
Snapshot Setting for Temporal
Networks Analysis

Ahmed Ould Mohamed Moctar1(B), Idrissa Sarr1, and Joel Vaumi Tanzouak2

1 Department of Mathematics and Computer Science, Cheikh Anta Diop University,
Dakar - Fann, BP 5005, Dakar, Senegal

{ahmed.ouldmoctar,idrissa.sarr}@ucad.edu.sn
2 Department of Mathematics and Computer Science, University of Ngaoundere,

BP 454, Ngaoundere, Cameroun
joel.tanzouak@univ-ndere.cm

Abstract. Temporal networks can be used to model systems that evolve
over longer time scales such as networks of disease spread, for instance,
HIV/AIDS disease that is propagated within the population over a rel-
atively long period. Analyzing temporal networks can be done by con-
sidering the network either as a series of snapshots (aggregation over a
time window) or as a dynamic object whose structure changes over time.
The first approach is used in this paper and requires specifying a size of
time window that delimits snapshot size. To our best knowledge, there is
not yet studies on setting the size of the window in a methodical basis.
In real, existing works rely on a static or a regular value of time window
size to capture snapshots over time.

This work is conducted to identify dynamically snapshots over time
in a directed and weighted network. That is, we aim to find out the
right time to start and to end capturing a new snapshot. To this end,
we define a quality function to evaluate the network state at anytime.
Then, we rely on time series to predict the quality scores of the network
over time. A significant changes of the network state is interpreted as
the start and/or end of a snapshot. Our solution is implemented with R
and we use a real dataset based on geographical proximity of individuals
to demonstrate the effectiveness of our approach.

Keywords: Time window size · Temporal networks · Quality function

1 Introduction

Most of the networks such as the one of Facebook, LinkedIn and YouTube deal
with hundreds of millions of users that interact hugely day in day out. The cre-
ation or the birth of these networks is a dynamic process in which the network
evolves over time. Analyzing such a dynamic process unveils the intrinsic tem-
poral aspects of the network. To analyze a temporal network, one may see the
network as a static view in which all the links in the final network are present
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

G. Mendy et al. (Eds.): AFRICOMM 2018, LNICST 275, pp. 98–107, 2019.

https://doi.org/10.1007/978-3-030-16042-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16042-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-16042-5_10

Snapshot Setting for Temporal Networks Analysis 99

throughout the study. This is a very simplifying assumption for a network which
is built instantly and does not evolve frequently over time. However, if the net-
work evolves over longer time scales, it is worthwhile to take into account the
fact that ties may be temporary, and the network structure can change at many
points of time and have an impact on the final network status. For example, an
individual with zero or very few contacts at a single time t may see his contacts
growing significantly at time t + 1. Therefore, temporal analysis is challenging
at many points such as how to track and/or represent changes over time, how
to manage the time in order to report the right times within which the network
undergoes through the main phases of its creation. To analyze the network evo-
lution, one may consider either a series of network snapshots and assess whether
changes occur between snapshots or track continuously the changes that occur
over time. The first choice that we use in this work requires to define a time
interval, called “time window”, allowing to determine the time from which net-
work updates are studied. Even though many studies point out the impact of
the time window size on the quality of snapshots, they don’t address particu-
larly such an issue. Rather, existing works used to rely on a fixed time interval
to capture snapshots.

The goal of this paper is to propose a strategy of setting time window for
capturing a snapshot. In opposite to existing solutions, our approach does not
define a fixed time window but a dynamic one based on the amount of reported
changes. The reason of doing so is to make an earlier detection of the main phases
of the network creation process. That is, our solution eases an on-time follow-up
that alerts once significant changes occur rather than postponing them till a
given time is reached. Such an approach sounds well for monitoring applications
like dealers group monitoring, which requires rapid and instant reaction based on
the organization size and/or status. This is also the case for epidemic surveillance
systems. The main contributions of this work can be summarized as follows:

– a time-based quality function that evaluates the network quality at any given
time t. The quality function takes into account the cohesion aspect as well as
the communication intensity of nodes during a period of time.

– a prediction strategy that estimates scores of the network quality at time t+1
based on network composition at t. Two time series are used. The first one
predicts the next quality score of the temporal network while the second one
is used to correct the prediction by minimizing the error of prediction;

– a snapshot setting based on the prediction of the quality score values over
time. Our solution work by supposing that two snapshots have to be different
so as their quality scores. Therefore, we compute the variation of the scores
at t and t + 1 and if it is beyond a given threshold, thus, t + 1 is the start of
a new snapshot.

– an implementation of our solution using R to assess and validate our algo-
rithms over a real data set. The quality of the predictions as well the snapshot
bounding show the feasibility and performances of our approach.

The remainder of this paper is as follows. Firstly, we review the related works
in Sect. 2. Secondly, we propose our quality function in Sect. 3. Thirdly, we explain

100 A. Ould Mohamed Moctar et al.

in Sect. 4 our methodology for decomposing the network evolution. To validate our
solution, we present our experiments in Sect. 5 before concluding in Sect. 6.

2 Related Work

Even though several studies explain the effect of time window size on snapshot
setting [3,4,6]. To our best knowledge, there is not yet work focusing on esti-
mating the time window size based on a methodological reasoning. In existing
works, the time window size is fixed in a static manner without providing any
argumentation. Let us give the following examples of periods: one day [2], one
month [6] or multiple timescales [3].

Indeed, time window management can be done by using:

1. A static method, which decomposes the network evolution into several snap-
shots having all the same size.

2. A dynamic method that subdivides the network evolution into several snap-
shots whose size of each one may be different from that of other.

The static method has the advantage of being simple and easy to implement.
However, if the network does not change during a given period, the snapshots
obtained over this period will contain exactly the same structure. Thus, we are
wasting time and resources searching for new changes while network has not
changed. In addition, if network structure evolves irregularly, choosing a static
time window size can be problematic: a small size may lead to snapshots that
don’t capture important connections, while a big size would hide the precise
moments of significant changes of network structure.

To avoid the problem of time window size balancing as well as favor relevant
captures that incorporate enough changes, we propose a strategy able to capture
dynamically snapshots throughout the network evolution. To this end, we define
a quality function allowing to quantify the network changes at a given time. Our
method captures a new snapshot if the quality difference of network between two
moments exceeds a given threshold. We use a time series to predict the moments
from which the quality score reaches the defined threshold.

3 Quality Function

In this section, we propose a quality function allowing to evaluate a snapshot rel-
evance in term of cohesion aspect as well as the communication intensity between
nodes. We consider that a snapshot is a static network including all nodes/links
that have appeared at least once during a time interval. If an interaction appears
several times during the time internal, we represent it by a single link whose weight
is equal to sum of links weights that correspond to different appearances.

The quality function we present here is a reformulation of the one we proposed
in [1]. The difference between these two functions is that the first one evaluates
the quality of a local community in a static network while the reformulated
function evaluates the quality of a temporal network at a given instant t.

Snapshot Setting for Temporal Networks Analysis 101

Let N a temporal network and Nt the network snapshot at instant t. To get
an idea of the communication intensity between nodes within Nt, we calculate
the inverse of all links weights sum 1∑

wNt

. The intuition behind is that more

communication is intense within snapshot Nt (high values of links weights),
more 1∑

wNt

tends to 0.

Regarding the internal cohesion of Nt, we consider that more the topological
structure of a snapshot at time t is similar to a clique, more the snapshot is
considered cohesive. Therefore, the proportion |VNt |

|ENt | allows to evaluate at what
level the snapshot Nt is cohesive. |VNt

| is the number of nodes in Nt and |ENt
|

the number of links.
Our quality function is defined as follows:

ψ(Nt) =
1

∑
wNt

× |VNt
|

|ENt
| (1)

4 Methodology

We consider a network represented by a weighted digraph where a link weight
states for the intensity (number of exchanges for instance) of two nodes and the
orientation indicates which node has initiated the interaction. While assuming
that the network is a temporal one, the overall structure shaping is assimilated
as an evolution process within which a series of moments of significants changes
are reported. A specific moment bringing numbers of changes can be seen as
the delimitation of two snapshots. We name such a moment a “switch moment”
since it indicates a precise time where changes make a great impact on the overall
structure. Actually, the purpose of this work is to characterize, and moreover, to
predict “switch moment”. In this respect, we define a time-based function that
measures the quality of the network at anytime. Hence, if the network quality
score varies beyond a given threshold between t and t+1, thus, we consider that
we reach a “switch moment” at t + 1. In other words, the score of the quality
remain almost the same for a network without and/or with a few significant
changes during a period of time. We notice the quality function is a continuous
one so that it affords the possibility to detect a“switch moment” once it happens.
Furthermore, to be able predicting whether a new “switch moment” will occur,
we need to foresee the quality scores evolution over time. To this end, we rely
on exponential smoothing that helps us estimating upcoming score values based
on the previous and detecting any variation beyond the fixed threshold. Finally,
since the quality scores predictions give us “switch moment”, we can monitor
where one has to start or ending capturing a snapshot. In the following sections
we portray the definition and prediction method of our quality function.

102 A. Ould Mohamed Moctar et al.

The optimal size of time window should enable us to decompose the network
evolution into several snapshots, each one includes a considerable number of
changes. To this end, we propose a strategy that works in two steps:

1. measure network changes during a time period using the quality function;
2. model the changes rate across a threshold η. If the network quality differ-

ence between two instants exceeds the threshold value, that means that the
network has been considerably modified.

Formally, we consider that the network has undergone a considerable change
if the difference between its quality at instant t and that at instant t+1 becomes
higher than threshold η:

|ψ(Nt) − ψ(Nt+1)| � η (2)

Note that more higher the threshold value, more the changes number
increases between each two successive snapshots.

4.1 Quality Scores Prediction

The principle of our method is to predict the quality score at instant t + 1 from
instant t. In other words, we try to predict the next quality score before the
network reaches the next instant. To predict the next quality score, we use a
time series built from quality scores over time. The prediction model we used is
the simple exponential smoothing. Formally, our time series is defined as:

P̂ (t) = αQ(t) + (1 − α)P̂ (t − 1) (3)

Such as:

– P̂ (t) means the predicted quality score at instant t + 1;
– α ∈]0, 1[represents the smoothing coefficient;
– Q(t) indicates the observed quality score at instant t;
– P̂ (t − 1) is the predicted quality score at instant t.

If α is closest to 0 (respectively if α is closest to 1), it means that to predict the
next quality score, the most oldest (respectively most recent) predicted values
will be taking into account.

By using the expression 3, the algorithm will learn based on the history of
predicted quality scores over time. In order to improve these predictions, we used
a second series that allows to correct the prediction of P̂ based on the history
of prediction errors.

4.2 Correction of Our Predictions

To correct the prediction, our algorithm first calculates the prediction error,
defined by the difference between observed quality score and predicted quality
score. Then, it predicts the next prediction error using a time series based on
the history of prediction errors.

Snapshot Setting for Temporal Networks Analysis 103

4.2.1 Prediction Error
The prediction presented in the previous section sometime could be inaccurate
because of important fluctuation of quality scores. To improve the future pre-
dictions, we try to correct our prediction using a second time series that learns
from past prediction errors. To this end, we define the prediction error given by
the expression below:

E(t) = Q(t) − P̂ (t − 1) (4)

We defined also a second time series to estimate the predicted error in the
future according to the error recorded in the past:

L̂(t) = βE(t) + (1 − β)L̂(t − 1) (5)

Such as:

– L̂(t) means the predicted error at instant t + 1;
– β ∈]0, 1[represents the predicted error coefficient;
– E(t) is the prediction error at instant t;
– L̂(t − 1) is the predicted error at instant t.

If β is closest to 0 (respectively if β is closest to 1), it means that to estimate
the next predicted error, the most oldest (respectively most recent) predicted
values will be taking into account.

4.2.2 Correction of Predicted Quality Scores
After predicting the error, we are then able to make some correction of the
prediction according to the context which is materialized by the value of the
error. Our algorithm considers that the corrected prediction is equal to the sum
of predicted score and predicted error:

Ĉ(t) = P̂ (t − 1) + L̂(t − 1) (6)

Finally, it should be noted that results of our time series L̂(t) et Ĉ(t) improve
by learning from past predicted values. Thus, the wider the history, the better
the predicted futures will be.

5 Experimentation

The purpose of this section is to evaluate the effectiveness of our solution. To
this end, we implemented our solution with R platform. The dataset we used
includes more than 2 million mobile phone interactions between 80 students who
lived in undergraduate dormitory [5]. These interactions were collected between
September 05, 2007 and July 16, 2009. In the following, we present two experi-
ments. The objective of the first one is to show that our predictions provide very
close scores, often identical to observed quality scores. The second experiment
aims to present some detected snapshots during the network evolution. These
two experiences are presented in Sects. 5.1 and 5.2.

104 A. Ould Mohamed Moctar et al.

5.1 Quality Scores Prediction

The use of the time series P and L requires two parameters, namely, the predic-
tion coefficient α and the coefficient of predicted error β. In our experiments, we
chose the coefficient α = 0.5 for the next prediction to be influenced, equitably,
by oldest past values and the near past values. Regarding the β coefficient, we
chose it so that momentary fluctuations do not have a significant impact on
the predicted error of the next prediction. Thus, β = 0.1. The goal of the first
experiment we conducted is to assess the accuracy of short-term prediction. To
this end, we predicted network quality scores between September 05, 2007 and
April 17, 2008, a period of approximately 7 months and two weeks. During this
period, there were 2000 interactions.

Figure 1 presents the observed quality scores (black colored curve), the pre-
dicted quality score (red colored curve) and the corrected predictions (green
colored curve). The x-axis indicates the times at which the network has under-
gone a change. The y-axis represents the corresponding quality scores. On
Fig. 1, we noticed that the prediction is acceptable when there are fluctuations.
However, the prediction becomes good if the quality scores curve is somehow
linear. On the curves, we remark that prediction are sometime more accurate
than correction. It can be explained by the fact that, since the correction of pre-
diction is base on error prediction, it means that if the prediction of the error is
bad, then the corrected prediction will be inaccurate. When the quality function
values have important fluctuation in a short time, the error predicted becomes
bad, so this inaccuracy is propagated to correction.

Fig. 1. Predicted and observed quality scores between September 05, 2007 and April
17, 2008 (Color figure online).

To evaluate the effectiveness of our long-term prediction, we conducted a
second experiment. This time, we observed all the interactions that took place
between September 05, 2007 and October 03, 2008, a period of one year and
four weeks. This period includes 10000 interactions. The number of times the

Snapshot Setting for Temporal Networks Analysis 105

Fig. 2. Predicted and observed quality scores between September 05, 2007 and October
03, 2008.

network has undergone a change is equal to 2205. Figure 2 presents the curves
of this experiment.

Note that in long-term, correction of prediction becomes almost identical with
observed quality scores. This proves the effectiveness of our prediction algorithm.

5.2 Examples of Detected Snapshots

The objective of this experiment is to show the difference between our solution
and the static method that decomposes the network evolution using a regular
time interval. To this end, we consider that the time interval is 30 min. Thus, we
make a new snapshot every 30 min.

Figure 3a, b, c and d show the network state, respectively, after 30 min, one
hour, one hour and a half and two hours. The value displayed on each link
represents its weight during the time window. For readability reasons, we did
not display the link weights in Figs. 3c and d. We find out that the network did
not change during the first two snapshots and a slight change occurred during last
two snapshots. This experiment illustrates the irrelevance of the static method
since it can capture identical snapshots over time, which involves a waste of
time and resources. To overcome this weakness, we present in the following a
few snapshots captured by our solution. To this end, we consider that rate of
quality changes needed to capture a new snapshot is η = 0.8. Remember that
our method that allows to decompose the network evolution according to the
degree of changes that takes place.

Figures 3e, f, g and h show four snapshots captured at different times. The
value displayed on each link represents its weight during the time window. For
readability reasons, we did not display the link weights in Figs. 3g and h. From
these figures, we clearly see that the time window size is dynamic. It varies
according to changes degree of network. The considerable difference between the
size of these windows is due to the network changes degree over time.

106 A. Ould Mohamed Moctar et al.

(a) Captured snapshot after 30 minutes. (b) Captured snapshot after 60 minutes.

(c) Captured snapshot after 90 minutes. (d) Captured snapshot after 120 minutes.

(e) First time window representing the ini-
tial state of temporal network. This time
window is captured on September 05, 2007
at 14:02:11.

(f) Second time window captured on
September 05, 2007 at 14:12:33. The inter-
val of this window is 10 minutes.

(g) Third time window captured on Jan-
uary 23, 2008 at 14:27:42. The size of this
window is 4 months.

(h) Fourth time window captured on Jan-
uary 26, 2008 at 06:37:50. The size of this
time window is 3 days.

Fig. 3. Examples of captured snapshots by the static method VS those one captured
by our solution.

6 Conclusion

In this paper, we proposed a solution that answers two fundamental questions,
namely:

1. how to measure the temporal network quality during a given period?
2. how to determine at what moment we need to capture a new snapshot?

Snapshot Setting for Temporal Networks Analysis 107

To answer the first question, we proposed a quality function allowing to eval-
uate the internal cohesion and the communication intensity between nodes in
a temporal network. Regarding the second question, we proposed a new strat-
egy based on time series to predict the next moment corresponding to a new
snapshot.

In perspectives, we are interested in making an experiment in order to deter-
mine the optimal threshold of a given dataset. In addition, we intend to study
the time window size in relation to the local changes of some ego-communities.
Finally, we will also experiment our solution on several datasets to determine
the impact of the network kind on the time window size.

References

1. Ould Mohamed Moctar, A., Sarr, I.: Ego-centered community detection in directed
and weighted networks. In: Proceedings of the 2017 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining 2017, pp. 1201–1208,
New York, NY, USA, 2017. ACM (2017)

2. Génois, M., Vestergaard, C.L., Fournet, J., Panisson, A., Bonmarin, I., Barrat, A.:
Data on face-to-face contacts in an office building suggest a low-cost vaccination
strategy based on community linkers. Network Sci. 3(3), 326–347 (2015)

3. Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88(9),
234 (2015)

4. Krings, G., Karsai, M., Bernhardsson, S., Blondel, V.D., Saramäki, J.: Effects of
time window size and placement on the structure of an aggregated communication
network. EPJ Data Sci. 1(4), 1–16 (2012)

5. Madan, A., Cebrian, M., Moturu, S., Farrahi, K., et al.: Sensing the “health state”
of a community. IEEE Pervasive Comput. 11(4), 36–45 (2012)

6. Psorakis, I., Roberts, S.J., Rezek, I., Sheldon, B.C.: Inferring social network struc-
ture in ecological systems from spatio-temporal data streams. J. R. Soc. Interface
9, 3055–3066 (2012)

	Snapshot Setting for Temporal Networks Analysis
	1 Introduction
	2 Related Work
	3 Quality Function
	4 Methodology
	4.1 Quality Scores Prediction
	4.2 Correction of Our Predictions

	5 Experimentation
	5.1 Quality Scores Prediction
	5.2 Examples of Detected Snapshots

	6 Conclusion
	References

