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Abstract. In this paper, Auto Regressive eXogenous input (ARX), Auto
Regressive Moving Average eXogenous input (ARMAX), Output error and BJ
models of class D voltage-source half-bridge series-resonant inverter used for
induction heating are identified and studied based on prior knowledge and
measured data from PSIM simulation Environment. The output data are gen-
erated by applying Pseudo-Random-Binary-sequence (PRBS) as an input
through the inverter MOSFET gate in the PSIM software. PRBS signal is
generated using standard components such as flip-flops or XOR gates to
approximate the white noise in the PSIM software. The generated output and
input data are loaded in the MATLAB to identify the unknown system
parameters of induction heating inverter by using MATLAB system identifi-
cation toolbox. Estimation of models with pre-selected structures can be per-
formed using system identification toolbox. To validate the models and their
limitations, the fitness properties of the models based on percentage best fit and
their resonant frequencies are examined.

Keywords: System identification - Induction heating inverter - PRBS

1 Introduction

Recently a class D voltage-source half-bridge series-resonant inverter has become very
popular and become more and more widely used in various applications, especially in
the applications where small-size electric appliances are required as a main purpose.
They are, for example; electronic ballasts, induction heaters and induction cookers, etc.
Depending on the position of the load with respect to the elements of the resonant
circuit, the converters of class D may be divided into series resonant converters, parallel
resonant converters, and series—parallel (hybrid) converters [1]. The characteristics of
the induction heating converter must be identified as much as possible accurately to
control the efficient transfer of energy from the source. There are many simple ana-
lytical methods to obtain the mathematical model of a converter. However, to have a
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good understanding on the correct behavior of the converter, it is necessary to utilize
advanced technique to achieve accurate model that resemble the converter. In [2], a
PSpice software is used to obtain a simple mathematical model for the series-parallel
resonant topology with a capacitor as output filter. A generalized state space averaging
model for LCL resonant inductive power transfer is constructed to transform the
nonlinear model into a linear approximation model [3]. In this work, the authors mainly
consider the running frequency and load parameter uncertainty to detached the
uncertain system model from the system model by using the linear fractional trans-
formation method. A good review of analytical methods for IH can be found in [4].

System identification can be used in a wide range of applications, including
mechanical engineering, biology, physiology, meteorology, economics, and model-
based control design [5]. Among different system identification technique, least square
method is probably the most popular and numerically simple, in which error is
appropriately defined. However, the least square method suffers if the model order is
not sufficiently high and cause accuracy problems if the noise level increases [6].
Moreover, if the model structure is not linear in the parameters, this approach may be
invalid [7]. To identify the parameters in nonlinear model structure, the modern opti-
mization techniques such as genetic algorithm and particle swarm optimization algo-
rithms seem to be a more hopeful approach and provide a powerful means. [8]
proposed a methodology to find optimal system parameters and optimal control
parameters using adaptive particle swarm optimization for nonlinear system. In [9], an
overview of the basic principles and results and the problem areas in the practical side
of how to approach and solve a real problem have been extensively studied. Nonlinear
system on-line identification via dynamic neural networks is studied in [10]. The main
contribution of the paper is that the passivity approach is applied to access several new
stable properties of neuro identification.

The main concern of the paper is to obtain the linear discrete model of medium
frequency induction heating by using system identification technique. This paper is
organized as follows. Section 2 proposes a family of different linear model formula-
tions and identification. In Sect. 3, a Class D voltage-source half-bridge series-resonant
inverter PSIM data measurement results are presented. Section 4 reports model vali-
dation and comparison. Finally, the paper is concluded in Sect. 5.

2 Linear Model Formulation and Identification

The two most common techniques to estimate models that represent linear time-
invariant systems are nonparametric estimation and parametric estimation. In this
paper, the nonparametric estimation approach has been proposed to obtain the models.
Consider the general stochastic model shown in Eq. (1).

(1) =g G(g™", 0)u(t) +H(q ™", 0)e(r) (1)
Where u(t), y(t), e(t), G(g~',0), H(g™',0), 0 are the input, output, zero-mean

white noise (the disturbance of the system), transfer function of the deterministic part of
the system, transfer function of the stochastic part of the system, the set of model
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parameters respectively. G(¢~',0), H(g™',0) are rational polynomials as defined by
the following equations [11].

_ _ B(q,0)
600 = X 0)F(g.0) (22)
H(qil, 0) _ C(q,0) (2b)

A(q,0)D(q,0)

In this section, discrete linear system model formulations are introduced from the
general stochastic model by Setting one or more of A(q,0), C(q,0), D(q,0), and
F(q,6) equal to one. The ARX model of a system is given by setting C(q), D(g), and
F(g) equal to one.

A(g)y(1) = B(q)u(r) +e(1) (3)

The e(t), residual or equation error, is used to account for the fitting error. The
major drawback of the ARX model is lack of adequate freedom in describing the
properties of disturbance term. An important properties of the equation error as moving
average of the white noise is described in ARMAX model. When D(gq, 6), and F(q, )
equal to one.

A(g)y(1) = B(q)u(t) + C(q)e(7) (4)

The output error model and Box-Jenkins (BJ) model structures in a more compact
form are shown in Egs. (5) and (6) respectively.

(1) = 2 )+ ) 5
(1) = 2 ute) + D) ©

The issue of system identification technique has been addressed by many authors in
several books and survey articles where many different identification methodologies
have been exploited. For instance, the authors of [12] obtained the ARX model for
billet induction heating process with the help of Matlab system identification toolbox
and the result shows the model has high prediction accuracy. In [13], on-line parameter
estimation method has been proposed to obtain the model of a 3-phase induction
heating. The approach uses PSIM simulation and experimental results to study its
impedance matrix for control application.
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3 Data Measurement

In practice, most often test signals are added to the inputs of the system to move the
output up and down around a working point. For theoretical analysis purpose, white
noise is used as test input in system identification since white noise has autocorrelation
that is impulse response function at the origin and a wide (theoretically infinite) fre-
quency range. It can therefore excite the process over a wide frequency range. In
practice, it is impossible to generate a pure white noise so that we need to approximate
the white noise signals by PRBS. This type of noise has a periodic autocorrelation
function and it can be easily generated by using a feedback shift register. The different
properties of PRBS including its autocorrelation, its realizations and its similarities with
white noise is clearly explained in the literature [5]. In this work, we generate PRBS
signal using standard components such as flip-flops and XOR gates to approximate the
white noise in the PSIM software. This type of signal, u(¢), has a periodic autocor-
relation function and given by (7).

1

bul®) =7 [ uChute+ ) )

Pseudo random binary signal was generated by a shift register with 4 stages shown
in the Fig. 1. The maximum length of the signal (maximum period) sequence is
N =2"—1 =15, where n is the number of D flip flop used in the circuit. As follows
from the figure shown in the Fig. 1, the clock frequency of PRBS is % = 100 kHz. As
we know, PRBS is a deterministic signal and its autocorrelation function can resemble
the autocorrelation function of a white random noise if the length of signal is large.
From Eq. (7), the autocorrelation of PRBS has been found in Eq. (8).
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Fig. 1. PRBS waveform



252 M. Debebe et al.

In this paper, a Class D voltage-source half-bridge series-resonant inverter topology
shown in Fig. 2 has been proposed to identify the model of induction heating converter
by collecting a time varying data in PSIM simulation software. The converter is excited
by Pseudo-Random-Binary-Sequence (PRBS) input in the gate of MOSFET and a
valuable data is obtained by measuring the output current through the load. Leg, Req, C;
are the equivalent load inductance, equivalent load resistance and resonant capacitor
respectively. For simulation purpose, the load parameters are taken from [14]. Table 1
gives a summary of the PSIM simulation parameters. A total of 20,000 input/output
data pairs were collected with a clock frequency of 100 kHz and transferred to
MATLARB to estimate a linear discrete model of the system from the measured data. As
shown in Fig. 2, the inverter is excited by a 4-stage PRBS at the gate side of the
MOSFET and output current data is observed through the load.
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= = = Cri2
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‘ I Req
4-Stage FRBS half bridge series T Cri2
Q Generator | %—3 resanant inverter
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! yL o
LI_D._—_D 9 Time Delay Circuit
Fig. 2. The complete induction heating PSIM mode
Table 1. PSIM simulation parameters
Vbe | Leg C, Req Flip-flop clock frequency

198 V| 82.4 uH | 0.3024 pF |3.55 Q| 100 kHz

4 Model Comparison and Validation

In this section, different models are computed and compared with validation data with
the help of MATLAB system identification tool. The measured data is stored in a
MATLARB file. We selected the first 13,000 data points for model estimation and the
rest for model validation. The system identification toolbox can also be used to obtain a
model with a prescribed structure. The discrete form of ARX model is identified and
given in Egs. (9a) and (9b). As stated before ARX model lacks in describing the
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Fig. 3. ARX model simulated response vs. validation data output

properties of disturbance, the data fit is only 53.71 shown in Fig. 3. This reveals that
the information in the measured data has not adequately captured by the estimated
ARX model. In other word, the model is not rich enough to explain all the information
in the measured data of induction heating. By increasing the order of the system, we
can get an accurate ARX model that fits the data. However, this increases the com-
plexity of the system. Accordingly, there is a need for improving the fitness value with
minimum system order and complexity. Therefore, based on the collected data, the
discrete form of ARMAX model is obtained as (10a, 10b and 10c).

A(z) =1—1.13287"' +0.73237 2 (9a)
B(z) = 6.9467 " — 6.777 2 (9b)
A(z) =1 — 142277 +0.76027 2 (10a)
B(z) = 83347 — 8.3667 2 (10b)
C(z) =1-0.7716z"" —0.21767 > (10c)

Similarly, the discrete form of output error model and BJ model have been found to
be in Egs. (11a and 11b) and (12a, 12b, 12¢ and 12d) respectively.

F(z) = 1—1.4097" 40.74887 (11a)
B(z) = 9.188z "' —9.329;2 (11b)

F(z) = 1 — 143277 +0.768822 (12a)



254 M. Debebe et al.

B(z) = 8.59977" — 8.6317 > (12b)
C(z) =1 - 045547 — 0.5293z> (12¢)
D(z) = 1 —1.076z " —0.52447 > (12d)

Figures 4, 5 and 6 illustrate the model validation using validation data for different
models by assuming the order of the system is the same as ARX model. As one can see
from figures, the estimated model of ARMAX, Output error and BJ model are fitting
the validation data set more than ARX model. It has been found that the ARMAX,

25

Validation Data
20 - armax_model: 81.93%

15

10

Amplitude
\current output

-10 i

_20 1 1
0.065 0.0655 0.066 0.0665
Time (seconds)

Fig. 4. ARMAX model simulated response vs validation data output
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Fig. 5. Output error model simulated response vs validation data output
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Fig. 6. BJ model simulated response vs validation data output

Output error and BJ model fits to measured data are identified as 81.93%, 83.17%,
85.11% respectively. It can be observed here that the validation agreement is very
good, and the models are rich enough to explain most of the information in the
measured data of induction heating.

To evaluate the estimated models’ quality in frequency domain, we simulate the
bode plot and observe the behavior of the models near to the resonance frequency of
the induction heating. The simulation result is depicted in Fig. 7. The simulation result
shows that the estimated models are very close to each other near to working frequency
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Fig. 7. Bode plot of estimated models
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of the inverter, and there is also a clear difference between the measured data and
models while moving away from the resonant frequency.

As can be seen from Table 2 and Fig. 7, ARMAX, output error and Box-Jenkins
models give a peak magnitude very close to the load resonant frequency (20.3 kHz).
Whereas, ARX model shows a peak magnitude away from load resonant frequency.
The ARX-model is not so good due to the bias caused by the non-white equation error
noise. It is valuable to note that the maximum energy transferred from the source to the
induction heating load is at the resonance frequency. Therefore, from the above result
suggests ARMAX output error and Box-Jenkins models captures most of the frequency
band width of the inverter around the resonance frequency.

Table 2. Response of the models at resonance frequency

Estimated models | Approximated resonance frequency (Hz) | Magnitude (dB)
BJ output error 20,212 31.8
Output error 20,212 31.7
ARMAX 20,053 31.3
ARX 22,600 28.7

5 Conclusion

This paper described the application of model identification technique for medium
frequency class D series-resonant inverter used for induction heating based on mea-
sured data from PSIM simulation environment. A second order ARX, ARMAX, output
error and Box-Jenkins models are obtained, and the result is compared with validation
data. ARX model shows a 11.33% deviation in resonance frequency from the measured
data. This suggests ARX model is not rich enough to explain all the information in the
measured data of induction heating. By increasing the order of the system, we might
improve ARX model that fits the data. However, this increases the complexity of the
system. From bode plot simulation result, it has been noticed that ARMAX shows a
1.22% deviation in resonance frequency, whereas output error and Box-Jenkins models
show a 0.43% deviation in resonance frequency from the measured data. This indicates
that these models describe the characteristics of the induction heating with acceptable
value very close to the working frequency of the converter.
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