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Abstract. Due to its characteristics, there is a trend in biometrics to
use the ECG signal for personal identification. There are different appli-
cations for this, namely, adapting entertainment systems to personal set-
tings automatically.

Recent works based on compression models have shown that these
approaches are suitable to ECG biometric identification. However, the
best results are usually achieved by the methods that, at least, rely on
one point of interest of the ECG – called fiducial methods.

In this work, we propose a compression-based non-fiducial method,
that uses a measure of similarity, called the Normalized Relative
Compression—a measure related to the Kolmogorov complexity of
strings. Our method uses extended-alphabet finite-context models
(xaFCMs) on the quantized first-order derivative of the signal, instead
of using directly the original signal, as other methods do.

We were able to achieve state-of-the-art results on a database col-
lected at the University of Aveiro, which was used on previous works,
making it a good preliminary benchmark for the method.

Keywords: Kolmogorov complexity · Signal processing ·
Compression · Compression metrics · Classification · ECG · Biometrics

1 Introduction

The electrocardiogram (ECG) is a well-known and studied biomedical signal. To
understand pathological characteristics, in clinical practice, it is usual to try to
reduce the inter-variability that characterizes the signal. This inter-variability
is precisely the source of richness that renders the ECG an interesting signal
for biometric applications. Because of its desirable characteristics (universality,
uniqueness, measurability, acceptability and circumvention avoidance [8]), it is
suitable for biometric identification.

We address this topic using a measure of similarity related to the Kol-
mogorov complexity, called the Normalized Relative Compression (NRC). To
attain the goal, we use the generalized version of finite-context models (FCM),
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called extended-alphabet finite-context models (xaFCM) [4], to represent each
individual [2–4]—a compression-based approach that, besides ECG biometric
identification, has been shown successful for different pattern recognition appli-
cations [11–13].

In previous works, we have already used these methods [2–4]. However, the
approach always relied on the detection of a fiducial point (a “point of interest”)
in each heartbeat found in the ECG signal, called the R-peak. The detection of
such points on clean signal is a computationally simple problem, with algorithms
attaining accuracies of around 99.9% on clinical signals [9]. But, as it is well
known in biometrics, most times we need to deal with highly noisy signals,
making that detection prone to error and, by transitivity, partially corrupting
the whole process of identification.

In this work, we present a non-fiducial method for ECG biometric identi-
fication, that uses a Lloyd-Max quantizer on first-order differentiation of the
signal (the differences between consecutive points in the signal). We show that,
using this approach, we improve previous state-of-the-art results obtained on a
publicly available dataset1, originally collected for emotion classification [6].

The classification step uses 10 s of ECG signal before attempting classifica-
tion. This choice was done based on the results achieved on a previous work [3],
where we showed that adding more time to the testing samples might not pro-
vide much of an advantage—and, of course, in a biometric system, it is desired
for the time needed before identification to be as small as possible.

1.1 Compression-Based Measures

Compression-based distances are tightly related to the Kolmogorov notion of
complexity, also known as algorithmic entropy. Let x denote a binary string of
finite length. Its Kolmogorov complexity, K(x), is the length of the shortest
binary program x∗ that computes x in a universal Turing machine and halts.
Therefore, K(x) = |x∗|, the length of x∗, represents the minimum number of
bits from which x can be computationally retrieved [10].

The Information Distance (ID) and its normalized version, the Normalized
Information Distance (NID), were proposed by Bennett et al. almost two decades
ago [1] and are defined in terms of the Kolmogorov complexity of the strings
involved, as well as the complexity of one when the other is provided.

However, since the Kolmogorov Complexity of a string is not computable,
an approximation (upper bound) for it can be used by means of a compressor.
Let C(x) be the number of bits used by a compressor to represent the string x.
We will use a measure based on the notion of relative compression [12], denoted
by C(x||y), which represents the compression of x relatively to y. This measure
obeys the following rules:

– C(x||y) ≈ 0 iff string x can be built efficiently from y;
– C(x||y) ≈ |x| iff K(x|y) ≈ K(x).

1 http://sweet.ua.pt/ap/data/signals/Biometric Emotion Recognition.zip.

http://sweet.ua.pt/ap/data/signals/Biometric_Emotion_Recognition.zip
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Based on these rules, the Normalized Relative Compression (NRC) of the
binary string x given the binary string y, is defined as

NRC(x||y) =
C(x||y)

|x| , (1)

where |x| denotes the length of x.
A more general formula for the NRC of string x, given string y, where the

strings x and y are sequences from an alphabet A = {s1, s2, . . . s|A|}, is given by

NRC(x||y) =
C(x||y)

|x| log2 |A| . (2)

1.2 Extended-Alphabet Finite-Context Models

Let A = {s1, s2, . . . s|A|} be the alphabet that describes the objects of interest.
An extended-alphabet finite-context model (xaFCM) complies to the Markov
property, i.e., it estimates the probability of the next sequence of d > 0 symbols of
the information source (depth-d) using the k > 0 immediate past symbols (order-
k context). Therefore, assuming that the k past outcomes are given by xn

n−k+1 =
xn−k+1 · · · xn, the probability estimates, P (xn+d

n+1|xn
n−k+1) are calculated using

sequence counts that are accumulated, while the information source is processed,

P (w|xn
n−k+1) =

v(w|xn
n−k+1) + α

v(xn
n−k+1) + α|A|d , (3)

where Ad = {w1, w2, . . . w|A|, . . . w|A|d} is an extension of alphabet A to d dimen-
sions, v(w|xn

n−k+1) represents the number of times that, in the past, sequence
w ∈ Ad was found having xn

n−k+1 as the conditioning context and where

v(xn
n−k+1) =

∑

a∈Ad

v(a|xn
n−k+1) (4)

denotes the total number of events that has occurred within context xn
n−k+1.

In order to avoid problems with “shifting” of the data, the sequence counts
are performed symbol by symbol, when learning a model from a string.

Parameter α allows controlling the transition from an estimator initially
assuming a uniform distribution to a one progressively closer to the relative
frequency estimator. In this paper we will use the parameter α chosen on “auto”
(for more details, please check the original paper [4]).

The theoretical information content average provided by the i-th sequence of
d symbols from the original sequence x, is given by

− log2 P (Xi = ti|xid−1
id−k) bits, (5)

where ti = xid, xid+1 · · · x(i+1)d−1.
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After processing the first n symbols of x, the total number of bits generated
by an order-k with depth-d xaFCM is equal to

−
n/d∑

i=1

log2 P (ti|xdi−1
di−k), (6)

where, for simplicity, we assume that n (mod d) = 0.
For compressing the first k symbols of a sequence, because we do not have

enough symbols to represent a context of length k, we always assume that the
sequence is “circular”. For long sequences, specially using small contexts/depths,
this should not make much difference in terms of compression, but as the con-
texts/depths increase, this might not be always the case.

1.3 Lloyd-Max Quantization

Quantization is widely used in signal processing. It is a process that takes a
signal and produces only a, usually predefined, discrete set of values. It is a very
simple process. However, the design of the quantizer has a significant impact on
the amount of compression obtained and loss incurred in a lossy compression
scheme [14].

As mentioned before, we do not want to achieve real compression—we just
want to compute measures of dissimilarity. For that reason, we can afford to use
a lossy-compression scheme. We have loss of information by performing quanti-
zation on the ECG signal.

We will refer to number of discrete intervals in the quantization as the alpha-
bet size. There is a fundamental trade-off to take into account while performing
the choice of the alphabet size: the quality produced versus the amount of data
necessary to represent the sequence [7]. In this work, we have always used an
alphabet size of 17, which the quantizer represents by the symbols corresponding
to the first 17 letters of the alphabet: ‘A’, ‘B’, . . . ‘P’, ‘Q’.

When the random variable to be quantized does not follow a uniform distri-
bution, a nonuniform quantization should be performed. In order to decrease the
average error of the quantization, we can try to approximate the input better
in regions of high probability, perhaps at the cost of worse approximations in
regions of lower probability. We can do this by making the quantization intervals
smaller in those regions that have more probability mass [14].

One example of such a quantization is a Lloyd-Max quantization, which can
be useful when the distribution of the variable to quantize is given by some
complex mathematical function, like the ECG signal, for which we can not find
a simple mathematical function that describes the signal.

2 Method

An overview of the method used in this work can be seen in Fig. 1. We start by
cleaning the ECG signals by using a Butterworth low-pass filter of order 5 with
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a cutoff frequency of 30 Hz. The obtained signal is then transformed into a series
of differences (which corresponds to the first-order derivative of the signal).

Since we want to apply a Lloyd-Max quantizer to this series, we perform a
2-pass process on the training data: first, for each participant in the database, we
learn the breakpoints that optimize its Lloyd-Max quantization2; on the second
phase, we apply the corresponding breakpoints to each participants’ training
data, in order to perform the quantization.

From the quantized training data, it is possible to learn a model that describes
each participant’s data by using a context-based compressor, such as a xaFCM3.
It is important to notice that each model, besides learning the xaFCMs, also
takes notice on which participant it is representing—this is important, because
those breakpoints will also be used during the testing phase.

The splitting of the test data into segments of 10 s is then performed. At this
point, it is only required to compute the amount of bits it takes to compress
each of those segments, by each of the participants’ models. This step is done in
two phases: the first is to perform the quantization of the segment being tested
using the breakpoints corresponding to the model that we are using; afterwards,
the estimation of the amount of bits needed to represent that sequence using the
xaFCM is computed. The model that produces less bits, i.e., the one which has
a lower NRC, is our guess as the correct participant.

ECG Signals

Butterworth
low-pass filter

First-order
derivatives

Learn breakpoints
per participant

(on training data)

Split test data into
small segments of
ten seconds each

Lloyd-Max quanti-
zation on test data

Lloyd-Max
quantization on
training data

Learn model per
each participant

Compute NRC of
each segment to
each participant

Pick the min-
imum value

Fig. 1. Overview of the method used in this work.

2 The source code for the Python quantizer is publicly available under the GPL v3
license at https://github.com/joaomrcarvalho/diffquantizer.

3 The source code for the Python implementation of the extended-alphabet finite-
context model based compressor is publicly available under the GPL v3 license at
https://github.com/joaomrcarvalho/xafcm.

https://github.com/joaomrcarvalho/diffquantizer
https://github.com/joaomrcarvalho/xafcm
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3 Experimental Results

3.1 Database

The database used in this work was collected in house, where 25 participants
were exposed to different external stimuli—disgust, fear and neutral. Data were
collected on three different days (once per week), at the University of Aveiro,
using a different stimulus per day.

The data signals were collected during 25 min on each day, giving a total of
around 75 min of ECG signal per participant. Before being exposed to the stimuli,
during the first 4 min of each data acquisition, the participants watched a movie
with a beach sunset and an acoustic guitar soundtrack, and were instructed to
try to relax as much as possible.

The ECG was sampled at 1000 Hz, using the MP100 system and the software
AcqKnowledge (Biopac Systems, Inc.). During the preparation phase, the adhe-
sive disposable Ag/AgCL-electrodes were fixed in the right hand, as well as in
the right and left foot. We are aware that such an intrusive set-up is not desir-
able for a real biometric identification system. However, since we have already
used this database in previous works [2–4], it provides a good benchmark for the
methods against the previous approaches.

3.2 Results

We tried to replicate as much as possible the experimental setup used in previous
works [3,4], in order to have fair benchmarks against those systems. However,
since the previous methods used R-peak detection, the way to measure the size of
the ECG samples used for testing was done in complete heartbeat cycles, instead
of seconds. In those previous methods, we have used 10 heartbeats for each test.
In order for the results to be comparable, in this work we assumed that one
heartbeat is approximately 1 s. Therefore, each test is performed using 10 s of
ECG data. Even if this approximation is not completely accurate, i.e., if we use
a little more data (or less, depending on the heartbeat rate of each participant)
than the previous experiments, it should not impact the results significantly, as
we showed in [3].

All the experiments were performed on a Amazon AWS EC2 instance
(c5.9xlarge), with a 3.0 GHz Intel Xeon Platinum (34 cores) CPU and 72 GB
of RAM. The operating system used was Ubuntu Server 16.04, and Python
3.6.4. The process could run on a regular laptop computer with 8 GB of RAM,
but we decided to use a cloud instance computer in order to make use of the par-
allelized code and have faster results. As mentioned in the previous section, all
the base source code is freely available and can be downloaded from the Github
repository.

Using higher values of the depth, d, of the xaFCM, has the advantage of
providing very fast results, at sometimes the possible cost of some decrease in
accuracy (the theoretical explanation for these concepts can be found in [4]).
For that reason, we use high values of d for finding the areas of interest for the
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Fig. 2. Biometric identification accuracy, using d = 10, d = 5 and d = 2, as a function
of the parameter k. (Color figure online)

parameter k and, afterwards, we start decreasing the value d and reduce the
number of simulations that we need to run in order to find the optimal values of
the context, k, in order to obtain more accurate results. Of course, the optimal
values of k also depend on the depth, d, but using high values of d gives an idea
of the area experiments should be performed more extensively.

Figure 2 shows all the experiments ran for biometric identification on this
database, for different values for the depth d and context k. As mentioned in
Sect. 2, all the experiments used two days for training the models and all the
available ten-second samples of ECG from the remaining day as the tests.

The first phase of tests was ran with d = 10, experimenting contexts k from
1 up to 100. It is easy to see from the plot marked in green (Fig. 2), that the
possible area of interest for k lays somewhere between 15 and 50 – the best value
was found for k = 30, with an accuracy of 87.5%. The second phase (marked as
blue) uses d = 5 and narrows down the area of interest for k from around 25 to
50, with the best results for k = 35, with an accuracy of 88.6%. Then, since we
have a small region of interest, we performed some tests using d = 2 and the best
value found was with k = 38, with an accuracy of 89.3%. Actually, if we look at
the differences in accuracy, depending on the requirements in terms of speed, it
might not even be worth using small values of d for this application. The results
in terms of the choice of d are consistent with our previous results [4]. Regarding
the context, k, from these results, we can infer that this new approach requires
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Fig. 3. Confusion matrix for biometric identification using a xaFCM of context k = 35
and depth d = 2. This test used two days for training and the other day for testing.
Each test was performed using 10 s of ECG. This experiment achieved an accuracy of
88.5% and F1-score of 0.88.

higher values of k in order for the model to have a good internal representation of
each participant. This might have an impact in terms of memory usage and time
of execution. However, since the size of the data used is usually not significant
(a couple of megabytes), the models also do not grow exponentially to values
that can not be represented by a regular laptop, as they would with data like
DNA sequences [4].

Besides the accuracy, it also useful to check a measure that takes into account
the precision obtained. For that reason, and also to have a more clear under-
standing of the types of error that our system is performing for this dataset (to
answer questions like “how many false positives/true negatives are we obtaining
in each class?”), we show the confusion matrix of the predictions made by the
system, against the true labels. In Fig. 3, we show the confusion matrix obtained



Compression-Based Classification of ECG Using First-Order Derivatives 35

for the experiment using k = 35 and d = 2, for which we obtained an accuracy
of 88.5% and F1-score of 0.88.

It is interesting to notice that when testing ECG signal belonging to partici-
pants 0, 3, 6, 8, 13, 14, 16 and 21, the system almost does not make any mistake.
For the other participants, the system makes mistakes, but they are “spread”
amongst different other participants, i.e., the system never consistently mistakes
one participant by a specific different one. This is a very important feature on a
biometric system, because it makes it harder for someone to fake a specific iden-
tity. On the first experiments performed with previous approaches, this was a
major problem that we had. Our current justification is that this usually happens
when the amount of training data provided for one participant is not propor-
tional to the other ones—however, more research needs to be done to verify this
claim.

4 Conclusions and Future Work

We have introduced a compression-based non-fiducial method that works with
first order derivatives, instead of the original signal, for performing ECG bio-
metric identification.

This method beats previous state-of-the-art methods using this database,
achieving an accuracy of 89.3%. Moreover, it uses the same amount of train-
ing data as the previous methods, that have attained, at most, around 80% of
accuracy [3].

We are confident that these results can be further improved. However, since
the purpose was to introduce the main ideas associated to the method, we did
not perform an exhaustive search for optimal parameters, neither experimented
with mixtures of finite-context models (collaborative models), which, on machine
learning terms, behave like a dynamic voting system.

While these results seem very promising, future work needs to be done in
order to check how well this approach works when dealing with intruders in the
system, for example. For attaining that goal, the first step is to switch from
a classification problem to a real biometric system, where there should be a
threshold value for the NRC, instead of always accepting the minimum value as
the correct participant. We intend to perform this change in a near future and
also benchmark the method against other state-of-the-art ECG biometric iden-
tification methods, regarding the most significant databases available (namely,
UoftDB [15] and CYBHi [5]).
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