
Data Model for Cloud Computing
Environment

Samson B. Akintoye1(B), Antoine B. Bagula1, Omowumi E. Isafiade1,
Yacine Djemaiel2, and Noureddine Boudriga2

1 University of the Western Cape, Cape Town, South Africa
3515640@myuwc.ac.za

2 CNAS Lab, Cartage University, Tunis, Tunisia
ydjemaiel@gmail.com

Abstract. The emergence of cloud computing has reduced the cost of
deployment and storage dramatically, but only if data can be distributed
across multiple servers easily without disruption. In a complex SQL
database, this is difficult because many queries require multiple large
tables to be joined together to provide a response. Executing distributed
joins is a very complex problem in SQL databases. In addition, previous
studies have shown that NoSQL databases performance better than SQL
databases especially in the cloud computing environment where there is
occurrence of huge volume of data. In this paper, we presents a novel
data model for cloud services brokerage that supports the allocation,
control and management of virtual system based on brokering function
between cloud service providers (CSPs) and cloud users by integrating
and man- aging cloud resources in a heterogeneous cloud environment.
The model is implemented on a private lightweight cloud network using a
graph and document-oriented databases. The experimental results show
that a graph model has better performance than a document-oriented
model in terms of queries execution time.

Keywords: Cloud computing · Graph model ·
Document-oriented model · Cloud Services Brokerage

1 Introduction

Cloud computing has recently emerged as one of the most promising and chal-
lenging technologies. It is based on a computing paradigm where a large pool
of systems are connected in private, public or hybrid networks, to provide
dynamically scalable infrastructure for computing resources [19]. The computing
resources are available to the users via the internet [13]. The characteristics of
cloud computing include on-demand self service, broad network access, resource
pooling, rapid elasticity and measured service. On-demand self service means
that organizations can access and manage their own computing resources. Broad

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

G. Mendy et al. (Eds.): AFRICOMM 2018, LNICST 275, pp. 199–215, 2019.

https://doi.org/10.1007/978-3-030-16042-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16042-5_19&domain=pdf
https://doi.org/10.1007/978-3-030-16042-5_19

200 S. B. Akintoye et al.

network access allows services to be offered over the Internet or private networks.
Pooled resources mean that customers draw from a pool of computing resources.
Services can be scaled larger or smaller; and use of a service is measured. The
cloud computing service models are Software as a Service (SaaS), Platform as
a Service (PaaS) and Infrastructure as a Service (IaaS) [10]. In Software as a
Service model, consumer uses the provider’s applications running on a cloud
infrastructure. Example of SaaS is Salesforce [2]. In PaaS, an operating system,
hardware, and network are provided, and the customer installs or develops its
own software and applications. The most prominent key players of PaaS are
Azure platform [8] and Google App Engine [5]. The IaaS model provides just
the hardware and network; the customer installs or develops its own operat-
ing systems, software and applications. The examples of IaaS are Amazon EC2
service [1], GoGrid [4], Flexiscale [3], and Redplaid [7].

Cloud services are deployed as a private cloud, community cloud, public
cloud or hybrid cloud [10]. In public cloud, services are offered over the Inter-
net and are owned and operated by a cloud provider. In a private cloud, the
cloud infrastructure is operated solely for a single organization, and is man-
aged by the organization or a third party. In a community cloud, the service
is shared by several organizations and made available only to those groups.
The infrastructure may be owned and operated by the organizations or by a
cloud service provider. A hybrid cloud is a combination of two or more cloud
infrastructures (private, community, or public) that remain unique entities, but
are bound together by standardized or proprietary technology that enables data
and application portability. Virtualization technologies are usually used to access
computing resource by the users. Users can specify required software stack such
as operating systems, software libraries, and applications, then package them
all together into virtual machines (VMs). VMs will be hosted in cloud service
providers. Lightweight cloud computing infrastructures combine cloud and grid
computing concept to provide a shared infrastructure over commodity hardware
such as mobile phones, desktop, tablets, etc. As the cloud computing market
expands and the number of users and cloud service providers increases, there
is a need for a centralised system [22], called cloud services brokerage (CSB),
to optimize resource allocation by managing and monitoring the activities of
cloud users and cloud service providers. For the CSB to work efficiently, a reli-
able database management system needs to be implemented on the CSB site
to keep and update the track of customer requests and cloud infrastructures
status. Relational database management systems (RDBMS) otherwise known as
SQL database cannot cope with the unprecedented scale factors that modern
cloud-based applications have introduced. The cloud applications need to sup-
port large numbers of concurrent users and be able to handle unstructured and
semi-structured data. To solve this problem, NoSQL (Not Only SQL) databases
emerge to support large-scale application demands. In addition, previous studies
have shown that NoSQL databases perform better than SQL databases especially
in the cloud computing environment where there are occurrence of huge volume
of data [27].

Data Model for Cloud Computing Environment 201

1.1 Contributions and Outline

In this paper, we present a data model for cloud computing environment to help
the CSB support the allocation, control and management of virtual resources
between CSPs and cloud users. We implement this model using the graph
database (Neo4j) and document-oriented database (mongodb) on our private
lightweight cloud testbed, using a syntactic of cypher language to store, update
and retrieve the customer requests and cloud infrastructures status in the
database. Building upon the free and open source OpenStack software platform
for cloud computing, the model is intended to provide infrastructure-as-a-service
(IaaS) in community sensor networks [29] for applications such as drought mit-
igation for small scale farming [30,31] and cyber healthcare [32,33] in the rural
areas of the developing countries. Potential applications which might also benefit
from this model include smart parking [34], pollution monitoring [35] and public
safety [36] in the smart developing cities. The rest of this paper is organized as
follows; In Sect. 2, we describe the concept of cloud service brokerage system.
The next section presents previous studies related to the management of virtual
resources information in data center and cloud computing. Section 4 describes
proposed cloud computing environment model. The data model of cloud com-
puting environment is presented in Sect. 5. Implementation of the models and
experimental results are found in Sects. 6 and 7, and finally, we conclude the
paper in Sect. 8.

Fig. 1. Cloud computing environment

202 S. B. Akintoye et al.

2 Cloud Services Brokerage

As depicted in Fig. 1, the cloud computing environment considered in this paper
consists of user, virtual machine repository (VMR), and cloud services broker and
CSP, which consists of physical machines (PM) and data center (DC). A cloud
services broker is a third-party individual or business acting as a middle man
between cloud service users and CSPs. Cloud service brokers rent different types
of cloud resources from many cloud Service providers and sublet these resources
to the requesting cloud users. The cloud service broker performs the following
functions: (i) optimal placement of the virtual resource of a virtual infrastructure
across multiple cloud service providers; (ii) management and monitoring of these
virtual resources; and (iii) aggregation of multiple cloud services into one or
more customer-tailored cloud services. OPTIMIS [6] identifies the requirement
and capabilities that a cloud service broker needs to have in order to play the
role of brokerage services:

– Effectively match the requirements of the cloud user with the service provided
by the CSPs.

– Negotiate with CSPs and cloud users over service level agreements (SLA).
– Effectively deploy services of CSP onto the cloud users.
– Maintain performance check on these SLA’s and take actions against SLA

violations.
– Ensure data confidentiality and integrity of CSP’s service.
– Enforce access control decisions uniformly across multiple CSPs.
– Securely map identity and access management systems of the CSPs.

However, an effective database management system needs to be included as
one of the functional components of a CSB.

3 Related Work

This section presents two broad categories of related work. The first category
discusses existing cloud brokerage systems and the second category presents the
related work to the database model in cloud computing.

3.1 Existing Cloud Brokerage Systems

Many broker-based systems have been proposed to solve cloud computing prob-
lems. Heilig et al. [16] propose a cloud brokerage approach to solve the Cloud
Resource Management Problem in multi-cloud environments with aim to reduce
the monetary cost and the execution time of consumer applications using Infras-
tructure as a Service of multiple cloud providers. In [15], the authors propose
a broker-based architecture and algorithm for placing and migrating virtual
resources to physical machines. In [20], the authors propose a federated cloud
computing environment in which a cloud broker has the ability to interface
more than one cloud provider to support several users. These Users access cloud

Data Model for Cloud Computing Environment 203

services via web interface. The cloud service broker pays the usage of the cloud
resources to the cloud service provider, and charges the user for these resources.
In [25], a solution to manage the information of a large number of cloud service
providers via a unique indexing technique is proposed. STRATOS [21] proposes
a cloud brokerage service that solves a Resource Acquisition Decision (RAD)
problem in the selection of n resources from m cloud services. In [18] develops a
cloud brokerage service for measuring the performance of a range of cloud ser-
vices including; elastic compute clusters, persistent storage, intra-cloud network-
ing and wide-area networking. [17] proposes a novel secure sharing mechanism for
a secure cloud bursting and aggregation operation in which the cloud resources
are shared in a confidential manner among different cloud environments.

3.2 Database Model in Cloud Computing

Goli-Malekabadi et al. [14] proposes an effective database model for storing and
retrieving big health data in cloud computing. The study presents the model
based on NoSQL databases for the storage of healthcare data and was imple-
mented in the cloud environment for gaining access to the distribution properties.
The experimental results of the model was evaluated with relational database
model in terms of query execution time, data preparation, flexibility and extensi-
bility parameter. The results show that the proposed model outperforms the rela-
tional database. In [28], the authors propose a novel protocol to enable secure and
efficient database outsourcing. First, the authors propose a new cloud database
model by introducing computation service providers which can accommodate
the conventional DBaaS model and introduce a proposed database outsourcing
protocol secureDBS which uses a secret sharing mechanism. The experiments
conducted show that the proposed model is reliable, secure and efficient. In [12],
the authors propose a novel management scheme that enables the representa-
tion and the retrieval of (structured or unstructured) big data using conceptual
graphs and structured marks. Curino et al. [11] proposes relational database as-
a-service for the cloud. This work describes the challenges and requirements of a
large-scale, multi-node DBaaS and presents the design principles and implemen-
tation status of relational cloud. The advantage of this work is that it addresses
three significant challenges, which are: (i) efficient multi-tenancy; (ii) elastic scal-
ability; and (iii) database privacy.

However, none of these works have proposed a graph data model and its
implementation using graph database as of the requirement for the effectively
cloud brokerage services.

4 Cloud Computing Environment Model

In this section, we introduce the system model for our cloud computing environ-
ment. As depicted in Fig. 1, the cloud computing environment consists of User,
Virtual Machine Repository (VMR), Cloud Service Provider (CSP), Physical
Machines (PM), Data Center (DC) and Cloud Services Broker (CSB).

204 S. B. Akintoye et al.

Fig. 2. Graph model for cloud computing environment

We consider a set CSP,

CSP = {csp1, csp2....cspn} (1)

where n is the number of CSPs managed by the CSB. Each CSP consists of DC,

DC = {dc1, dc2....dcm} (2)

where m is the number of DCs in a CSP and each DC contains a member of
PMs,

PM = {pm1, pm2....pmq} (3)

where q is the number of PM in a DC and each PM hosts t number of VMs as
expressed by the set

VM = {vm1, vm2....vmt} (4)

Data Model for Cloud Computing Environment 205

We consider that K jobs need to be allocated to CSPs. Each job k requires wj

number of virtual machines. The CSB allocation is expressed by the notation

k −→ vmwj
(5)

subject to wj = 1 or wj ≤ t. Each vm is placed in one pm,

vm −→ pm (6)

Each pm is hosted by one data center dc,

pm −→ dc (7)

Finally, each data center is owned by one cloud service provider (csp),

dc −→ csp (8)

5 Data Model of Cloud Computing Environment

There are many different NoSQL data models and each one of them has a differ-
ent structure. In this section, we present the deployment of graph and document-
oriented models for cloud computing environments.

5.1 Graph Model

Graph data models have emerged with the objective of modeling information
whose structure is a graph [9]. It encodes entities and relationships between
entities using directed graph structure [23]. It is a set of vertices and edges where
vertices denote nodes and edges represent relationship between these Nodes.
Graphs are data structures for storing data that is heterogeneously structured.
Graphs can be directed or undirected. Undirected graphs can be traversed in
both directions while directed graphs can be traversed only in one direction.
The properties of a graph model includes the following [24];

– It contains nodes and relationships.
– Nodes contain properties (key-value pairs).
– Nodes can be labelled with one or more labels.
– Relationships are named and directed, and always have a start and end node.
– Relationships can also contain properties.

The graph model of cloud computing environment can be represented mathe-
matically as a graph G(V,E) where V is the set of resource nodes and E is the
set of relationships between the nodes such that,

{CSP,DC,PM, VM,K} ⊂ V (9)

Constrained by the notation:

|DC| ≥ |CSP | (10)

206 S. B. Akintoye et al.

|VM | ≥ |PM | (11)

|K| ≥ |VM | (12)

The relationships between the nodes of the graph (V, E) are defined as
follows:

– csp → dc represents the relationship between cloud service provider and data
center.

– dc → pm represents the relationship between data center and physical
machine.

– pm → vm represents the relationship between physical machine and virtual
machine.

– vm → k represents the relationship between virtual machine and job.

Such that,

csp → dc, dc → pm, pm → vm, vm → k ⊂ E (13)

The graph is illustrated by Fig. 2.

5.2 Document-Oriented Database

In a document-oriented model, data objects are stored as documents; each doc-
ument stores data which can be updated or deleted. Instead of columns with
names and data types, data is described in the document, and provide the value
for that description. The difference between a relational model and a document-
oriented model is as follows: in a relational model, data is added by modifying the
database schema to include the additional columns and their data types while in
document-based data, additional key-value pairs will be added into documents
to represent the new fields. The document-oriented model for cloud computing
environment is represented in Fig. 3.

6 Experiments

We conducted two different experiment in order to evaluate the both graph
and document-oriented models on a proxy node of our private lightweight cloud
testbed running on Openstack architecture. The proxy node is a Linux Machine
with an Inter(R) core(TM) i5-4590, 3.30 Ghz CPU, 8 GB RAM and serves as a
cloud brokerage system which initiate upload and download operations across
multiple storage nodes. The CSB can update the cloud resources status in
database either manually or through real-time process by building Application
Protocol Interface (API) connecting cloud infrastructures to a database. We
explore the suitability of two different databases in a cloud environment, the
database are: (i) graph database: Neo4j; and document-oriented database: Mon-
goDB respectively.

Data Model for Cloud Computing Environment 207

Fig. 3. Document-oriented model for cloud computing environment

6.1 Implementation of Graph Database

Graph databases are databases that support graph model. One of the examples
of graph database is Neo4j and it can be accessed using cypher query language.
The graph database is implemented using Neo4j Community version 3.0.1.

208 S. B. Akintoye et al.

The database contains nodes with labels, properties and relationship between
them as follows:

– csp(‘CLOUDPROVIDER’, cspid, name, cost, costPerMem, costPerStorage,
costPerBw)

– dc(‘DATACENTER’, name, centerid, location, arch, os, time zone)
– pm(‘PHYSICALMACHINE’, name, pmid, mips, ram, bw, storage)
– vm(‘VIRTUALMACHINE’, name, vmid, mips, ram)
– job(‘JOB’, job id, name, length, filesize).

6.2 Cypher Query Language

Here, we discuss the Cypher syntax to create and retrieve nodes and relationships
in graph database.

– Cypher syntax to create Nodes and relationship.
• Create Datacenter, Cloud provider nodes and relationship between them.

CREATE (dc1:DATACENTER{ name =‘dc1’, centerid =1, location
=‘Capetown’, arch = “x86”, os =“Linux”, time-zone = 10.0 }) -
[:OWNED-BY]-> (csp:CLOUDPROVIDER { name = ‘csp1’, cspid =
0, cost = 3.0, costPerMem = 0.05, costPerStorage = 0.001, costPerBw
= 0.0 })

• Create Datacenter, Physical Machine nodes and relationship between
them.

CREATE (pm:PHYSICALMACHINE{ name =‘pm1’, pmid = 0, mips =
1000, ram = 20148, bw = 1000, storage = 1000000 }) -[:DEPLOYED-
IN]-> dc1:DATACENTER { name = ‘dc1’, centerid = 1, location =
‘Capetown’, arch = “x86”, os = “Linux”, time-zone = 10.0 })

• Create Virtual Machine, Physical Machine nodes and relationship
between them.

CREATE (vm:VIRTUALMACHINE{ name = ‘vm1’, vmid = 0, mips =
250, ram = 20148 } -[:HOSTED-BY]-> dc1:DATACENTER { name =
‘dc1’, centerid = 1, location = ‘Capetown’, arch = “x86”, os =“Linux”,
time-zone = 10.0 })

• Create Virtual Machine, Job nodes and relationship between them.

CREATE (job:JOB{ app id = 0, name = ‘job1’, length = 4000, filesize
= 24 -[:RUNS-ON]-> vm:VIRTUALMACHINE { name = ‘vm1’, vmid
= 0, mips = 250, ram = 20148 }).

– Cypher queries to retrieve information from graph database.
• Query 1: Find all Virtual Machines assigned to Jobs.

MATCH (a)-[:RUNS ON]->(b) RETURN a.name as JOB, b.name as
VIRTUALMACHINE;

Data Model for Cloud Computing Environment 209

• Query 2: Find name of resources owned by Cloud Service Providers.

MATCH (b)-[:HOSTED BY]->
(c)-[:DEPLOYED IN]-> (d)-[:OWNED BY]->
(e:CLOUDPROVIDER) RETURN b.name as VIRTUALMACHINE,
c.name as PHYSICALMACHINE,
d.name as DATACENTER, e.name as CLOUDPROVIDER;

• Query 3: Find all resources used by job 1.

MATCH (a:JOB{name:‘job1’})-[:RUNS ON]->(b)-[:HOSTED BY]-
>(c) -[:DEPLOYED IN]->(d)-[:OWNED BY]->(e) RETURN a as
JOB, b as VIRTUALMACHINE, c as PHYSICALMACHINE, d as DAT-
ACENTER, e as CLOUDPROVIDER;

6.3 Document-Oriented Database

Document-oriented databases are one of the NoSQL databases. A document-
oriented database is designed for storing, retrieving, and managing document-
oriented, or semi structured data. The main concept of a document-oriented
database is the notion of a Document. MongoDB, CouchDB and Terrastore are
examples of the Document-oriented databases. In this work, document-oriented
database is implemented using MongoDB shell version: 2.4.9. Mongodb is very
famous NoSQL databases in the data industry [26]. All the formats are loaded in
JSON format. In MongoDB, data is grouped into sets that are called collections.
Each collection has a unique name in the database, and can contain an unlimited
number of documents. Collections are similar to tables in a relational database,
except that they do not have any defined schema.

MongoDB Query Language. The Queries to create and retrieve collec-
tions in MongoDB re discussed below.

– Commands to create Collections. In MongoDB, there is no need to create col-
lection. MongoDB creates collection automatically, when inserting document.

• Create JOB collection

db.JOB.insert({ job id : 0, name : ‘app1’, length : 4000, file-size : 24,
vm id : 0 })

• Create Virtual Machine collection

db.VIRTUALMACHINE.insert({ vm id : 0, job id : 0, name : ‘vmm1’,
mips : 250, ram : 20148, pm id : 0 })

• Create Physical Machine collection

db.PHYSICALMACHINE.insert({ pm id : 0, job id : 0, name : ‘pm1’,
mips : 1000, ram : 20148, storage : 10000, vm id : 0, center id : 0 })

210 S. B. Akintoye et al.

• Create Data center collection

db.DATACENTER.insert({ center id : 0, pm id : 0, name : ‘dc1’, OS :
Linux, location : ‘Durban’, arch : ‘x86’, time zone : 10, csp id : 0 })

• Create Cloud Provider collection

db.CLOUDPROVIDER.insert(csp id : 0, center id : 0, name : ‘csp1’,
cost per BW : 0, cost per storage : 1, cost : 3 })

– Mongodb queries to retrieve information from relational database.
– Query 1: Find all Virtual Machines assigned to Jobs.

db.VIRTUALMACHINE.find({ JOB: { vm id: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] } })

– Query 2: Find name of resources owned by Cloud Service Providers.

db.CLOUDPROVIDER.aggregate([
{ $ match: { id: ObjectId(“5901a4c63541b7d5d3293766”) } },
{
$ lookup:
{
from: “DATACENTER”,
localField: “center id”,
foreignField: “center id”,
as: “DATACENTER”

},
{
$ lookup:
{
from: “PHYSICALMACHINE”,
localField: “pm id”,
foreignField: “pm id”,
as: “PHYSICALMACHINE”

},
{
$ lookup:
{
from: “VIRTUALMACHINE”,
localField: “vm id”,
foreignField: “vm id”,
as: “VIRTUALMACHINE”

}
])

Data Model for Cloud Computing Environment 211

– Query 3: Find all resources used by job 1.

db.JOB.aggregate([
{ $ match: { name: “job1”) } },
{
$ lookup:
{
from: “VIRTUALMACHINE”,
localField: “vm id”,
foreignField: “vm id”,
as: “VIRTUALMACHINE”

},
{
$ lookup:
{
from: “PHYSICALMACHINE”,
localField: “pm id”,
foreignField: “pm id”,
as: “PHYSICALMACHINE”

},
{
$ lookup:
{
from: “DATACENTER”,
localField: “center id”,
foreignField: “center id”,
as: “DATACENTER”

},
{
$ lookup:
{
from: “CLOUDPROVIDER”,
localField: “csp id”,
foreignField: “csp id”,
as: “CLOUDPROVIDER”

}

Table 1. Cloud computing entities

Case 1 Case 2

Number of Cloud Service Providers (CSP) 2 5

Number of Data Center (DC) 4 10

Number of Physical Machine (PM) 12 30

Number of Virtual Machine (VM) 24 60

Number of job 48 120

212 S. B. Akintoye et al.

Table 2. Comparison of graph and document-oriented databases

Queries Databases Response times (ms)

Case 1 Case 2

1 Neo4j 7.1 9.6

Mongodb 4.5 7.2

2 Neo4j 8.6 11.8

Mongodb 5.6 9.8

3 Neo4j 6.3 8.4

Mongodb 4.7 6.1

7 Experimental Results

We consider two cases as shown in Table 1. where the number of cloud infras-
tructures are varied. We run each query 5 times on each database for the two
cases, execution time are recorded and the average of the execution times are
calculated for each query. All times are measured in milliseconds. The result for
the queries on the databases are presented in Table 2.

It can be observed from the values in Table 2 that the times taken to process
queries for mongoDB are less when compared to that of Neo4j. For instance, in
case 1 and query 2, mongoDB takes 5.6 ms while Neo4j takes 8.6 ms. Further
analysis of the results show that the time taken to process case 1 and query 2
on MongoDB is less by 28% than that of Neo4j. It can also be deduced from
the results that as the number of cloud computing elements increases, the query
processing times gets increased manifoldly. More specifically, the time taken to
process queries for case 2 is higher than that of case 1 due to the varied increased
parameter in case 2 as opposed to lower parameter values in case 1.

8 Conclusion and Future Work

Cloud service brokerage system is a third party system that acts as a middleman
between users and cloud service providers. However, for cloud service brokers to
remain relevant in the cloud computing era, there is need to adopt an effec-
tive database model that can withstand the unprecedented demand from cloud
users and providers. Hence in this research, we present a novel data model and
explore the suitability of these database models in a cloud computing environ-
ment. The models are: (i) graph; and (ii) document-oriented models. We imple-
ment the models on our private cloud network testbed using Neo4j and MongoDB
databases respectively. We also present query syntax to retrieve information from
the databases. Finally, we compare the efficiency of the these database models in
terms of query processing time, and varied the experimental parameters in order
to establish the suitability of the models in a cloud computing environment. The
experiment results show that document-oriented model has better performance

Data Model for Cloud Computing Environment 213

in a cloud computing environment than graph modes, in terms of queries pro-
cessing time. Ultimately, MongoDB emerges as the most suitable database model
with respect to flexibility, elastic scalability, high performance, and availability
[37–39].

In future, an optimization module can be developed on top of mongoDB
database in cloud service brokerage system. The module will interface the system
with cloud service providers and updating the status of cloud resources in the
database.

References

1. Amazon Elastic Compute Cloud (amazon ec2). http://aws.amazon.com/ec2/
2. Crm-salesforce.com. http://www.salesforce.com/
3. Flexiscale. http://www.flexiscale.com
4. Gogrid. http://www.gogrid.com/
5. Google App Engine. http://code.google.com/appengine/
6. Optimis - Optimized Infrastructure Service. http://optimis-project.eu/
7. Redplaid Managed Hosting. http://www.redplaid.com
8. Windows Azure Platform. http://www.microsoft.com/windowsazure/
9. Angles, R., Gutierrez, C.: Survey of graph database models. J. ACM Comput.

Surv. (CSUR) 40(1), 1 (2008)
10. Badger, L., Grance, T., Comer, R.P., Voas, J.: Draft cloud computing synopsis

and recommendations. Recommendations of National Institute of Standards and
Technology (NIST), May 2012

11. Curino, C., et al.: Relational cloud: a database service for the cloud. In: CIDR, pp.
235–240 (2011)

12. Djemaiel, Y., Essaddi, N., Boudriga, N.: Optimizing big data management using
conceptual graphs: a mark-based approach. In: The proceedings of the 17th Inter-
national Conference on Business Information Systems (BIS 2014), Larnaca, Cyprus
(2014)

13. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-
degree compared. In: Proceedings of Grid Computing Environments Workshop
(GCE) (2008)

14. Goli-Malekabadi, Z., Sargolzaei-Javan, M., Albari, M.K.: An effective model for
store and retrieve big health data in cloud computing. J. Comput. Methods Pro-
grams Biomed. 132, 75–82 (2016)

15. Grit, L., Irwin, D., Yumerefendi, A., Chase, J.: Virtual machine hosting for net-
worked clusters: building the foundations for autonomic orchestration. In: Proceed-
ing of IEEE International Workshop on Virtualization Technology in Distributed
Computing (VTDC), November 2006

16. Heilig, L., Lalla-Ruiz, E., Voß, S.: Cloud brokerage approach for solving the
resource management problem in multi-cloud environments. J. Comput. Ind. Eng.
95, 16–26 (2016)

17. Jain, P., Rane, D., Patidar, S.: A novel cloud bursting brokerage and aggregation
(CBBA) algorithm for multi cloud environment. In: Proceedings of IEEE Second
International Conference on Advanced Computing and Communication Technolo-
gies, ACCT, pp. 383–387. IEEE (2012)

http://aws.amazon.com/ec2/
http://www.salesforce.com/
http://www.flexiscale.com
http://www.gogrid.com/
http://code.google.com/appengine/
http://optimis-project.eu/
http://www.redplaid.com
http://www.microsoft.com/windowsazure/

214 S. B. Akintoye et al.

18. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp: comparing public cloud
providers. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, IMC, New York, USA, pp. 1–14, June 2010

19. Mell, P., Grance, T.: The NIST definition of cloud computing. National Institute
of Standards and Technology (2015). http://www.nist.gov/itl/cloud. Accessed 10
Feb 2015

20. Nair, S.K., Porwal, S., Dimitrakos, T., Rajarajan, M., Khan, A.U.: Towards secure
cloud bursting, brokerage and aggregation. In: Proceeding of IEEE 8th European
Conference on Web Services, ECOWS, pp. 18–196. IEEE (2010)

21. Pawluk, P., Simmons, B., Smit, M., Litoiu, M., Mankovski, S.: Introducing
STRATOS: a cloud broker service. In: IEEE 5th International Conference Cloud
Computing (CLOUD), pp. 891–898, June 2012

22. Perry, J., Ousterhout, A., Balakrishnan, H., Shah, D.: Fastpass: a centralized zero-
queue datacenter network. In: ACM SIGCOMM 2014, August 2014

23. Angles, R., Gutierrez, C.: Survey of graph database models. J. ACM Comput.
Surv. (CSUR) 40(1), 1 (2008)

24. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media Inc.,
Sebastopol (2015)

25. Sundareswaran, S., Squicciarini, A., Lin, D.: A brokerage-based approach for cloud
service selection. In: Proceeding of IEEE 5th International Conference on Cloud
Computing, CLOUD, pp. 558–565. IEEE (2012)

26. Chodorow, K., Dirolf, M.: MongoDB: The Definitive Guide, 1st edn., p. 216.
O’Reilly Media, Sebastopol (2010)

27. Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., Wilkins, D.: A comparison
of a graph database and a relational database: a data provenance perspective. In:
ACM SE 2010 Proceedings of the 48th Annual Southeast Regional Conference,
Oxford, Mississippi, April 2010

28. Xiang, T., Lib, X., Chenc, F., Guob, S., Yang, Y.: Processing secure, verifiable and
efficient SQL over outsourced database. J. Inf. Sci. 348, 163–178 (2016)

29. Zennaro, M., Pehrson, B., Bagula, A.B.: Wireless Sensor Networks: a great oppor-
tunity for researchers in Developing Countries. In: The Proceedings of WCITD
2008 Conference, Pretoria, South Africa, October 2008

30. Masinde, M., Bagula, A.: A framework for redirecting droughts in developing coun-
tries using sensor networks and mobile phones. In: Proceedings of the 2010 Annual
Research Conference of the South African Institute of Computer Scientists and
Information Technologists, pp. 390–393. ACM (2010)

31. Masinde, M., Bagula, A., Muthama, N.J.: The role of ICTs in downscaling and
up-scaling integrated weather forecasts for farmers in sub-saharan Africa. In: Pro-
ceedings of the Fifth International Conference on Information and Communication
Technologies and Development, pp. 122–129. ACM (2012)

32. Bagula, A., et al.: Cloud based patient prioritization as service in public health
care. In: Proceedings of the ITU Kaleidoscope 2016, Bangkok, Thailand, 14–16
November 2016, pp. 122–129. IEEE (2016)

33. Mandava, M., et al.: Cyber-healthcare for public healthcare in the developing
world. In: Proceedings of the 2016 IEEE Symposium on Computers and Com-
munication (ISCC), Messina-Italy, 27–30 June 2016, pp. 14–19. ACM (2016)

34. Bagula, A., Castelli, L., Zennaro, M.: On the design of smart parking networks
in the smart cities: an optimal sensor placement model. Sensors 15, 15443–15467
(2015)

http://www.nist.gov/itl/cloud

Data Model for Cloud Computing Environment 215

35. Bagula, A., Zennaro, M., Inggs, G., Scott, S., Gascon, D.: Ubiquitous sensor net-
working for development (usn4d): an application to pollution monitoring. Sensors
12, 391–414 (2012)

36. Isafiade, O.E., Bagula, A.: Data Mining Trends and Applications in Criminal Sci-
ence and Investigations. IGI Global, Hershey (2016)

37. Truica, C.O., Boicea, A., Trifan, I.: Crud operations in MongoDB. In: International
Conference on Advanced Computer Science and Electronics Information (ICACSEI
2013) (2013)

38. Kanoje, S., Powar, V., Mukhopadhyay, D.: Using MongoDB for social network-
ing website. In: IEEE Sponsored 2nd International Conference on Innovations in
Information Embedded and Communication Systems, ICIIECS 2015 (2015)

39. Gyorodi, C., Olah, I.A., Gyorodi, R., Bandici, L.: A comparative study between
the capabilities of MySQL vs. MongoDB as a back-end for an online platform.
(IJACSA) Inter. J. Adv. Comput. Sci. Appl. 7(11), 73–78 (2016)

	Data Model for Cloud Computing Environment
	1 Introduction
	1.1 Contributions and Outline

	2 Cloud Services Brokerage
	3 Related Work
	3.1 Existing Cloud Brokerage Systems
	3.2 Database Model in Cloud Computing

	4 Cloud Computing Environment Model
	5 Data Model of Cloud Computing Environment
	5.1 Graph Model
	5.2 Document-Oriented Database

	6 Experiments
	6.1 Implementation of Graph Database
	6.2 Cypher Query Language
	6.3 Document-Oriented Database

	7 Experimental Results
	8 Conclusion and Future Work
	References

