
WPT efficiency and provide ubiquitous wireless energy transmission to massive
energy-constraint SNs, a large number of ETs should be deployed to shorten the
distance between the SNs and ETs. Nevertheless, the corresponding deployment
cost of ETs will increase dramatically and has a significant impact on the large-
scale implementation of WPT systems.

Fortunately, the application of unmanned aerial vehicle (UAV) as mobile ET
gives birth to a radically novel architecture for the WPT systems [12]. Exactly
speaking, the ET is mounted on UAV for charging SNs and can rely on the UAV’s
flexible mobility to adjust its location arbitrarily in order to experience the favor-
able environment condition, which is more preponderant compared with the con-
ventional ETs with fixed locations. Furthermore, low manufacturing cost of UAV
as well as device miniaturization facilitate the implementations of the UAV-aided
WPT system. In fact, low-altitude UAVs carrying communication transceiver has
already been explored in recent studies [9,10,15], wherein UAVs are employed as
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aerial base stations or relays to boost the performance of terrestrial wireless com-
munication systems. By optimizing the UAV’s trajectory and use distance-based
user scheduling, the communication link quality will be significantly improved by
shortening the distance between the UAV and its served users, which makes the
overall system throughput substantially promoted [9,10,15].

Inspired by aforesaid observations, we investigate a UAV-aided WPT system
with multiple SNs. Precisely, a UAV is deployed as ET that flies over a spec-
ified area to help charge all the distributed ground SNs according to a proper
scheduling manner, which is different from the previous work [12] focusing on
a UAV-enabled WPT system with a special two users case. In this paper, our
goal is to maximize the minimum total energy of SNs by jointly optimizing the
UAV trajectory and designing the SN’s wake-up schedule, with maximum speed,
initial/final location, and energy conversion threshold constraints. Kindly note
that with such a wake-up scheduling mechanism, a SN can remain in the sleep
state without energy conversion device working until it receives the waking up
beacon signal with good RF signal strength from the nearby UAV, at which
time it will wake up and start harvesting the wireless energy from the UAV, and
return to the sleep state after the transmission [7,16]. This is a useful technique
to save the energy consumption of SNs and improve the charging efficiency by
shutting down the energy conversion processing when the RF signal strength
is not strong enough. This is different from the existing studies [10,11], which
assumes that each SN keeps its energy conversion device running all the time
as the UAV flies. As we know, the wireless channels between the SNs and the
moving UAV fluctuate fast and drastically due to the UAV’s flexible and high
mobility. Thus, the received RF signal strength cannot always satisfy the energy
conversion threshold, which will make the charging efficiency quiet low if the
energy conversion device runs continuously. This is because the SN in waking-
up state needs energy to maintain its normal operation.

Our design is formulated as a mixed-integer non-convex optimization prob-
lem, which is difficult to be optimally solved. By decomposing the original prob-
lem into two sum-problems and applying the successive convex optimization tech-
nique, an efficient iterative algorithm is proposed to find a suboptimal solution
for our design. Numerical results show that the proposed scheme outperforms the
benchmark schemes with static or simple straight trajectory of the UAV.

This paper is organized as follows. Section 2 introduces the system model.
Section 3 proposes the iterative algorithm to solve the formulated problem. The
numerical results and comparisons are presented in Sect. 4. Finally, the conclu-
sion is given in Sect. 5.

2 System Model

As shown in Fig. 1, K single-antenna senor nodes (SNs) are distributed on the
ground in a specific area with fixed locations and a single-antenna UAV broad-
casts wireless energy to charge the nodes. The UAV travels along unidirectional
trajectory with the practical maximum UAV speed constraint. It is assumed that
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UAV flies at a fixed altitude H meters (‘m’ for short) and the maximum flying
speed Vmax meter/second (‘m/s’ for short). Meanwhile, the total flying time of
UAV is denoted as time horizon T second (‘s’ for short).

Fig. 1. UAV-aided WPT system with multiple SNs.

For the sake of mathematical description, we set up a three-dimensional
Cartesian coordinate system, with all dimensions measured in meters, where
the horizontal coordinate of node k is denoted by wk = (xk, yk)T ∈ R

2×1,
k = 1, . . . , K, and the horizontal coordinate of UAV over time instant t is denoted
by q (t) = (x (t) , y (t))T ∈ R

2×1, 0 ≤ t ≤ T . For ease of exposition, time horizon
T is equally divided into N time slots with each slot duration δ. As such, the
UAV trajectory q (t) over time T can be approximately denoted by N -length
sequences {q [n]}N

n=1. Note that the slot duration δ should be sufficient small so
that the UAV’s location can be assumed to be unchanged within this slot [5,14].

Herein, we assume that the initial and landing locations of UAV are prede-
fined as follows

q [1] = q0, q [N ] = qF, (1)

where q0 and qF denote the UAV’s initial and landing location coordinates,
respectively. In practical, UAV usually has a maximum flying speed. Thus, in
each time slot, UAV trajectory should be subject to the following constraint

‖q [n + 1] − q [n]‖2 ≤ (Vmaxδ)
2
, n = 1, . . . , N − 1 (2)

where ‖.‖ means 2-norm calculation. It indicates that the maximum distance of
UAV traveled within a time slot cannot be exceeded Vmaxδ.

From [9,12,14], it can be found that the communication channel from UAV
to each node is always dominated by line-of-sight (LoS) link due to the sufficient
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scattering environment around UAV in the air. Thus, the channel gain from UAV
to node k at time slot n follows the free-space path loss model, which is given
by

hk [n] =
β0

d2k [n]
=

β0

‖q [n] − wk‖2 + H2
, (3)

where dk [n] denotes the distance between UAV and node k at time slot n, and β0

denotes the received power at the reference distance d = 1 m for a transmission
power of 1 W.

2.1 Wake-Up Scheduling Criteria for Energy Harvesting

Herein, we adopt the sleep and wake-up mechanism, where indicates that the
node can be waked up to connect with UAV at any time if and only if the received
wireless signal strength satisfies the required energy conversion threshold [16].

Define time-varying wake-up scheduling variable ak [n], which indicates that
node k is waked up at time slot n if ak [n] = 1, and otherwise ak [n] = 0. For
notation simplicity, we define the UAV’s trajectory set and wake-up scheduling
set as Q = {q [n] ,∀n} and A = {ak [n] ,∀k, n}, respectively. Assume that the
transmit power of UAV is P , and then, the harvested power by node k at time
slot n is given by

Qk [n] = ηkPhk [n] =
ηkPβ0

‖q [n] − wk‖2 + H2
, (4)

where ηk ∈ (0, 1) denotes the energy harvesting efficiency at the receiver k.
Then, the total energy of node k during the duration time T can be expressed

as

Ek = δ

N∑

n=1

ak [n] Qk [n]

︸ ︷︷ ︸
harvested energy

+ Ẽk︸︷︷︸
residual energy

, (5)

where the first term denotes the harvested energy and Ẽk means the residual
energy of node k, which is assumed to follow independent Poisson distribution
with expectation λk.

2.2 Problem Formulation

To achieve the fairness among SNs, we aim at maximizing the minimum har-
vested energy by jointly designing the SNs wake-up scheduling and UAV tra-
jectory with UAV speed, initial/final locations and energy conversion thresh-
old constraints over a finite horizon time T . The minimum harvested energy is
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defined as θ (Q,A) = min
∀k

Ek. Hence, the involved problem can be established
as

(P1) : max
{Q,A,θ}

θ

s.t. Ek ≥ θ , ∀k, (6)
Qk [n] ≥ ak[n]ξ, ∀k, n, (7)
ak [n] ∈ {0, 1} , ∀k, n, (8)

‖q [n + 1] − q [n]‖2 ≤ (Vmaxδ)
2
,

n = 1, . . . , N − 1, (9)
q [1] = q0, (10)
q [N ] = qF, (11)

Due to the coupled variables in (6) and the involved binary variables, prob-
lem (P1) is a non-convex mixed integer optimization problem, which cannot be
directly solved by standard convex optimization techniques.

3 Suboptimal Solution to Problem (P1)

To solve problem (P1), we decompose it into two subproblems to optimize
the UAV trajectory and SNs scheduling scheme separately. Then, an iterative
algorithm is proposed via alternately optimizing the two suboptimal problems.
Finally, the convergence of the proposed algorithm is analyzed.

3.1 Wake-Up Scheduling Optimization

In this section, we consider the subproblem of (P1) for optimizing wake-up
scheduling A by assuming UAV’s trajectory Q is fixed. As a result, the problem
(P1) is relaxed to the following problem, which is given by

(P1.1) : max
{A,θ}

θ

s.t. Ek ≥ θ , ∀k, (12)
Qk [n] ≥ ak[n]ξ, ∀k, n, (13)
ak [n] ∈ {0, 1} , ∀k, n. (14)

Note that problem (P1.1) is a classic linear 0-1 programming problem, which
have a high complexity with the number of variables increasing. Thus, we first
relax the binary variable ak[n] into continuous variable. That is, the constraint
(14) is replaced by 0 ≤ ak [n] ≤ 1. Thus, the problem (P1.1) is recast into a
linear programming problem, denoted as

(
P̄1.1

)
. Furthermore, it can be proved
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that the optimal wake-up scheduling solution to problem
(
P̄1.1

)
is either 1 or 0,

which indicates the problem
(
P̄1.1

)
and (P1.1) have same solutions. Then, we

have the following Theorem.

Theorem 1. Problem
(
P̄1.1

)
is equivalent to problem (P1.1).

Proof. The corresponding partial lagrangian function of problem
(
P̄1.1

)
can be

expressed as

L (ak [n] , θ, νk, μn,k)

= θ +
N∑

n=1

K∑

k=1

μn,k (Qk [n] − ak[n]ξ)+
K∑

k=1

νk (Ek − θ)

=

(
1 −

K∑

k=1

νk

)
θ +

K∑

k=1

νkẼk

+
N∑

n=1

K∑

k=1

[μn,k (Qk [n] − ak[n]ξ) + δνkak [n] Qk [n]]

(15)

where the Lagrangian multipliers νk and μn are corresponding to the constraint
(12) and (13) of problem

(
P̄1.1

)
, respectively. Accordingly, the dual function for

problem
(
P̄1.1

)
can be written as

g (νk, μn,k) =

{
max

ak[n],θ
L (ak [n] , θ, νk, μn,k)

s.t. 0 ≤ ak [n] ≤ 1,∀k, n
(16)

Next, we will prove 1 −
K∑

k=1

νk = 0 with the method of reduction to absurdity.

Suppose that 1 −
K∑

k=1

νk < 0 (or 1 −
K∑

k=1

νk > 0), and let θ → −∞ (or θ → ∞)

from (16). Then, the dual function g (νk, μn,k) will tend to infinity, which is

contradictory with the boundedness of g (νk, μn,k). Thus, 1 −
K∑

k=1

νk = 0 should

be satisfied.
With the given dual variables νk and μn,k, the dual function g (νk, μn,k) can

be solved to obtain the optimal solutions ak[n] and θ. Since 1 −
K∑

k=1

νk = 0, the

optimal value of θ can be chosen with any real value. Based on this, it is clear
that if (δνkQk [n] − ξμn,k) ≥ 0, ak[n] = 1 will make (δνkQk [n] − ξμn,k) ak [n]
maximized, otherwise, ak[n] = 0. This completes the proof. �
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3.2 UAV Trajectory Optimization

In this subsection, we consider the second subproblem of (P1), namely optimizing
UAV trajectory Q with a given wake-up scheduling scheme. As such, the UAV
trajectory optimization subproblem can be formulated as

(P1.2) : max
{Q,θ}

η

s.t. Ek ≥ η , ∀k, (17)
Qk [n] ≥ ak[n]ξ, ∀k, n, (18)

‖q [n + 1] − q [n]‖2 ≤ (Vmaxδ)
2
,

n = 1, . . . , N − 1, (19)
q [1] = q0, (20)
q [N ] = qF. (21)

It is worth stressing that the problem (P1.2) is still non-convex owing to the
common term ‖q [n] − wk [n]‖2 in constraints (17) and (18), which is challenging
to find its optimal solutions. However, since Qk [n] in (4) is convex with respect
to (w.r.t.) ‖q [n] − wk [n]‖2. Thus, based on successive convex optimization tech-
niques, we can obtain an approximate solution to problem (P1.2). Specifically,
the left-hand side (LHF) of (17) and (18) are replaced by their own lower bounds
via successively optimizing the incremental of UAV’s trajectory at each iteration.

To proceed, let Ql = {ql [n] ,∀n} denote the UAV’s trajectory at l-th itera-
tion, and {	ql [n]}N−1

n=2 denote the UAV’s displacement. Then, the UAV’s tra-
jectory at (l + 1) -th iteration at time slot n can be expressed as

ql+1 [n] = ql [n] + 	ql [n] , n = 2, . . . N − 1, (22)

With the resulting trajectory after the l-th iteration, the corresponding harvested
power by node k at l-th iteration over time slot n can be written as Qk,l [n] =

η0Pβ0
‖ql[n]−wk‖2+H2 . Then, we have the following Lemma.

Lemma 1. For any given UAV trajectory incremental {	ql [n]}N−1
n=2 , the fol-

lowing inequality holds

Qk,l+1 [n] ≥ Qlb
k,l+1 [n] =

ηkPβ0

d2k,l [n]
− ηkPβ0

d4k,l [n]
Δ, (23)

where dk,l [n] =
√

‖ql [n] − wk‖2 + H2, Δ = ‖	ql [n]‖2 + 2(	ql [n] − wk)Tql

[n], n = 2, . . . , N − 1.

Proof. Define a function f (x) = a
b+x with constants a > 0 and b > 0. Clearly,

f (x) is convex w.r.t. x ∈ (−b,∞]. Recall that any convex function is globally
lower-bounded by its first-order Taylor expansion at any feasible point [2], i.e.,
f (x) ≥ f (x0) + f ′ (x0) (x − x0). By setting x0 = 0, we have

a

b + x
≥ a

b
− a

b2
x, (24)
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Hence, the harvested power Qk,l+1 [n] can be expressed as

Qk,l+1 [n] =
ηkPβ0

‖ql+1 [n] − wk‖2 + H2

=
ηkPβ0

d2k,l [n] + Δ

≥ ηkPβ0

d2k,l [n]
− ηkPβ0

d4k,l [n]
Δ = Qlb

k,l+1, (25)

where dk,l [n] =
√

‖ql [n] − wk‖2 + H2, Δ = ‖	ql [n]‖2+2(	ql [n] − wk)Tql [n]
with n = 2, . . . , N − 1. This completes the proof. �

Lemma 1 tells us that for given UAV trajectory Ql and incremental
{	ql [n]}N−1

n=2 , the new iterated energy Ek,l+1 is lower-bounded by Elb
k,l+1, which

is concave w.r.t. {	ql [n]}N−1
n=2 . Then, we have

Elb
k,l+1 = δ

N∑

n=1

ak [n] Qlb
k,l+1 [n] + Ẽk. (26)

By defining ηlb
l+1 (Ql+1, Al+1) = min

∀k
Elb

k,l+1, problem (P1.2) can be reformulated

as follows
(
P̄1.2

)
: max

{{�ql[n]}N−1
n=2 ,ηlb

l+1}
ηlb

l+1

s.t. Elb
k,l+1 ≥ ηlb

l+1, ∀k, (27)

Qlb
k,l+1 [n] ≥ ak[n]ξ, ∀k, n, (28)

‖ql [n + 1] + 	ql [n + 1] − ql [n] − 	ql [n]‖2

≤ (Vmaxδ)
2
, n = 2, . . . , N − 1, (29)

‖ql[2] + 	ql [2] − q [1]‖2 ≤ (Vmaxδ)
2
, (30)

‖q [N ] − ql [N − 1] − 	ql [N − 1]‖2 ≤ (Vmaxδ)
2
,

q [1] = q0, (31)
q [N ] = qF (32)

Kindly note that the LHS of constraint (27) are concave w.r.t. {	ql [n]}N−1
n=2 .

Therefore, the problem
(
P̄1.2

)
is convex. As a result, we can resort to using stan-

dard convex technique to solve it, and the problem (P1.2) can be approximately
solved by successively updating ql+1 [n] based on the optimal solution to

(
P̄1.2

)
,

which is summarized in Algorithm 1. Furthermore the optimal value of problem
(P1.2) is lower bounded by the optimal solution in Algorithm1.
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Algorithm 1. Successive Trajectory Optimization with Fixed Wake Up Schedul-
ing.
1: Initialize {q0 [n]}N−1

n=2 , q [1] = q0, q [N ] = qF, l ← 0, the tolerance ε > 0.
2: Repeat
3: Obtain optimal solution {�ql [n]}N−1

n=2 of
(
P̄1.2

)
.

4: Update UAV’s trajectory ql+1 [n] ← ql [n] +�ql [n].
5: l ← l + 1.
6: Until The fractional increase of the objective value of

(
P̄1.2

)
is less than tolerance

ε.

3.3 Joint Wake-Up Scheduling and UAV Trajectory Optimization

In this subsection, with the solutions to problem (P1.1) and
(
P̄1.2

)
, we propose

an iterative algorithm for jointly optimizing wake-up scheduling and UAV trajec-
tory, which is summarized in Algorithm2. Note that since the subproblem (P1.2)
for UAV trajectory optimization cannot be optimally solved by Algorithm1, thus
the optimality cannot be directly declared for Algorithm2.

Algorithm 2. Block Coordinate Descent Method for Problem (P1).

1: Initialize the UAV’s trajectory as {q0 [n]}N−1
n=2 , q [1] = q0, q [N ] = qF, and l ← 0

as well as tolerance ε > 0.
2: repeat.
3: Obtain the optimal wake-up scheduling criteria

{ak,l [n]},∀n = 1, . . . , N and ∀k = 1, . . . , K
to problem

(
P̄1.1

)
.

4: Fix the wake-up scheduling criteria {ak,l [n]}
obtained from step 3, then obtain the optimal
UAV trajectory {ql+1 [n]} using Algorithm 1.

5: Update l ← l + 1.
6: until the fractional increase of the objective value of (P1) is less than tolerance ε.

3.4 Convergence Proof for Proposed Algorithm

In this subsection, the convergence properties of the proposed Algorithms 1 and
2 will be analyzed, respectively. First, for the given trajectory Ql, the optimal
solution to problem (P1.1) can be denoted as Al+1. Thus, we have

θ (Ql, Al) ≤ θ (Ql, Al+1) . (33)

At each iteration in Algorithm 1, the objective function ηlb
l+1 is non-decreasing

over l as follows

ηlb
l (Ql, Al+1) ≤ ηlb

l+1 (Ql+1, Al+1) . (34)
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Based on the fact that problem (P1.2) is upper-bounded by a finite value,
Algorithm 1 is guaranteed to converge. Due to the fact that θ (Ql, Al+1) =
ηlb

l (Ql, Al+1), ηlb
l+1 (Ql+1, Al+1) ≤ ηl+1 (Ql+1, Al+1) and ηl+1 (Ql+1, Al+1) =

θl+1 (Ql+1, Al+1), it is readily to declare that θ (Ql, Al) ≤ θl+1 (Ql+1, Al+1),
which indicates that Algorithm 2 is non-decreasing over each iteration l. Fur-
thermore, since the objective value of (P1) is upper-bounded by a finite value,
Algorithm 2 is also guaranteed to converge.

4 Numerical Results

In this section, numerical results are provided to evaluate the performance of our
proposed UAV-aided WPT scheme. In our system, we consider K = 4 SNs ran-
domly distributed within a geographic area of size 100 × 100m2. The involved
parameters are set as follows: Vmax = 10m/s, H = 10m, P = 10W, β0 = 1,
ξ = 10−4. Furthermore, we choose the time slot duration as δ = 0.3 s. With-
out loss of generality, the energy harvesting efficiency coefficient is same, i.e.,
ηk = η0 = 0.7,∀k. Moreover, the residual energy at each SN follows Poisson
distribution with same expectation, i.e., λk = λ = 0.4 J.

We first consider the case Ẽk = 0,∀k, which implies that all the SNs have no
energy retained at initialization. Figure 2 plots the UAV trajectory with different
horizon time T . Without loss of generality, the UAV’s initial and final locations
are fixed to q0 = (−100, 0)T and qF = (100, 0)T, respectively. It can be observed
from Fig. 2 that as T increases, UAV moves closer to the ground nodes. This
is attributed to the fact that the longer flying time allowed, the more distance

Fig. 2. UAV trajectory with different horizon time T .
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Fig. 3. UAV speed over time instant n at T = 120 s.

Fig. 4. UAV trajectory with different level of residual energy at each node.

can be traveled. Figure 3 depicts the UAV variation-speed corresponding to UAV
trajectory in Fig. 2 at T = 120 s. It can be found that the equal dwell time is
allocated to each node as horizon time T is sufficiently large.
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Fig. 5. UAV speed corresponding to UAV trajectory as shown in Fig. 4.

Fig. 6. Max-min energy harvested with different schemes.

Next, we consider that each SN has different levels of residual energy. The
residual energy are respectively given by Ẽ1 = 0.8 J, Ẽ2 = 0.2 J, Ẽ3 = 0.6 J and
Ẽ4 = 0.3 J, which obtained by random realization with mean 0.4 J. It can be seen
from Figs. 4 and 5 that UAV moves directly to node k with shortest distance,
and different dwell time is allocated to each SN. Specifically, UAV spends a large
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mount of time to hover above the node which has less residual energy, and less
time is allocated to hover above the node which has larger residual energy. This
is attributed to the fact that the SN with less energy needs more time to be
served by UAV.

At last, we compare our proposed scheme with static UAV scheme and tra-
ditional straight trajectory scheme for max-min energy harvested as shown in
Fig. 6. It is reasonable to assume that the location of static UAV is located at
the geometric center qstatic = (0, 0)T ∈ R

2×1 and the straight trajectory is set
as q [n] = q1 + qN−q1

N−1 n, n = 0, . . . , N − 1. To process, the wake-up scheduling
is optimized for both static UAV and straight trajectory schemes. One can find
that the proposed scheme outperforms the two benchmark schemes. Further-
more, the performance gain is more remarkable as T increases. This is because
UAV can move closer to or hover above SNs for power charge with better channel
condition. As a result, the max-min total achieved energy is improved.

5 Conclusion

In this paper, we have investigated a novel UAV-aided WPT system, where the
UAV charges the SNs according to the fairness criteria by jointly optimizing the
UAV’s trajectory and SNs’ scheduling scheme with the flying constraints. The
established problem is a non-convex mixed integer problem, which is difficult to
tackle. Thus, we propose an efficient iterative algorithm by jointly optimizing
wake-up scheduling and UAV trajectory with successive convex optimization
techniques. Simulation results provide two significant insights. First, our pro-
posed scheme has achieved significant performance gain over two benchmarks,
which indicates that the UAV trajectory has significantly impacted on the WPT
system. Second, for the same levels of residual energy at SNs, the equal dwell
time is allocated to each node as horizon time T is sufficiently large. Further-
more, for different levels of residual energy at SNs, UAV spends more time to
hover above the energy-less SNs, which indicates that the UAV prefers to serve
the energy-drained SNs.
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