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Abstract. Interactive Genetic Algorithms (IGA) are applied in opti-
mization problems where the fitness function is fuzzy or subjective. Its
application transcends several domains including photography, fashion,
gaming and graphics. This work introduces a novel implementation of
Interactive Genetic Algorithm (IGA) for evolving facial animations on
a 3D face model. In this paper, an animation of a facial expression rep-
resents a chromosome; while genes are equivalent, depending on the
crossover method applied, either to a keyframe point information (f-
curve) of a facial bone or f-curves of grouped sub-parts such as the head,
mouth or eyes. Crossover techniques uniform, cut-and-spice, blend and
their hybrids were implemented with a user playing fitness function role.
Moreover, in order to maximize user preference and minimize the user
fatigue during evolution, sub-parts based elitism was implemented. Sub-
jective measurements of credibility and peculiarity parameters among a
given artist animated and evolved expressions were done. For the exper-
iment results here, an average crossover percentage of 85%, a mutation
level of 0.01, initial population of 36, and 8 rounds of evolution set-
tings were considered. As detailed in the experiment section, the IGA
based evolved facial expressions scored competitive results to the artist-
animated ones.

Keywords: Evolutionary algorithms · Interactive genetic algorithms ·
3D facial expressions

1 Introduction

People show different facial expressions when expressing different kinds of emo-
tions. Even though the number and type of emotions along with their associated
facial expressions differ from person to person, moment to moment, there are
six basic set of emotions recognized globally. These six basic emotions are angry,
disgust, fear, happiness, sadness, and surprise [1]. However, there are far more set
of emotions and associated facial expressions that people are capable of feeling
and expressing in their daily life.
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In spite of heterogeneity in the interpretation, facial expressions are globally
used by most people as a primary means to express emotions. In the virtual
world, animated or virtual character, express emotions via facial expressions.
The recent advancement of 3D facial models, avatar bots and humanoid robots
which have various applications across multiple domains raise the demand and
expectation of users/audiences for more human like facial expressions. Hence,
facial expressions are expected to be more expressive, have better subtlety and
more variation.

Even if there is a huge interest in generating realistic or novel facial expres-
sions on 3D animation models, creating a new facial animation is not an easy
task. This is, partly due to the fact that animation techniques in general tend
to follow an ad-hoc and inextensible approach [2]. These factors cause limitation
on the performance in generating new and realistic facial animation expressions.

In this work, we explore the application of evolutionary algorithmic app-
roach to achieve partial automation in generating 3D facial expressions. We par-
ticularly used one category of evolutionary approach called Interactive Genetic
Algorithm (IGA) which is a form of genetic algorithm that demands a human
involvement in the evolution loop as a fitness function; a property which com-
pliments the subjective metrics nature of facial expressions.

2 Applications of IGAs

The broad category of IGAs, or Interactive Evolutionary Computation (IEC), in
general has application in industrial design, speech processing and synthesis, data
mining, image processing, education and in artistic vocations such as graphic
arts, animation, music and much more [3]. Specifically, IGAs have been applied
in photography, fashion, gaming, virtual reality and facial animation.

In relation to face/body animation or photography, IGAs have been used:
(1) to change facial expressions by changing pixel positions, (2) to create ani-
mated graphic art by evolving mathematical equations that apply to the pixel
attributes, (3) to create animations by evolving the combination of joint angles
for arms and legs, (4) for evolving deformations of a 2D body for comical move-
ments, (5) with 2D photos of partial images to compose a facial image for identi-
fying a criminal suspect [4]. Facial animation is also an important research goal
in human-computer interaction, as in the quest to build a believable Embodied
Conversational Agent (ECA). These agents would be able to communicate com-
plex information with human-like expressiveness. ECAs are becoming popular
as front ends to web sites, and as part of many computer applications such as
virtual training environments, tutoring systems, storytelling systems, portable
personal guides, and entertainment systems [5].
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3 Related Work

Kim and Cho [5] used IGA to evolve fashion design clothes. In this scenario
IGA-based evolution plays well; as the fashion industry has a changing trend and
thus a human fitness function would ideally be able to influence the trajectory
of the evolution procedure to get more appealing results. In their approach, they
classified parts of a cloth into three parts: neck and body, arm and sleeve, skirt
and waistline. Each of these three sub parts include color as their parameter;
expanding the search space. These six parameters (three sub parts and their
respective colors) are considered as genes which give new cloth results via IGA
based combination. They used a population size of 8 and limited the number
of maximum generation to 10. They have done convergence and subject tests
which measure the fitness value changes and user satisfaction respectively on
the generated fashion designs in terms of being cool-looking and splendor clothes
criteria; and they achieved encouraging results in both measurements.

A dissertation paper of Smith in [4] applied IGAs to evolve facial expressions
and used Neural Networks as a surrogate function to reduce user fatigue. While a
chromosome is a face animation of expression, different from our approach, genes
are equivalent to key frame sequences (fraction of duration) of a full face anima-
tion. Thus, both chromosomes and genes are basically the same except for the
time length difference between them. In this type of setting, due to the nature of
the genes here, a crossover would mean a mere arrangement of instances (splits of
keyframes) of parent facial expressions in order to form new expression. A sample
scenario that depicts this for instance would be; given a sad and happy expres-
sions (as two parents)- generating a new facial expression (the child) would then
be via crossover between multiple fractions of time/keyframe splits (genes) of the
two parent expressions. Logically, the generated child expression is potentially
going to be far from realistic as it would be constituted of keyframes sequences
(genes) that jump from one type of parent expression/animation to the other
back and forth prematurely. However, in our work we used a location/region,
on the face of parent expressions, based crossovers instead of based on splices
keyframe sequences of parent expressions where a sequence of keyframes from a
single point on the face can be splitted into genes as done here.

Similarly, the face image generation system called E-FIT applies Interactive
Evolutionary strategy, which is in the broader category of evolutionary algo-
rithms, for parameter optimization [11].

4 IGA Based Facial Animation Evolver

In a typical IGA design there are representations of population, chromosomes
and genes. While a chromosome consists of genes, a population is a collection
of chromosomes. In order to evolve a new children population, crossover and
mutation of the chromosomes must happen in terms of the switching between
and mutation of genes found in different chromosomes.
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In this implementation, while a chromosome represents an individual facial
animation, population is a collection of the different separate facial animations
presented. A gene is equivalent either to a single location’s keyframe or to
keyframes of a group of subparts of the face facial animation depending on
the type of crossover used. The 3D facial model used for experiment uses both
bone and morph driven animation [8]. The keyframe sequences interpolation was
automated with a function of time called FCurve (f-curve) which is similar to
bezier curves interpolation technique but with a modification which enforces any
specific keyframe location to hold only a single value at a time for the purpose
of doing animation/transformation [9]. The keyframe information of is treated
as a sub-phenotype input since a 3D facial expression is represented via a set
of keyframes while the set of bones that drive the facial morphing to generate
expressions are considered the genotypes.

In this work, the crossovers of IGA refer the breeding of bone loca-
tions/values, or interchangeably referred here as fcurves, between the corre-
sponding sequence of keyframes of the two parent expressions a new/child expres-
sion. In our case, a child expression is generated only from two parents. All used
expressions have a duration of 10 s in a 30 keyframes per second rate. This
duration uniformity allows crossover operations, between facial bone locations
(fcurves), across each corresponding or same-indexed keyframes of both parents.
Generated Child generation expressions too have similar keyframes duration and
follow the same general rule of breeding. The genetic crossover process to gen-
erate a child can be put in a simplified format as:

Child Expression C = Parent Expression A<Crossover Operator>Parent
Expression B. Further more this notation can be further decomposed into
keyframes level as shown below.

Fig. 1. Abstraction of genes crossover in a parallel keyframes level of parents (A an B)
to generate genes in similar keyframes index of expression C (child).

Though in Fig. 1 roughly shows that crossover between parents happen at
keyframes level, the exact procedure of generating new locations (fcurve values)
for all the facial bones of the child expression depends on the type of the crossover
operator used. But it can be put in a generic notation of:

C’s Facial Bone’s locations at keyframe n = A’s Facial Bone’s locations at
keyframe n<Crossover Operator>B’s Facial Bone’s locations at keyframe n.
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GA has different types of crossover operators. In our case we experimented
with the uniform, cut-and-splice, blend and their hybrids. These crossovers are
widely applied in many GA and IGA works. Implementation wise, we incor-
porated elitism to enable partially controlled breeding which helps in evolving
sensible facial animations in some cases.

In GA, mutation is applied to weak solution candidates. It helps prevent the
population from getting stuck in a local optima by introducing some diversity.
In our experiments a default value of 0.01 mutation degree was applied only to
facial animations which were rated lowest during the generation process.

4.1 Uniform Crossover

This crossover is based on separate selection mechanism of genes from both
parents. One way to do uniform crossover is to randomly select genes from
parents. In the case when the gene from the first parent is not selected, the
corresponding location value of the facial bone (gene) of the second parent will
be inserted into the child instead. Selection of all of the genes (locations of all
included facial bones) in a single keyframe is done in a loop of choose either of
the corresponding genes in the similarly indexed keyframes of the two parents.
This same technique is followed across the rest of keyframes in both parents.

4.2 Cut-and-Splice Crossover

In this case the crossover can be generally assumed as a version of two-point
crossover but where there is a fixed point of selection and also where each segment
contains location values of more than one facial bones instead of a single bone’s.
Potentially, this lowers down the possible active exchange of fcurves during a
crossover. On the other hand, since the three slicing point segments used are the
sub-parts of the face (Head, mouth and eyes areas), this increases the likelihood
of generating more human-like expressions due to the fact that these sub-parts
are treated as indivisible units (genes) during crossover. This assumption was
validated by the experiment.

In order to increase flexibility of generation and increase solution space, six
different kinds of choosing combination of the three sub-parts were offered. So
it is possible to choose which one the genes or two of the genes we want to be
selected from the first parent (the reverse is applied on the other parent auto-
matically). These are ‘Head’, ‘Mouth’, ‘Eyes’, ‘Head-Mouth’, ‘Head-Eyes’ and
‘Mouth-Eyes’. For example if the ‘Head’ option is chosen, the child expression
will have its head animation from its first parent and, mouth and eyes anima-
tions from the other parent. Or if the ‘Head-Mouth’ option is selected, the child’s
genetic make up of head and mouth animations will be taken from its first par-
ent and eyes animations from their second parent and so on for the rest of the
options. This feature adds the capability of seeing six different kinds of children
chromosome population within a single crossover. This approach provides a short
cut to explore the search space extensively.
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4.3 Blend Operator

This is a crossover type which in general sums two points and returns their
average point as an output; a blended output. Each f-curve of a parent facial
expression is summed to its corresponding f-curve of the other parent and then
summed result is averaged. Thus, the child expression will be comprised of aver-
aged f-curves of its parents.

4.4 Elitism: By Retaining Interesting Facial Animation Sub-parts
from the Current Population Members

In IGAs, minimizing the user fatigue involved when generating facial animations
is critical. Elitism greatly speeds up and enhances the quality of the overall
population by retaining chosen sub-parts from some members’ in the current
population and to be incorporated in the next generation without the potential
loss of them through crossover or mutation. In our implementation we have
incorporated a feature that enables selection of one or more sub-parts (head,
mouth and eyes) of parent expressions to be transferred to the next generation
without potential loss or change due to crossover and mutation.

4.5 Search Space

A search space indicates the number of possible combinations of the different
models of genes in a given population. We have sampled initial population of
36 during all the IGA based experiments. During the cut-and-splice, crossover
happens in terms of defined sub parts (head, eyes and mouth area) of the face
animation. Thus, a gene is equivalent to a head, mouth, or eye animation which
themselves are composed of multiple f-curves. There are 9 different models of
mouth movements, 22 different models of eye movements and 24 different models
of head movement out of 36 total initial chromosome population/facial anima-
tions models. Six different kinds of breeding combinations were offered during
the cut-and-splice crossover. Thus, the total size of initially accessible search
space is 9*22*24*6 = 28,512.

On the other hand, in case of uniform and blend crossovers, search space
is very much larger as a gene is equivalent to single f-curves in a given facial
animation. Thus, it is reasonable to imagine that the search space is very big.
But in reality, this doesn’t mean that it gives exaggerated diversity in evolved
facial animations. The main reason for this is mostly the difference of animation
between each corresponding f-curves of the different the given facial animations
might not always be that big/obvious except for the active facial areas of the
given expressions. Corresponding f-curves of another facial animation might not
be that big/obvious unless the two facial animations are quite different. These
conditions have direct effect on the diversity of newly generated animations
despite the deceptively large looking search space.
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5 Experiment and Result Summary

As an experiment platform the blender 3D engine [7] was used. It supports
python scripting interface which allows programmatic access the graphics objects
on the tool. Further more the 3D face model we used for experimentation also
provides a python based API which is suitable for extension and modification.
User satisfaction based subjective measurement for credibility and peculiarity
parameters on the evolved 3D facial expressions, via the different operators dis-
cussed, and also on artist animated ones was done. Five subjects were used
for rating the provided facial expressions in a specified questionnaire formats.
Three of the subjects work in research and technology (computer science) area;
the fourth one is an artist level animator while the last one is a registered nurse.
The first four are familiar with the goal of the work. All of the candidates were
allowed to finish the questionnaire in a period of two weeks in their own pace.
The potential inconsistencies of metrics that could be caused due the degree of
familiarity of the subjects with technology or the aim of the research or mood
changes are not considered.

Fig. 2. Some screen captures of IGA based evolved 3D facial expressions of the model
used.

5.1 Credibility

The credibility parameter in this experiment refers to the measurement of the
facial animations in terms of their degree of acceptance as potential human
expression like. Figure 3 shows subjective credibility score for expressions evolved
using uniform, cut-and-splice, blend, uniform-blend hybrid and artist animated
3D facial expressions.
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Fig. 3. Credibility score for the different IGA crossovers based evolved and artist-
animated expressions.

Overall Average Credibility

Artist-animated Uniform Cut-and-Splice Blend Uniform-Blend

87% 71.4% 74.9% 68.9% 61%
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5.2 Peculiarity

The peculiarity parameter in this experiment refers to the measurement of the
facial animations in terms of their degree of uniqueness or distinctiveness. A
facial expression despite having a less human-like appeal, it can still have a
higher distinctiveness.

Figure 4 shows subjective peculiarity measurement of expressions evolved
using uniform, cut-and-splice, blend, uniform-blend hybrid and artist animated
3D facial expressions.
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Fig. 4. Peculiarity score for the different IGA crossovers based evolved and artist-
animated expressions.



Evolving 3D Facial Expressions Using Interactive Genetic Algorithms 501

Overall Average Peculiarity

Artist-animated Uniform Cut-and-Splice Blend Uniform-Blend

66.25% 82.25% 72% 65.5% 65%

5.3 Retain Interesting Sub-parts of Current Parent Expressions
During the Next Generation

The sub-parts keeping feature (elitism)used was experimented with the uniform
based evolver. All IGA parameters such as probabilities of crossover and muta-
tion were kept to the same level as used during the other pure operators based
generation experiments.
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Fig. 5. Credibility and peculiarity score for the uniform operator with sub-parts keep-
ing feature based evolved expressions in comparison to artist-animated expressions.
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Figure 5 shows the credibility and peculiarity scores for the elitism based uni-
form evolver and also artist-animated expressions just for comparison purpose.

This feature of retaining interesting features members of the current popu-
lation to the next ones resulted in a general quality increase in lesser number
of generations. The uniform based breeding with interesting sub-parts keeping
feature improved to 84.2% and 76.95% scores for the credibility and peculiarity
parameters respectively.

6 Conclusion

This paper has shown that IGAs can be competitively useful in generating credi-
ble and quality 3D facial expressions. In particular, it showed the use of keyframe
point information (f-curve) as an IGA gene and demonstrated its usefulness in
evolving realistic and peculiar expressions.
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