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Abstract. Modeling and position control of an Electro-Hydraulic Actuator
(EHA) system is investigated in this paper. Linear ARX EHA system model is
identified by taking the experimental data using system identification toolbox in
the MATLAB/Simulink. From the identified models the best fit ARX 331 model
is used to design a controller using fuzzy logic and Particle swarm optimization
(PSO) methods. In the self-tuning Fuzzy PID controller, the controller param-
eters KP, KI, and KD are tuned by the fuzzy controller depending on the two
inputs: error and derivatives of the error. In the PSO optimized PID controller,
the sum of the time-weighted absolute error objective function is minimized and
optimized controller parameters are tuned using PSO algorithms. The results are
simulated in the MATLAB/Simulink and compared among conventional
Ziegler-Nichols (Z-N), Fuzzy, and PSO PIDs. The results indicate that the self-
tuning fuzzy PID and PSO optimized PID give better performance than the
Z-N PID controller and the PSO-optimized PID controller demonstrates superior
performance in terms of percentage overshot and speed of response with 5%
overshoot, 0.02 s rise time and 0.15 s settling time.

Keywords: System identification � Electro-Hydraulic Actuator �
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1 Introduction

Electro-Hydraulic Actuators (EHA) due to high power, fast and smooth response
characteristics and good positioning capability are becoming famous in many appli-
cations like manufacturing systems, mining, automotive, robotics, flight simulation,
ships and marine engineering etc. [1]. However, the nonlinear nature of such actuators
characterizes a great challenge in designing the best possible controller for EHA [2, 3].
Difficulties in identifying an accurate model of inherently nonlinear to its equivalent
linear model, and time-varying dynamics make controller design more complicated and
challenging [4, 5]. A number of studies have been conducted to minimize the impact of
nonlinearity and uncertainty in the model [6–9]. Many researchers have also used
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advanced control strategies to improve the system performance mainly in tracking
control and motion controllability [7–13]. In the literatures, various Fuzzy controller
structures have been proposed and extensively studied [1, 2, 4–6].

Proper modeling of a given system is a decisive step before designing any control
strategy. There are number of approaches that can be used to identify the model of a
given system. To get the required model, two main approaches are used. The first
principle based on physical and chemical laws and system identification based on
input-output data [14, 15]. Physical modeling using fundamental physical laws require
high level of understanding about EHA system to derive the mathematical model. In
such models, it is hard to capture and insight unmodeled dynamics and uncertainties in
the model. Unlike first principle method, system identification approaches able to
insight and capture unmodeled dynamics and uncertainties [10, 11, 13, 15, 16].

2 Model Estimation

The most costly procedure in system identification is obtaining experimental data. Data
are raw input for identification. Here, model estimation is investigated using experi-
mental input-output data on Matlab/Simulink system identification tool box. The EHA
system used in paper is single rod hydraulic cylinder driven by a direct servo valve
with 40-L/min flow rate at 70 bars. The dimension of the hydraulic cylinder is
63/30/300 mm. Piston position is measured by using a 300 mm draw wire sensor with
an input-output data recorder. The input to the system is the sum of sinusoidal voltage
as seen in (1), which ranges from −5 V to 5 V, is used to generate an output dis-
placement of EHA.

Sum of sine input ¼ 2sin2tskþ sin6tskþ 2sin0:3tsk ð1Þ

The input and output signals are shown in Fig. 1.

Fig. 1. Electrohydraulic model training and validation
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Number of data generated for training and validation are 4000 with sampling time
50 ms. In order to estimate and validate the model, the data have been divided into two
parts. The first sample (1 to 200) and the second sample (2001 to 4000) data have been
used to estimate and validate the model.

One of the objectives of this paper is to find a linear EHA model with adequate
accuracy to design a controller that will drive the output in the desired manner. Taking
this into considerations, linear discrete-time ARX model structure is selected. As
displayed in Table 1, second-order and third-order ARX models are estimated with best
fit more than 85%. From the results, the ARX331 model has better performance with
92.35% percentage model fit, 0.258 � 10−4 final prediction error (FPE) and
0.2565 � 10−4 mean square error (MSE). The model validation for result of ARX331
using validation data is illustrated in Fig. 2.

The selected ARX 331 model used to design controller is represented as:

A zð Þy tð Þ ¼ B zð Þu tð Þþ eðtÞ: ð2Þ

Where A(z) = 1� 0:9458z�1 � 0:3192z�2 þ 0:2652z�3 and B(z) = 0:23z�1

�0:1753z�2 � 0:3144z�3. Assuming zero initial conditions, the transfer function can
be represented as shown in (3).

YðzÞ
UðzÞ ¼

0:23z�1 � 0:1753z�2 � 0:3144z�3

1� 0:9458z�1 � 0:3192z�2 þ 0:2652z�3 ð3Þ

Table 1. ARX model representation with best fit criteria

S. No. Model structure Best fit (%) FPE
�10−4

MSE
�10−4

ARX model

1 ARX211 87.54 0.2902 0.2967 A(z) = 1 − 0.798z – 1 + 0.3985z−2,
B(z) = 0.2438z−1

2 Arx331 92.35 0.258 0.2565 A(z) = 1 − 0.9458z−1 − 0.3192z−2 + 0.2652,
B(z) = 0.23z−1 − 0.1753z−2 + 0.3144z−3

3 Arx321 92.13 0.2616 0.2603 A(z) = 1 − 0.925z−1 + 0.4978z−2 − 0.2923z−3

B(z) = −0.03458z−1 + 0.364Z−2

4 Arx332 88.5 0.2576 0.2566 A(z) = 1 − 0.95419z−1 + 0.455z−2− 0.336z−3,
B(z) = 0.4714z−2 − 0.3379z−1 + 0.2366z−4
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3 Self-tuning Fuzzy PID Controller

In this section of the paper, development of a self-tuning fuzzy PID controller for
controlling the position variation of EHA is presented. In classical tuning methods, PID
controller cannot give satisfactory response for system with nonlinearity and unpre-
dictable parameters variations [2, 3]. Hence, the self-tuning controller, which is a
combination of a classical PID and a fuzzy controller, is proposed. The general discrete
PID structure shown in (4) is modified and used in combination with Fuzzy logic
controller.

PID ¼ KP 1þ TS
sIðz� 1Þ þ

sDðz� 1Þ
Tsz

� �
ð4Þ

where KP is proportional gain, sI , and sD are integral and derivative time constants
respectively and Ts is sampling time.

The proposed structure of the self-tuning fuzzy PID controller shown in Fig. 3 has
two inputs to the fuzzy logic inference engine; the feedback error e(t) and the
derivative of error de(t)/dt. The PID parameters are tuned by using fuzzy inference.
This provides a nonlinear mapping from the error and derivative of error to parameters
(K 0

P;K
0
I ;K

0
D). The rules are designed to tune the controller parameters to get the

required response characteristics of the EHA. The fuzzy reasoning of fuzzy sets of
output is gained by aggregation operation of fuzzy sets inputs and the designed fuzzy
rules. The aggregation and defuzzification methods are used respectively max-min and
centroid method.

Fig. 2. Model validation curve (ARX331)
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Before developing self-tuning Fuzzy PID controller, the performance measure and
the ranges of controller parameter boundaries are defined. In this controller design, rise
time less than 5 s, settling time less than 10 s, percentage overshoot less than 15% are
taken as the performance measure.

The upper and lower boundaries of gain values of Fuzzy PID parameters are
determined simulating Z-N PID parameters ranges from stability limit with large time
constants to that of near instability. This results in the ranges of each parameters,
i.e., KP Є [1, 10]; KI Є [0, 1]; KD Є [0, 0.5]. Hence, the output parameters from fuzzy
tuner can be calibrated over the interval [0, 1] and, therefore, the designed discrete-PID
controller has the form as shown in (5).

PID ¼ ð9K0
P þ 1Þþ K0

I

z� 1ð Þ þ 0:5K0
D
ðz� 1Þ

z
ð5Þ

Thus, the PID controller parameters have a relation Kp = 9K 0
P þ 1, KI ¼ K 0

I and
KD ¼ 0:5K 0

D.
The universe discourse of the fuzzy membership function designed for the error,

change of error and the outputs are Gaussian. The input membership functions for error
and change of error is designed within the range [−0.1, 0.3] and [−0.1, 0.1] respec-
tively. The output parameters K 0

P;K
0
I andK

0
D with Gaussian membership function

within the range [1, 10], [0, 1], and [0, 0.5] are taken. The linguistic values of the error
and change of error are designed with 5 linguistic terms for each input: negative big
(NB), negative small (NM), zero (Z), positive small (PS), and positive big (PB). For the
output 5 linguistic terms small(S), medium small (MS), Medium (M), medium big
(MB), and big(B) are designed. Since there are five linguistic variables that have been
set, thus, 25 fuzzy rules are applied in the system. Centroid method of defuzzification is
used to get the definite values that are sent to PID controller.

PID Controller Hydraulic

e(t)

de/dt K’
P

K’
I
, K’

D
tuning

+ _

Reference Output

Fuzzy Inference

Fig. 3. Structure of self-tuning fuzzy PID Controller [1]
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4 Particle Swarm Optimization (PSO) PID

In PSO-PID control design process, the objective is to minimize the objective function
defined as Sum of time weighted absolute error, which determines the performance of
criteria in terms of rise time, percentage overshoot and settling time. In this PSO
optimized PID controller design, the objective function is modified as seen in (6)

f ðkÞ ¼
XN

k¼1
e kð Þj j � k ð6Þ

Figure 4 illustrates the implementation structure of PSO optimized PID controller.
The optimal values of the controller parameters (K0

P; K0
I; andK0

D) are selected using
PSO algorithm based on sum of time weight absolute error performance index.

For implementing the PSO algorithm the following parameters are chosen. The
population number be 50, maximum iteration 100, variable size 3, damping weighting
inertial maximum 0.99 to minimum 0.75, personal and social cognitive coefficients are 2.
By taking Z-N PID simulation as reference, the lower and upper bounds of the PID
parameters are defined within the stability ranges. The lower and the upper bounds
K0

P; K0
I andK0

D are chosen from 1 to 5, 0 to 0.2 and 0 to 0.05 respectively. Then the PID
controller structure has the form:

PID ¼ ð1 � K 0
P þ 3Þþ ðK 0

I þ 0:019Þ
ðz� 1Þ þ ðK 0

D þ 0:01Þ ðz� 1Þ
z

ð7Þ

5 Results and Discussion

5.1 Self-tuning Fuzzy PID

The results are simulated in the MATLAB/Simulink simulation environment. Square
wave and step input test signals have been used to show the tacking and transient
performance of the Fuzzy PID controller respectively. The results are illustrated in
Figs. 5 and 6.

+
-

PSO Algorithm 

EHA
System PID      

Controller 

Reference
Input

Output
K’IK’P K’D

e(t)

Fig. 4. PSO optimized PID control structure
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Figure 5 shows the performance of the self-tuning fuzzy PID controller with
respect to step reference input signal. It achieves better response characteristics as
compared to the defined design criterion with fast rise time of 0.05 s and settling time
of 0.2 s. As can be seen from Fig. 5, the response demonstrates good tracking per-
formance for the square wave test signal. However the response of the proposed system
looks satisfied, it needs to develop by including disturbance and any others nonlinearity
and uncertainties in the design with various frequencies in reference input signals.

Fig. 5. Output signal of self tuning – fuzzy PID with step input

Fig. 6. Output signal of fuzzy PID with square input
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5.2 PSO Optimized PID

The PSO PID algorithm is implemented in the MATLAB assuming the size of the
swarm to be 50, maximum iterations 100, damping weighting inertial 0.99 max to
0.75 min, personal and social cognitive coefficients 2. The lower and the upper bounds
of K0

P; K0
I andK0

D from 0.5 to 1, 0 to 0.2 and 0 to 0.05 respectively are taken. The
simulation result shows that after 100 iterations the best cost that is the minimum of
performance measure sum of time-weighted absolute error is 1.2752 � 10−09 with
coefficient positions of K0

P; K0
I andK0

D at 0.0115, 0.0011, and 0.0642 respectively.
Figures 7 and 8 demonstrate the response of PSO-optimized PID controller with

step input and square reference input. The step response shows the PSO optimized PID
control has better performance with 6% overshoot, 2 ms rise time and 17 ms settling

Fig. 7. Step response of PSO-PID system

Fig. 8. Response of PSO-Optimized PID with square wave input
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time with respect to the design performance criteria. From Fig. 8 it can be observed that
the PSO-PID controller can track the square wave reference input with fast response
and less overshoot.

5.3 Comparison of the Results

Figure 9 and Table 2 show a comparison of the step response performances of the
proposed controllers with respect to the conventional Z-N PID. It can be observed that
as compared to Z-NPID controller, self-tuning fuzzy PID and PSO optimized PID have
better performance in terms of speed of response. However, less overshoot the classical
Z-N PID demonstrates very slow response as compared to the two proposed controllers
with rise time of 7 s and settling time of 30 s.

Fig. 9. PSO–PID, FUZZY–PID, and Z-N PID step response

Table 2. Step response of characteristics of Z-N-PID, Fuzzy-PID, PSO-PID

KP KI KD Percentage-
Overshoot

Rise time
(sec.)

Settling
time (sec.)

Z-NPID 1.72 0.5 0.772 6 7 30
FUZZY PID 3.855 0.311 0.1559 11.6 0.05 0.20
PSO-PID 1.55 0.1171 0.0957 5 0.02 0.15
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6 Conclusion

System Identification technique has been used to get the linear model of the EHA
system. Three low order ARX models are estimated and ARX331 with best fit of
92.35% is used for controller design. Self-tuning fuzzy and PSO optimized PID con-
trollers are proposed to tune the value of KP, KI, and KD of the PID controller. The
responses self-tuning fuzzy PID controller and PSO optimized PID controller show that
the performance of the EHA system is improved and satisfied as compare to the
Z-N PID controller and the defined designed criteria. From the results, it can be
observed that PSO-optimized PID controller demonstrates superior performance in
terms of percentage overshot and speed of response with 5% overshoot, 0.02 s rise time
and 0.15 s settling time.
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