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Abstract. Wind energy conversion system (WECS) is complex because of wind
speed varies in time and space. Model identification is required to represent its
dynamics for real-time implementation. In this paper a doubly-fed induction
generator (DFIG) WECS is used. Different model structures are generated and
simulated using MATLAB/SIMULINK. The models are generated using both
nonlinear and linear system identification tool boxes. Linear system identification
toolbox generates both model structure and model parameters; whereas the
nonlinear system identification tool generates only the system model structures.
From linear models, the BJ33221 model has better performance with best fit of
74.78%, final prediction error (FPE) value of 0.0445 and mean square error
(MSE) is 0.04265. ARX211 model structure provides best fit of 74.39%, FPE of
0.0453, and MSE is 0.04465. This study shows as model order increases, the best
fit value too, but the system become more complex. The nonlinear models have
better performance than the linear models. The nlarx121 model structure pro-
vides the best fit of 96.43% and MSE of 0.0322, with other technique for its
model parameters estimation. The output residuals are within the confident range
(0.2 to —0.2), indicating the model structure was validated.
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1 Introduction

Wind energy conversion system (WECS) is a stochastic system, since wind speed
varies in time and space. Therefore identification of the model is required to represent
its dynamics which is used for real-time implementation. In a doubly-fed induction
generator (DFIG) WECS, power and speed are the outputs for system, require regu-
lation by controlling the torque and pitch angle. The WECS mathematical model
representation requires multi structural input-output model identification. It is known as
the Nonlinear Auto Regressive Moving Average with exogenous inputs model
(NARMAX) [1, 2]. NARMAX was represented by Auto Regressive Moving Average
with exogenous inputs model (ARMAX) model by interpolating between a set of
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ARMAX models [3]. An alternative representation for fitting NARMAX models was
given based on the radial basis function [4]. The NARMAX model was also expressed
as ARMAX model of single-input single-output linear systems [5]. This because of
simplicity of ARMAX than NARMAX and even in MATLAB its function is not
available. In this paper the other models such as Output Error (OE), Box Jenkins
(BJ) and Nonlinear Auto Regressive with exogenous inputs (NLARX) were also
generated and discussed. Single input single output system is considered and different
model structures are generated and simulated using MATLAB/SIMULINK. The
models fit criterions and simplicities are compared. The best model was selected.
Actually, the models are generated using both nonlinear and linear system identification
tool boxes. Linear system identification toolbox generates both model structure and
model parameters; whereas the nonlinear system identification tool generates only the
system model structures. For this purpose best fit percentage, FPE and MSE values
were used as criterions. In [6, 7] MSE was well defined and used for measure of error
introduced in neural network during its training and analysis for model selection.

2 Model Estimation

The most costly procedure in system identification is obtaining experimental data. The
quality of final model depends on quality of data; hence great care must be taken to
generate data. Model estimation of the wind energy conversion system experimental
input-output data on Matlab/simulink system identification tool box is used. The
general procedure was pre-processing the data, model structure selection, parameter
estimation and model validation. Data preprocessing and examination is done by
adjusting the experimental data to be loaded into Matlab in order to get good data
which is suitable for system identification. Model structure is selected based on prior
knowledge and taking into consideration model complexity. Validation is done to
validate the estimated model output compare to the real output from the experiments.
The model validation can be accepted if it satisfies the percentage of best fit and other
criterions.

The accuracies of model of WECS is highly affects overall performances of the
system. For instance, it has been shown that a very common 5% modeling error in the
optimal tip speed ratio-A alone can cause an energy loss of around 1%-3% [8-10]
during the wind turbine operates below rated speed. This is a significant loss. Consider
a 324 MW installed capacity wind farm (Ethiopia wind farm case), which is operating
with a reasonable 32% capacity factor can produce about 908.237 GWh of energy per
year. If the cost of energy is $0.09 per kWh, 1% loss of energy on this wind farm is
equivalent to a loss of $817413 per year. To overcome this inaccuracy, system model
validation is one of the first important steps.

The input to the system is wind speed (random) with mean value of 12 m/s and
variance equal to one is used to drive turbine and then generator at different speed. The
input and output signals are shown in Fig. 1 below. Number of data generated for
training and validation is 2000 with sampling time 0.1 s. In order to estimate and
validate the model, the data is divided into two parts. The first part, which is (1-1000)
data sets are used to determine the model of the systems. The second (1001-2000) data
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sets are used to validate the model. All procedures to estimate the model is done by
using System Identification Toolbox in Matlab/Simulink.

The objective of this paper is to find the model for wind energy conversion system
which can be used for controller design. Both linear and nonlinear identification pro-
cess were applied, but in the nonlinear identification only the model structure are
determine since the model parameters are not identified by the matlab tools for non-
linear case. The discrete time ARX and ARMAX model structures were selected
because both the structure and parameters of the model are available. The input data
shown in Fig. 1 was applied into the WECS simulink model shown in Fig. 2 so that the
output on Fig. 1 was measured at the out port of the model. Figure 2 is the inter
connection of aerodynamic, wind turbine, and electric generator subsystem in the
WECS. All these subsystems have their components as shown in Figs. 3, 4, 5 and 6.
For system identification purpose, the wind speed was used as input to simulator and
the generator speed is considered as output of generator. Figure 3 is the model for the
simulation of turbine blade pitch angle simulation diagram. In this diagram the relation
of wind speed, generator speed, attack angle and blade radius to the pitch angle is
represented. The disturbance due wind speed variation can be regulated by this block.
The mathematical equations for aerodynamic to mechanical energy conversion by
DFIG type wind turbine are described in Figs. 3, 4 and 5 using matlab/simulink
subsystem simulation representation. For instance from Fig. 4 the wind turbine rotor
instantaneous torque and power can be relate by

T, = 0.5pAu’C, (7, B) /o, (1)
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Fig. 1. WECS model identification and validation data



346 E. Ayenew et al.

where, p is air density, A is area swept by turbine blade and u is the instantaneous wind
speed and C,(/4, B) is wind power to mechanical power conversion efficiency as a
function of the turbine’s tip-speed ratio-A and rotor blade Pitch angle-f and o, is wind
turbine rotor rotational.

Figure 4 is the representation Simulation Model of aerodynamics energy conver-
sion to mechanical energy through wind turbine. This model includes wind speed, area
swept by wind turbine blade and power conversion efficiency. The mechanical power
generated by turbine is divided by turbine and gives turbine torque. Figure 5 is sim-
ulation model of wind turbine blade tip speed ratio, which depends on wind speed,
blade rotational speed, and percents of blade radius starting from hub to blade tip. The
model for aerodynamics power to mechanical power conversion efficiency is required.
The efficiency is highly depends on the blade pitch angle and tip speed ratio.

Table 1. Wind turbine plant rating and specifications

Specifications Values
Wind turbine and rotor

Number of blades 3

Cut in speed 3.5 m/s
Cut out speed 25 m/s
Rated speed 9.5 m/s
Air density p 1.25 kg/m
Optimum tip speed ratio A 8
Power coefficient Cp 0.49
Rated rotor speed ® 22 rpm
Maximum rotor speed 23 rpm
Blade diameter 77 m
Drive train

Gear ratio 1:94

Turbine inertia

Low speed shaft torsion stiffness
Low speed shaft torsion stiffness

90 x 10° kgm?®
160 x 10° Nm/rad
10 x 10° Nm/rad

DFIG

Rated power 1.5 MW
Maximum generator speed 1500 rpm
Terminal Voltage 690 + 5% v
Generator inertia 60 kgm®
Generator torque 13.4 k Nm
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3 Result and Discussion

Substituting the specification in Table 1 in to system simutation diagram shown in
Fig. 2 and applying the input data given in Fig. 1 with system identification tool, the
results for different models of WECS were presented in Tables 2 and 3. For selected
models validation curve were generated.

In system identification process model representation with adequate accuracy is
required in order to analyse the system and/or design a suitable controller that will drive
the output in a desired manner. For WECS based on best fit performance and other
criteria like model simplicity, the appropriate system model can be selected from the
lists in the Table 2. As instance BJ33221 is the best model to represent the system.
From the results shown in Table 2, the BJ33221 model has better performance with
74.78% model best fit, 0.0445 final prediction error and 0.04265 mean square error. In
this table, as it is shown next to BJ33221, the performance of armax2321 is better.
Figures 6 and 7 illustrate the model validation using validation data for different model
structures as indicated on the figures. The model structure of BJ33221 is given by

Eq. (2).
y(1) = [B(z)/F(2)]u(t) +[C(r)/D(t) e(?) (2)

For sample time is 0.1 s. Where y(t) is generator speed, u(t) is wind speed, e(t) is
disturbances like wind turbulence. All these variables are functions of discrete time.
B(z), F(z), C(z) and D(z) as given in Table 2 for sample time is 0.1 s. When
the performance of BJ is compared with that of ARX211 (best fit = 74.39%,
FPE = 0.0453, and MSE = 0.04465), approximately the same, but the BJ model
structure is more complex. Therefore, it is good to use the simple model structure.

The selected model is ARX211. It can be represented by Eq. (3) which is derived
from Eq. (1) for F(z) and D(z) are set to A(z) and C(z) is set to one.

y() = [B(2) /A()]u(t) + (1) /A(2) 3)

For A(z) = 1 —0.4597z7' +0.011252z7% and B(z) = 0.6333z"! — 0.004303 z~2.
The nonlinear model structures shown in the Table 3 have better fit criteria than the
linear model structures given in Table 2. These nonlinear model structures are gen-
erated by using the nonlinear system identification toolbox and system which was
shown by Fig. 2 with input data in Fig. 1. The tool box gives only model structure, and
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Table 2. Different linear model structure and model representation with best fit criteria

No. | Model Best fit | FPE MSE Linear model representation
structure (%)
1 | ARX211 74.39 | 0.0453 | 0.04465 | A(z) = 1 —0.4597 2! +0.01125 272
B(z) = 0.6333z~' —0.004303272
2 | ARX231 7444 1 0.0451 | 0.04422 | A(z) = 1 — 0.528521 +0.0379522
B(z) =0.6369z"" —0.0452772 — 0.01058 23
3 | ARX321 7446 | 0.0451 | 0.04424 | A(z) = 1 — 0.527227" +0.04451 272 4+0.004223 7
B(z) = 0.638z7! —0.04329272
4 | ARX331 7440 | 0.0451 | 0.04409 | A(z) = 1 —0.5271 271 +0.0068322 4 0.01614 773
B(z) = 0.6385z"" —0.04337 272 — 0.02961 2>
5 | ARMAX2221 | 74.44 | 0.0447 | 0.04351 | A(z) = 1 — 0.3926 2! — 0.008379 22
B(z) = 0.64z7! +0.04316 272
C(z) = 1+0.134227' +0.1393 272
6 | ARMAX2321 | 74.73 | 0.0449 | 0.04346 | A(z) = 1+ 02827z — 0.3044 22
B(z) = 0.6372z7' +0.4713272 +0.007185 23
C(z) = 1+0.8055z"" +0.1576 272
7 | ARMAX3321 | 7445 | 0.0451 | 0.04342 | A(z) = 140.09438 2" —0.2034 272 — 0.005598 z >
B(z) = 0.63837 ! +0.3528 272 +0.01862 73
C(z) = 1+0.6171z7' +0.1817 272
8 | ARMAX3331 | 7445 | 0.0451 | 0.04327 | A(z) = 140.4487 21 — 0.3563 272 — 0.005191 273
B(z) =0.6383z7! +0.58 272 40.02187 23
C(z) = 1+0.9782z7' +0.2333272 +0.08585 23
9 | ARMAX3441 | 74.71 | 0.0445 | 0.04233 | A(z) = 1 — 0.628 2" —0.7424272 +0.3976 273
B(z) = 0.6508 2" —0.09641272 — 05359272 +0.01264 27+
C(z) =1 -0.11847z7" —0.7337272 — 0.08582 773 — 0.05154 z~*
10 | ARMAX4441 | 7471 | 0.0447 | 0.04234 | A(z) = 1 — 0.6248 27 — 0.7481 272 +0.4007 23 — 0.0005654 z~*
B(z) = 0.6508 2" —0.09429772 — 0538722 +0.0134327*
C(z) =1-0.1151z"' —0.738272 — 0.0833z 3 — 0.05301 z *
11 | BJ22221 7447 | 0.0449 | 0.04334 | B(z) = 0.6401 z~" — 0.03059 272
C(z) = 1+0.549627" +0.1425 272
D(z) = 140.02626 27! — 0.2208 2
F(z) = 1 —0.5082z"' +0.04257 22
12 | BJ33221 74.78 | 0.0445 | 0.04265 | B(z) = 0.6511 2! +0.6379 22 +0.0003357 2>
C(z) =1-0.7787z"" — 0.04604 22 — 0.1752 73
D(z) =1- 13271 +0.3001z72
F(z) = 1+0.501427! —0.459272
13 | OE221 7447 ]0.0625 | 0.06128 | B(z) = 0.6308 2! +0.05367 z 2
F(z) =1-0.3841z7" —0.01572272

not able to generates model parameters. It requires other techniques for parameters
estimation as it is indicated by [11-13].

Any appropriate nonlinear model structure listed in Table 3 can be selected for
WECS representation. The result in Table 3 shows that specific model structure has
different performance criteria for different nonlinearity types such as tree partition,
wavenet and sigmoidnet. The nlarx121 provides the best fit (96.43%) and small MSE
(0.0322). This is when the nonlinearity type is tree partition and was represented by

Eq. (4).
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y(0) =F (ot = 1), ult = 1), u(t = 2)) + (1) (4)

Where f{.) is some polynomial or rational nonlinear function with known model
structure.

Table 3. Nonlinear model structures and model representation with best fit criteria

No. | Nonlinear Best | FPE MSE Nonlinear model structures regresses representation
model structure | fit (%)
1 | NLARXI21 96.43 |NA 0.0322 | Nonlinearity: tree partition

y(6) =f Ot = 1), u(t — 1), u(t — 2)) +e(r)

2 | NLARX221 89.50 | 0.01125 | 0.04564 | Nonlinearity: wavenet

y(6) =fp(r = 1), y(r = 2),ut — 1), u(t — 2)) + (1)

3 | NLARX221 93.48 |NA 0.01535 | Nonlinearity: tree partition

y(£) =fp(t = 1), y(t = 2),u(t — 1), u(t — 2)) + (1)

4 | NLARX221 89.64 | 0.00440 | 0.00573 | Nonlinearity: sigmoidnet

y(1) =f(t = 1), 3(t = 2),ut — 1), u(t — 2)) + ()

5 |NLARX341 81.93 | 0.04211 | 0.08438 | Nonlinearity: wavenet

y(t) :f(y(t - l)vy(t - 2),y(t - 3),”(1 - 1),u(t - 2)1
u(t —3),u(t—4)) +er)

6 | NLARX341 85.73 1 0.02100 | 0.2277 | Nonlinearity: wavenet

y(1) = fp(r = 1), 3(r = 2), 3(r = 3),ut — 1), u(r — 2),
u(t —3),u(t —4)) +e(r)

7 | NLARX341 83.13 |NA 0.05202 | Nonlinearity: wavenet

y(t) :f(y([ - 1)7)1([ - 2)7)1([ - 3)7”0 - 1)7”([ - 2)7
u(t —3),u(t—4)) +er)

8 | NLARX231 81.53 |0.03340 | 0.07163 | Nonlinearity: wavenet

y(t) = fly(r = 1), y(r = 2),ut = 1), u(r — 2),

u(t —3)) +e(r)

9 | NLARX321 83.66 | 0.02680 | 0.06309 | Nonlinearity: wavenet

y(0) =fly(r = 1),3(r = 2),y(r = 3),u(t — 1),

u(t —2)) +e(r)

10 | NLARX441 81.34 | 0.04080 | 0.09058 | Nonlinearity: wavenet

y(1) =fp(t = 1), 3(t = 2),3(r = 3),y(t — 4),u(t - 1),
u(t —2),u(t—3),u(t—4))+e()

4 Model Validation Test

For linear system identification, as it was shown in the simulation Figs. 6 and 7 and
results in Table 2, the curve fit is almost 74%. This indicates linear model for wind
energy conversion less validate. But based on the result in Table 3 and in Fig. 9 the
best fit is in the range of 81% to 96.43%, according to the selected corresponding
nonlinear model structure. This shows the nonlinear model the best validate structure.

The other important result is the whiteness criterion was indicated in Fig. 9. A good
model has the output autocorrelation function inside the confidence interval of the
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corresponding estimates, indicating that the outputs are uncorrelated. Typically Fig. 9
is the autocorrelation of the output, and cross correlation between output and input of
the nlarx 121 model of wind energy conversion system. On both correlations graphs, the
output residuals are within the confident range (0.2 to —0.2). This indicates that residual
of outputs are not correlated and independent from past inputs for the desired model
structure which proves the model structure is validated (Fig. 8).
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Fig. 7. Model validation curves for BJ22221, BJ33221 and OE221
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5 Conclusion

This paper has focused on the model identification technique for wind energy to
electrical energy conversion system to select best mathematical model that would be
equivalently represents the behavior of a physical system specifically for DFIG type
wind turbine and can be used for analysis and controller design. Among ARX,
ARMAX, OE and BJ model structures, it seems reasonable to pick BJ model structure
as a better choice; since it gives better model estimation and validation than the others.
Its best fit is 74.78%. It also observed that except OE, all linear model structures have
FPE and MSE less than 0.04600, passing model validation test under output (generator
speed) residual analysis. On the other hand, BJ model structure increases model
complexity due to increase in system order. This indicates there is a contradiction
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between system order and percentage of model best fit. Therefore to overcome the
model complexity of BJ, ARX211 model structure can be used. Because it has almost
the same best fit with simplest model. Comparing the best fit of linear model structures
with that of the nonlinear model structures, it has lower value. For illustration nlarx121
has best fit of 96.43%. This is due to the nonlinear behaviour of the wind energy plant.
The nonlinear system identification toolbox gives only model structure without model
parameters. As illustrated, the output residuals are within the confident range (0.2 to
—0.2). This indicates that residual of outputs are not correlated and independent from
past inputs for the desired model structure which proves that the selected model
structure is validated.
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