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Abstract. This paper describes our work in extracting useful cognitive
load classification information from a relatively simple and non-invasive
physiological measurement technique, with application in a range of
Human Factors and Human-Computer Interaction contexts. We employ
novel methodologies, including signal processing, machine learning and
genetic algorithms, to classify Galvanic Skin Response/Electrodermal
Activity (GSR/EDA) signals during performance of a customised game
task (UAV Defender) in high- and low-workload conditions. Our results
reveal that Support Vector Machine Linear was the most successful
technique for classifying the level of cognitive load that an operator is
undergoing during easy, medium, and difficult operation conditions. This
methodology has the advantage of applicability in critical task situations,
where other cognitive load measurement methodologies are problematic
due to sampling delay (e.g. questionnaires), or difficulty of implementa-
tion (e.g. other psych-physiological measures). A proposed cognitive load
classification pipeline for real-time implementation and its use in human
factors contexts is discussed.

Keywords: Cognitive load · Galvanic Skin Response ·
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1 Introduction

When operating complex machinery, dealing with sensitive control apparatus,
or navigating vehicles of any size, it is increasingly evident that the level of cog-
nitive load (CL) the operator is incurring has a direct impact on the operator’s
performance on the task, (e.g. [12]). Likewise, such multi-tasking during critical
task operation has detrimental effects on both the primary task (e.g. driving)
and secondary task performance [5,13].

Managing cognitive load promises to optimise the way information is pro-
cessed and responded to by humans, addressing errors due to overload, which
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was identified as a factor in the tragic crash of flight AF447 in 2009 [6], or con-
versely to underload, in typical surveillance scenarios where an operator must
be able to detect minute anomalies in very long sequences of otherwise normal
observations.

Where our current work has useful, and indeed extremely relevant scope
given recent and expected technological advances, is in the domain of applied,
mission-critical environments. In this context, we define a critical task as one
that: (a) needs active and substantial attentional resources for its successful exe-
cution, and (b) could result (or will likely result) in catastrophic circumstances,
i.e. injury, death, or damage to property, in the event of task failure. While the
large body of existing laboratory evidence is useful in understanding CL, and
predicting the effects of high and low workload tasks, there remains a gap in our
ability to monitor this phenomenon in the actual operating environments where
it is arguably most important. In addition to affording new ways of monitoring
CL in real-time and measuring or evaluating operator performance and interac-
tion with systems, psycho-physiological measures such as those described in this
paper can contribute to the development of novel, real-time, direct and indirect
human-computer interaction (HCI) techniques (e.g. [18,19]).

2 Related Work

Cognitive load corresponds to the mental effort expended carrying out a task,
based on the premise that working memory capacity is a limited resource in the
human cognitive system, yet is critical in coordinating memory, attention and
perception [2].

By measuring the cognitive load experienced by a user, applications could
adapt the amount and pace of content they provide to continuously optimise
delivery, hence maximising the throughput of information between the human
and computer. From the literature, we can identify four broad ways to mea-
sure cognitive load: subjective assessment methods, performance based tech-
niques, behavioural measurements, and psycho-physiological measurements. We
here focus on the latter.

Psycho-physiological measurements use changes in a person’s physiological
state to infer a change in mental state - in this case, cognitive workload. There
are numerous examples of such measures, including direct measures of brain
activity (EEG, FNIR; e.g. [1,7]), ocular activity (e.g., [19]), breath rate, heart
rate speed and variability [23]. For a detailed review, please see [3].

In this paper, we focus on one of the oldest and most studied measures of
human psycho-physiology: Galvanic Skin Response, also known as Electroder-
mal Activity. Whereas most of the above techniques require expensive apparatus,
considerable time for set-up, and specific laboratory techniques for data collec-
tion, the GSR is of minimal complexity, requiring only two proximally-located
electrodes in contact with the epidermis. The metric itself is simply the electrical
conductance between these two points, as measured in microsiemens. Whereas
historically the raw value of the GSR has been of primary interest, we present
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here some novel methodologies for usefully classifying these signals under differ-
ent CL conditions.

Early work on GSR discriminated between tonic (baseline level, also known
as skin conductance level) and phasic (fluctuations due to physiology activity,
also known as skin conductance responses) GSR [11]. On the other hand, a study
into driver stress simply smoothed the GSR signal with a digital elliptical filter
cutting at 4 Hz, and then used slope characteristics (magnitude and durations)
as features [8]. Another study specifically targeting CL measurement from GSR
showed that a simple, unimodal metric such as accumulated GSR can be a rea-
sonable indicator of CL [20]. Other research has shown that GSR can be a good
indicator of the quality of human decisions. In this work the raw signal was first
smoothed using a Hann window function, followed by z-standardisation before
applying extrema-based and statistic-based features similar to the above stud-
ies [24]. Finally, some other studies have explored the applicability of feature
extraction methods used for other signals to GSR. For example, EEG and EMG
methods have been included for analysis in this investigation [9,15].

3 Methodology

45 Participants (ages 21–35) from a University research pool were involved in
this study. They were paid 40USD for completing two 1-hour test sessions. Par-
ticipants reported having normal or corrected-to-normal visual acuity.

Participants completed a computer-based task, UAV Defender, over two test-
ing sessions. The task was developed at the Tasmanian Cognition Lab (University
of Tasmania) and was carried out on standard current-model Windows desktop
computers, and standard peripheral devices. The GSR signal was collected from
the finger and thumb of the non-dominant hand, using commercially available
Neulog GSR logger-sensors. GSR data was collected at 20 Hz. The ISO Decision
Response Task [10] was implemented using the DRT kit available from RED Sci-
entific (USA), using the haptic-buzzer stimulus setup, with the buzzer located
at the left collar-bone, and a foot switch for reaction time (RT) responses.

The UAV Defender task requires participants to track multiple UAVs as they
traverse a landscape, as viewed from a birds-eye viewpoint, i.e., from directly
overhead. Similar in implementation to the Multiple Object Tracking task [17],
we manipulated difficulty in three levels by requiring all participants to track
either 3, 5 or 7 targets simultaneously. The level of difficulty was fully coun-
terbalanced across trials. Participants were required to click on a UAV when a
visible fuel level marker became low, as indicated by a colour bar on the UAV
icon. Trials of UAV Defender lasted 2 min each, and participants completed 24
trials on two consecutive testing days, for a total of 48 trials (with random
counterbalanced sequence of difficulty levels).

Data Cleaning. Of the initial 46 participants in this experiment, one partic-
ipant was dropped completely due to an intermittent short in the GSR signal.
For the remaining 45 participants, we implemented a data cleaning procedure to
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remove trials in which more than half of the trial data exceeded specific cut-off
limits. High cut-off was 9.9µS, and the low cut-off was 1µS.

Metrics. While much of the past research into GSR and workload has generally
studied the raw GSR signal (i.e. skin conductance), we have attempted here to
develop a suite of metrics that are intended to increase our ability to differentiate
high-workload GSR signals from low-workload GSR signals. These include both
successful metrics from recently published work, and novel experimental metrics.

Standardized GSR and Accumulated GSR: Previously employed with
success in [14], z-score standardization of the GSR signal has been shown to
improve discriminability between workload levels. Accumulated GSR is the sum
of raw signal values in a trial, which has been found as descriptive of CL [14].

Slope, or Gradient of the GSR Signal: Novel to our present analysis, this
metric takes the gradient, or slope, of the GSR signal by taking the line of best fit
over a rolling window of 40 samples (i.e. 2 s of data at 20 Hz). This methodology
enables us to remove the overall drift component of the raw GSR signal, and
smooth out high-frequency signal while retaining some local information, with
a score of zero indicating no change in the GSR signal.

Zero Crossings: The rate of ‘zero crossings’, measures the rate at which
the gradient changes from positive to negative. This metric enables us to assess
the speed of the waveform without resorting to Fourier analysis such as the Fast
Fourier Transform (FFT) or the Discrete Fourier Transform (DFT).

Negative Slope Percentage: Negative Slope Percentage (NSP) measures
the proportion of time within a trial that the slope of the raw GSR signal is below
zero, indicating a decline in skin conductance. This was an exploratory feature
testing the hypothesis that decreased load results in decreasing skin conductance.

PSD Coefficients: Power Spectral Density (PSD) coefficients are descrip-
tive of how important a frequency is for a signal. We used Welch’s method to
obtain the coefficients, since it allows control of the variance of the estimate (at
the cost of frequency resolution) [22]. The spectrum for GSR is concentrated
below 0.5 Hz [16], therefore we only analyse coefficients within this range. Then
segpoints is defined as the number of PSD coefficients located between 0 and
0.5 Hz. Segpoints values that were investigated were 10, 20, 30, 40, 50 and 60.
PSD coefficients were obtained from the Standardised GSR and slope.

Hjorth Parameters: We extracted the Hjorth parameters (which were
developed for EEG analysis) from both the Standardised GSR and Slope of
the GSR signal [9]. The parameters were extracted as features for both the
Standardised GSR and the slope.

EMG-Based Metrics: Alongside the Hjorth parameters which were
selected due to their success in EEG analysis, we also explored EMG-based
features due to their usage of frequency-domain information. These were the
first, second and third spectral moments, mean frequency, peak frequency and
total power [15]. Again, features were extracted for both the Standardised GSR
and slope.
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Feature Exploration. To determine how descriptive these features are of cog-
nitive load, we performed a one-way within-subject ANOVA test for each of the
metrics on day one, with game difficulty level as the independent variable. We
applied within-subject standardisation for the features to account for between
subject differences. This is similar to feature calibration previously applied in
CL classification research, but with z-score standardisation rather than divide-
by-mean calibration due to the mean of some features being zero [14].

Classification Model. Following the analysis of features, we generated various
classification models and evaluated their performance.

Model Selection, Training and Testing: The purpose of model selection
is to find features (with within-subject standardisation) and parameters best
suited to the problem of classifying CL. This was repeated on both days indi-
vidually to get a unique set of features and model parameters corresponding to
day one and day two. Model training was repeated for both days, such that a
model was trained using parameters and features from day one, and repeating
this separately for day two. Finally, models we trained on day one data are tested
on day two data, and vice-versa. The purpose of testing on the opposite dataset
is to observe how well models generalise to unseen data [4]. Model performance
was measured using F1-Score.

Genetic Algorithm-based Feature Selection: The goal of feature selec-
tion during model selection is to find the best subset of features that are infor-
mative of CL levels. Since it would take a long time for an exhaustive search
through all possible combinations of features, we applied genetic algorithm-based
search to explore the feature space for each segpoints value.

Two classification algorithms were used in model selection: Näıve Bayes and
K-Nearest Neighbours. Fitness scores were calculated via leave-one-subject-out
cross validation [14]. We implemented a genetic algorithm in Python using the
DEAP evolutionary computation framework, with most parameters replicated
from previous work [21]. The sole exception was probability of mutation, which
we increased to 0.01 due to the smaller feature space. Finally, we used three
different learning algorithms for the model training/testing stages: K-Nearest
Neighbours, Random Forest and Support Vector Machines (SVM) Linear.

4 Results

4.1 Feature Exploration

Generating PSD with multiple segpoints is computationally expensive and each
PSD represents similar information (with slight differences due to variance-
resolution trade-off). Therefore the best segpoints value should be determined.
We approached this from the perspective of determining the segpoints value
with the most number of significant features. Following ANOVA testing on all
of the features, we counted the number of significant frequency-domain features
for each segpoints, which is recorded in Fig. 1.
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Fig. 1. Comparison of number of significant frequency domain features generated from
PSD of varying segpoints

We also compared the individual features themselves using ANOVA to gain
insight into specific measures which are characteristic of CL. Of the time domain
features, Hjorth complexity of the sloped signal had the highest effect size
(F (2, 66) = 9.50, p < .01, η2 = .13). In the frequency domain, the mean
frequency of the slope (segpoints = 10) was found to have the highest value
(F (2, 66) = 13.88, p < .01, η2 = .17). Of the frequency domain features extracted
from the PSD for segpoints = 40, the PSD coefficient at 0.065 Hz had the high-
est value (F (2, 66) = 9.53, p < .01, η2 = .13)). For comparison, the effect size
of Accumulated GSR, which was previously found to be informative of CL [14],
was also measured (F (2, 66) = 4.32, p = 0.017, η2 = .061)).

4.2 Classification Model

The F1-Scores from leave-one-subject-out validation during model selection were
recorded for both days and are shown in Fig. 2. Note that only the results using
the K-Nearest Neighbour algorithm for fitness evaluation is shown, since Näıve
Bayes performed at the level of a random classifier. The graphs demonstrate
the segpoints values that had the best F1-Score (and thus were chosen for the
model on each day). These were segpoints = 40 on day one (F1-Score = 0.406)
and segpoints = 30 on day two (F1-Score = 0.434).

Fig. 2. Comparison of F1-Scores for varying segpoints in model selection stage on day
one (a) and day two (b) using genetic algorithm-based feature selection
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The results from the model testing stage are shown in Fig. 3, comparing the
performance of the models trained/ tested using K-Nearest Neighbours, Random
Forest and SVM Linear, alongside the Random Baseline performance and a
model generated using Accumulated GSR for comparison (with Random Forest
as learning algorithm since it performed best in combination with Accumulated
GSR). SVM Linear had the best performance across both tests. The model
trained on day one and tested on day two had an F1-Score of 0.365, and the
model trained on day two and tested on day one had an F1-Score of 0.3774.

Fig. 3. Comparison of F1-Scores across different algorithms in model testing stage
using genetic algorithm-based feature selection

5 Discussion

Our results for effect size during feature exploration indicate that Mean fre-
quency of slope (segpoints = 10), PSD coefficients of slope at 0.065 Hz (seg-
points = 40) and Hjorth complexity of slope were more discriminative between
CL levels compared to Accumulated GSR, a feature used in previous work [14].
This suggests that, at least for our data, which is based on a multiple object
tracking task as compared to solving arithmetic tasks, these new metrics may
better characterise different CL levels.

When comparing segpoints, setting segpoints to 40 on day one maximised
number of significant frequency domain features. Setting segpoints allows selec-
tion of trade-off between variance and frequency resolution of the PSD, so seg-
points = 40 could represent a good trade-off for feature extraction from the PSD.

However, more significant features associated with a segpoints, does not nec-
essarily mean that the features generated for the segpoints are more informative
of CL. Note that even though segpoints = 40 had the greatest number of sig-
nificant features, mean frequency for segpoints = 10 had the highest effect size.
This suggests that there may be individual features for specific segpoints that
are highly indicative of CL, even though they may contain fewer significant fea-
tures. The obvious limitation of this analysis approach is that it does not take
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the effect of using multiple features as an indication of CL into consideration.
This is addressed through the analysis of the classification models.

The model selection results from the genetic algorithm-based feature selection
(Fig. 2) provide some insight into an appropriate segpoints value for generating
the PSD coefficients. We found that segpoints = 40 and 30 were the best
performing values in both day one and two. Note that the range of segpoints
values tested was 10 to 60 with increments of 10, and so the model selection
results suggests that a mid-range trade-off (given the sampling frequency of
20 Hz and recorded duration of 2 min) sets the best frame size and trade-off
between frequency resolution and estimate variance. Such a result agrees with
the analysis from the feature exploration section, where segpoints = 40 had the
most number of significant features.

Model testing results (Fig. 3) indicate the effectiveness of the approach
towards generating a model that generalises to unseen data. The classifiers
(except for KNN) performed better than Random Baseline, and therefore seem
to be capturing some of the effect (cognitive load influencing GSR). The incon-
sistency of KNN could be a consequence of being an inappropriate classification
mechanism.

The results also show the SVM Linear models had the highest scores in both
tests, suggesting it generalises the best. Furthermore, it consistently performed
better than Accumulated GSR models, such that combining multiple relevant
features using SVM Linear is better than solely relying on Accumulated GSR.
However, performance still left much to be desired, with F1-scores slightly below
0.4 on three-class classification during testing. Perhaps the measured signal was
externally influenced by factors aside from CL, or the features and classifier were
not the most suitable choices for capturing the effect. Also, the features were not
optimised for the classifier (due to computational limitations), since KNN was
used for feature selection and SVM Linear for training/testing.

6 Conclusions

In this study we have conducted an investigation into classification techniques
for human cognitive workload using Galvanic Skin Response, when performing
a modified multiple object tracking task, UAV Defender, over two consecutive
days of testing. The current methodology has been shown to outperform previ-
ously used metrics, and provide moderate discriminability for CL between levels
of task difficulty, although the effects described herein leave room for improve-
ment. These results are encouraging and provide justification for further research,
including implementing the current methodology on new data sets, as well as
testing other GSR devices (as there is some question of fidelity with the low-cost
GSR sensors employed here). While affordability is a key aspect of our proposed
system, we need to maximise the quality of the original GSR signal to promote
the most accurate level of classification possible.

One of the goals of this research is to develop lightweight classification sys-
tems for use in critical task environments, where traditional means of workload
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detection, and more complex psychophysiology-based measures are unsuitable
(e.g. environments such as road transportation, maritime transportation, oper-
ation of heavy machinery, etc.). We believe that the combination of low-cost
equipment, reliable and relatively non-invasive sensors, and sophisticated data
processing techniques will allow us to monitor CL in critical task environments
as well as in the rising field of human-in-the-loop autonomous systems, where
monitoring of autonomous systems is necessary.

Although a real-time system could be designed based on our analysis pipeline,
there are some considerations that need to be taken into account. The feature
extraction we used in this study occurred on signals using a 2-min time window.
In practice, this would mean a long delay for changes in CL to be measured.

Further, due to the size of our sampling population, we applied within-subject
standardisation in our analysis for both GSR signals and features. This implies
that a deployed system would work in a user-dependent fashion, with every user
having to perform a training phase. However, training the model with a larger
pool of participants is likely to generate generalisable models that would perform
well on new target users. This will be part of future work.
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