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Abstract. In public transport, smart card-based ticketing system allows to
redesign the UPT network, by providing customized transport services, or
incentivize travelers to change specific patterns. However, in open systems, to
develop personalized connections the journey destination must be known before
the end of the travel. Thus, to obtain that knowledge, in this study three models
(Top-K, NB, and J48) were applied using different groups of travelers of an
urban public transport network located in a medium-sized European
metropolitan area (Porto, Portugal). Typical travelers were selected from the
segmentation of transportation card signatures, and groups were defined based
on the traveler age or economic conditions. The results show that is possible to
predict the journey’s destination based on the past with an accuracy rate that
varies, on average, from 20% in the worst scenarios to 65% in the best.
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1 Introduction

Enlargement of urban public transport (UPT) is essential to promote sustainable
development of cities [1]. Nevertheless, the use of such systems by its users is not
always easy, due its complexity and inflexibility [2]. To improve the efficiency of
existing transportation networks, in recent years, UPT systems have adopted sophis-
ticated Information and Communication Technologies (ICT). The use of such tech-
nologies allows the possibility to provide information to travelers using innovative
ways [3] rather than expanding infrastructures [4]. Two main factors have contributed
to this: (i) the adoption of smart cards in UPT; and (ii) the significant increase in the
usage of mobile devices.

Adoption of smart cards has provided several benefits to the UPT management. To
monitoring the network, surveys and other less reliable methods were replaced by these
cards [5]. Therefore, UPT systems can provide real-time access to public transport data,
which could be used for estimating the arrival times of buses, incidents, or delays [6].
Data provided by smart cards enable access to detailed information on the use, travel
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patterns and demand. Also, the exploration of this data allows deriving useful infor-
mation about transit passenger behavior, such as travel purpose or activity [7].

Availability of descriptive data about service usage will allow UPT providers to
optimize the transport network and manage their resources more efficiently [8]. To do
this, some information, as the main factors that influence travel’s occurrence, should be
well known. Having this knowledge, it is possible to define measures at two levels:
(i) redesign the network, for example, by providing customized transport systems (e.g.,
DRT); or (ii) creating incentives to change certain travel patterns. Incentives may be,
for example, pricing policies to restrict travels to some specific locations (e.g., access to
monuments, cable cars), information management policies during the occurrence of
critical events (e.g., floods, popular manifestations), or commercial policies to influence
consumers to explore/visit other locations or at different times of the day (e.g., through
the attribution of offers or discount vouchers). Taking in mind the development of
efficient tools to implement these and other possible measures, the knowledge of
journey destination when the user validates his ticket at the entrance of public transport,
is of great importance. Thus, the central questions of this research are:

• How to predict the journey destination of a traveler from a UPT system? How can
past data be efficiently used to improve such prediction?

• Are there any significant differences between the predictions of journey destinations
for different traveler’s groups? What are those differences and main reasons for this
occurs?

• Is there any significant difference in the prediction of a journey destination for
different time periods? How model these periods to improve such predictions?

To answer these questions, data from travel validations of a multimodal network of a
UPT system, collected over a year, was explored. Two factors that may influence the
travel purpose were considered: travel day and traveler type.

The paper is structured as follows: Sect. 2 presents the related work. Section 3
describes the methodology used while the presentation and discussion of the most
significant results are present in Sect. 4. Some policy implications are presented in
Sect. 5. Finally, the conclusions and answers to the previous questions are given in
Sect. 6.

2 Related Work

The implementation of smart card-based ticketing occurred in many public transport
systems around the world with different characteristics. Closed gate system allows an
explicit recognition of patterns of mobility. It is possible to identify the origin and
destination, time and duration travel, but there no transshipments information when
multiple alternatives are provided. To avoid alighting delays, several bus services
around the world use open gate systems. This system collects the origin of each journey
without identifying the exact destination [9] and uses flat fare structures. However,
some public transport providers are driven to adjust the price, based on the travel
distance [10]. In this context, an algorithm of destination’s inference based on the past
usage of travelers is crucial.
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Journey prediction is a central component that supports the development and
delivery of personalized information services in UPT. Destination’s inference provides
relevant information to UPT providers, identifying behavior patterns, namely the
traveler entrances and exits. The trend towards personalized Traveler Information
Systems (TIS) supports the development of services capable of assessing and deliv-
ering contextually relevant information. The vast amount of data requires efficient
processing and storage methods.

The latest developments in ICT have paved the way for the emergence of ubiq-
uitous environments and ambient intelligence in UPT, mostly supported by miniatur-
ized computer devices and pervasive communication networks. Such environments
have been simplifying the collection and distribution of detailed real-time data,
allowing the access to a rich information and support the development of next-
generation TIS [11]. Some research has used these technologies to produce large
matrices of origin-destination from smart card data [12]. These approaches focus on the
destination’s inference after the trip ended, allowing the identification of behavior
patterns [13, 14], traveler segmentation [15, 16] and provision of information services
[17]. Another group of studies was developed to understand travel patterns. Table 1
shows a summary of some studies formulated the last years.

Several authors studied urban traffic in different cities [18–21]. In these studies,
some places in the city were identified as more popular. The conclusions allowed
optimizing the public transport demand. On the other hand, the knowledge about travel
time distribution along weekdays seemed to be another critical factor to optimize the
system. Additionally, improving the knowledge of demand for public transport and
identify travel peaks can allow transport providers to adjust the availability of vehicles
[22].

The occurrence of individual travel and their primary purpose (work, school, for
example) was also predicted [7, 23–25]. Thus, travelers with different mobility patterns
were found. The acknowledging of their main patterns was one of the goals of a vast
number of transport providers. In that way, two conditions are analyzed: if regular
transit travelers tend to maintain their patterns and if it is easier to predict the future
travels [26–28].

Although the analyzed studies focused on understanding the usage of public
transportation and in the optimization of their network, a lack of knowledge about the
best way of how a model can predict mobility patterns can be highlighted. Only a
restrict number of works studied the prediction of journeys of travelers from public
transport [23, 26]. In these studies, some of them distinguished travel patterns between
different groups of passengers (with fixed routines and almost random routines) [20],
which does not allow to understand if some models can be more suitable for specific
traveler groups. Last, to our best knowledge an inter-comparison study to analyze
different models and data configurations to predict the journey destination using UPT is
missing, particular by exploring the potential of an extensive dataset.
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Table 1. Summary of studies developed in the last years to know travel patterns using of urban
public transport.

Author City (Country) Input variables Methods
or analysis

Period Number
of trips
or users

Main conclusions

[18] London (UK) Origin, destination,
individual trajectories
without their history

Clustering
(stations)

7 days 11.22
million
trips

Heterogeneous patterns
of intra-urban
movement
Large flows around a
limited number of
activity centers

[13] Beijing (China) Distance between stops,
card ID, route number,
driver ID, transaction
time, remaining
balance, transaction
amount

Markov chain
(prediction of
origin)

1 day 36,246
validations

The method is effective
in extracting transit
passengers’ origin
information from
transactions with
relatively high accuracy
(90%)

[22] Shenzhen
(China)

Card ID, action type,
station ID, time of the
action, check-in and
check-out records

Spatial/temporal
analysis (day’s
peak)

6 days 2.5 million
trips

The intra-urban trips:
- have two significant
peak hours over a day
- are different between
weekday and weekend
- have significant
periodicity

[19] London (UK) Boarding the bus,
entering into or exiting

Probabilities
(visited
locations)

3
months

626 users Two most frequent
locations can be
modelled with fixed
probabilities
Other destinations (not
the two most visited) are
popular places in the city

[7] Minneapolis/St.
Paul (USA)

Date/time, route
number, card type, is
initial boarding or
transfer, GPS location

Inference of trip
purpose (work or
school)

1 week 3,687
validations

Different groups of
users have different
routines
The return trip time in the
Post Meridiem
(PM) peak is the primary
determining factor of
whether an activity is
work-related

[26] Beijing (China) Card ID, route number,
driver ID, transaction
time, remaining
balance, transaction
amount, boarding and
alighting stop

Clustering
(mobility
patterns)

5 days 3.8 million
users

Most regular transit
riders are commuters
who do not own private
cars and thus tend to be
very sensitive to service
reliability

[23] Lisbon
(Portugal)

Card ID, bus boarding
time

Prediction of
travel (travel
occurs/not
occurs)

61
days

24 million
trips

Longitudinal data from
automated fare
collection
(AFC) systems can be
mined to uncover
characteristic patterns of
temporal regularities in
accessing transport
system

(continued)
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Table 1. (continued)

Author City (Country) Input variables Methods
or analysis

Period Number
of trips
or users

Main conclusions

[20] Brisbane
(Australia)

Boarding and alighting
stop, boarding and
alighting times, route
ID, direction, card ID,
card type, trip ID

GIS techniques
(travel patterns)

1 day 5 million
trips

Identification of
traffic/users in the city’s
zones for different
groups of people

[21] Beijing (China) Deal time and status,
entry time, line and
station, exit line and
station

Analysis of
spatial
relationships
(location, times)

1 day 8.7 million
users

The urban development
is increasingly
concentrated near
subway lines and transit
stations
The people flow in the
morning peak shows that
the construction of the
new cities in Beijing’s
surrounding area is
reinforced

[24] Lisbon
(Portugal)

Bus stops, geographic
locations, bus line id,
direction, stops on the
route, card ID, time of
bus boarding, id of the
bus boarded

Personal+,
Network+,
(mobility
patterns of urban
bus riders)

61
days

24 million
trips

Prior knowledge of the
user’s behaviour can
improve the prediction
For active users, the
rider’s own history
covers a large portion of
the future stop usage. For
low demand riders, there
is a high degree of
uncertainty involved
resulting in inaccurate
prediction

[25] All country
(Netherlands)

Card ID, date, check-in
time and location,
check-out time and
location

Route deduction 5 days 500,000
journeys

Found the route
deduction to perform an
accuracy of over 90%
for the best selection
rule, STA (Selected
Least Transfers Last
Arrival)

[27] Oporto
(Portugal)

Origin, destination
(inferred), date, card ID,
line, direction

Probabilities
(destination)

2
months

5,000
journeys

Depending the
probability stabilizes
around two months of
data (about 120 travels)
or near three months of
data (around 351–400
travels)

[28] Oporto
(Portugal)

Origin, destination
(inferred), date, card ID,
line, direction

Top-K, NB, J48
(destination)

2
months

800 users The performance of
journey predictions
seems to be directly
related to the mobility
patterns

[9] Oporto
(Portugal)

Origin, destination
(inferred), date, card ID,
line, direction

Top-K, J48
(destination)

2
months

803,892
trips

Similar accuracy in the
two methods. The Top-
K is several orders of
magnitude less memory
demanding and much
faster, showing great
promise for large-scale
systems
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3 Materials and Methods

To predict the journey destination of a traveler using urban public transport three main
steps were considered: (i) firstly, travel data was collected from different travel pro-
viders (first subsection); (ii) secondly, journey destination’s inference was performed
(second subsection); and (iii) last, journey destination’s prediction was made (third
subsection). Such methodology was applied to a European medium size Metropolitan
Area. Figure 1 presents an overview of the methodology followed.

3.1 Data Collection

One year of travel data obtained from the UPT of the Metropolitan Area of Oporto was
collected (January 2013 to December 2013). Such network covers an area of 1,575 km2

Yes

Travel data
(origin, operator, line, time, id )

Inference of destination

Training Test set

Model evaluation

All repetitions?

Select 15 random sub -groups
(N= 50)

No

No

Inputs

Model

Outputs

Inference of  
journey destination 

Prediction of 
journey destination 

Dataset with journey 
destination

Yes

Yes No

Journey (N=5000)
(origin, destination, time)

Accuracy of predictions

Select sub-group?

Select travel card (id)

Select journey (origin )

All journeys
inferred ?

All travel cards
analyzed ?

Model search
(Top-K, NB, J48)

Fig. 1. Methodology overview.
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and serves 1.75 million of inhabitants. It is composed of 126 buses lines (urban and
regional), six metro lines, one cable line, three tram lines and three train lines. This
system is operated by 11 transport providers, which Metro do Porto (metro system) and
STCP (bus system) are the largest [29].

Oporto network is based on an open and intermodal zonal system. The payment
uses a rechargeable intermodal smart card called Andante. There are two types of
Andante transport tickets: Signature Titles and Occasional Titles. Signature Titles have
different groups of users where the charge depends, besides the journey length, also on
the traveler age or economic conditions. While signatures cards can only be used to the
cardholder, Occasional Titles can be used by different travelers (it has no personal
information). Both cards are valid for a set of adjacent areas previously chosen by the
passenger. Signature Titles are valid for the charged month while Occasional Titles are
valid within the limit ring acquired during a particular period, currently 1 h for the
minimum 2-zone ticket and longer as the number of valid zones increases. Thus, one
journey may have one or more stages (validations), depending on the journey’s period
and the number of zones included in that journey.

For each traveler (i.e., for each Andante smart card), the information related to the
boarding time (first boarding on the route), the line (or lines for each journey) and the stop
(or stops for each journey) is available. Table 2 shows an extracted trip chain information
for an individual traveler during a week of January 2013. The first row shows a journey
with two stages. First, the traveler uses stop 2716 and line 303 at 9:14 a.m. followed the
stop 3175 and line 302. The second row shows a journey with only one stage.

To model urban travel patterns, this study used data from the two most significant
urban public transport providers operating in Oporto’s city: STCP and Metro do Porto,
which corresponds to 135 million of annual validations distributed by different types of
cards. Traveler routines were identified for different traveler profiles using Andante
signature. Andante cards represent 67% of the total number of validations. In this work,
six datasets of typical travelers were selected from the segmentation of Andante sig-
natures based on the traveler age or economic conditions, as follow:

Table 2. Extracted trip chain information for a traveler during a week of January 2013.

Journey
ID

Date First boarding time
of the route

Route sequence
(Line ID)

Stop sequence
(Stop ID)

1036866 02/01/2013 09:14 a.m. 303 ! 302 2716 ! 3175
1036867 02/01/2013 06:27 p.m. 203 1822
1036868 03/01/2013 11:24 p.m. 200 1035
1036869 04/01/2013 09:02 a.m. 402 2632
1036870 04/01/2013 10:29 p.m. 400 ! 400 1675 ! 1689
1036871 05/01/2013 09:09 a.m. 402 2632
1036872 05/01/2013 07:11 p.m. 206 1338
1036873 06/01/2013 08:45 a.m. 302 ! 500 2632 ! 1390
1036874 06/01/2013 10:11 p.m. 303 1338
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• G1 (4–12 students): includes students from 4 to 12 years old;
• G2 (13–18 students): includes students from 13 to 18 years old;
• G3 (sub23-superior students): contains students of higher education, public or

private, with less than 23 years;
• G4 (normal): in general, this group is composed of regular workers. Any discount is

provided for this group;
• G5 (social): includes people with a low monthly income (gross monthly income per

household member smaller than 1.2 times of IAS - Social Support Index);
• G6 (seniors): includes retired people or people with 65 years old or more.

3.2 Inference of Journey Destination

UPT of the Metropolitan Area of Oporto is an open system which means there is tickets
validation at the entrance only to each stage/journey. Thus, to know each traveler’s
destination, the application of an inference algorithm is required [30].

For this purpose, an updated version of an algorithm proposed by [10] was used in
this work. Such algorithm is supported by the following assumptions:

1. “The most likely destination of a journey stage is the route stop located downstream
from its own origin that is nearest to the origin of the next journey stage from that
passenger”;

2. “The most likely destination of the last journey stage of a day is the route stop
located downstream from its own origin that is nearest to the origin of the first
journey of the day from that passenger.”

After setting candidate destinations, spatial validation rules were used to ascertain
whether these assumptions are likely to hold for each transaction record. Some addi-
tional spatial validation rules were included in the proposed algorithm [10]. The rules
are:

1. Origin and candidate destination of a journey stage are the same;
2. Candidate destination of a journey stage is beyond a set Euclidean distance from the

next journey origin (or from daily origin if the stage is last) for the passenger;
3. Number of travel zones is exceeded for the passenger to reach the candidate

destination.

Before applying this algorithm, the data was first pre-processed namely to remove:
(i) validation records with missing data; and (ii) repeated validation records (or spaced
by seconds or few minutes, but insufficient time for to go, to return and to go again).
Also, a maximum walkable distance of 640 m was considered which corresponds to
8 min on foot at 4.8 km h−1. This distance is recognized as the maximum walking
distance for bus stops in Great London (TfL, 2010).

The algorithm used in this work inferred 85.9% of journey destinations. The des-
tinations’ percentage not inferred in the presented work could be related to the use of
only 2 of the 11 transport providers operating in the network. Still, such result not affect
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the further development of the work since traveler samples will be used to evaluate the
capability of a model to predict the journey destination. Other values were obtained in
similar studies: 71% in estimating alighting stations for rail boarding [31], 66% using a
bus-only system [30]; and 80% in a multimodal public transport system [32].

3.3 Models of Prediction of Journey Destination

In this section, it is described models, models’ optimization and results’ evaluation
used. All implementations and computations were performed using R software.

Models
To estimate the traveler destination, three models were applied: Top-K, Naïve Bayes
(NB) and Decision Trees (J48).

Top-K. Top-K model is focused on the demand for more numerous elements (or item
sets) based on an increment counter [33]. Two different techniques of Top-K are
available: (i) Counter-based techniques, that keep an individual counter for a subset of
the elements in the dataset, guaranteeing their frequency; and (ii) Sketch-based tech-
niques, that provide an estimation of all elements, with a less stringent guarantee of
frequency.

To optimize the performance and efficiency of predictions, required in the context of
UPT, an update of Top-K model based in the Space-Saving technique that targets
performance and efficiency for large-scale datasets was used in this work [33, 34]. The
Space-Saving maintains partial information of interest, with accurate estimates of
significant elements supported by a lightweight data structure, resulting in memory
saving and efficient processing.

In this work, Top-K Space-Saving model was updated to account for the speci-
ficities of transportation networks, where a journey is considered to be an edge, i.e., a
connection between any node A and B. This method showed to be several orders of
magnitude less memory demanding and much faster [9]. Therefore, to identify the
journey destination, only the origin of the journey (O) and the past origins of that
traveler (OP) were considered in Top-K.

Top-K model applied for the first three days of the test set is shown in Fig. 2. Note
that on day 1, all journeys would be correctly predicted based on origin, except for
journey AC. In this case, journey AB is more frequent. However, on day 2, all counters
are incremented based on the previous day, and journey CA would become increas-
ingly relevant. Also, the new journey CD is added to the list. On day 2, the traveler
always starts on C stop. As CA is the most frequent journey, the predicted destination
failed for the three journeys (stop G, stop G and stop I). Finally, on day 3, no new
journeys occur, but the counters are updated accordingly.
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Naïve Bayes. Naïve Bayes model is one of the most well-known classification tech-
niques. This technique is based on statistical data and uses Bayes’ Theorem proposed
by Thomas Bayes to compute unknown conditional probabilities [35], assuming all
attributes are independent given the class value, that is,

P XjCð Þ ¼
Yn

i¼1
P XijCð Þ ð1Þ

where Xi ¼ ðX1; . . .;XnÞ is the feature vector and C is a class. A feature’s probability in
data appears as a member of the probabilities’ set and is calculated by the frequency of
each feature value within a class of a training dataset. Training dataset is a subset, used
to train a classifier algorithm by using known values to predict unknown values [36].

Naïve Bayes is a very efficient model which have simplicity and unrealistic inde-
pendence assumption. However, the Naïve Bayes classifier’s performance is remark-
ably successful in practice [37].

Naïve Bayes classifier is also well known as very sensitive to the presence of
redundant and/or irrelevant attributes. Redundant (highly correlated) attributes can bias
the decision taken by this classifier [38]. Thus, only relevant attributes should be
considered in this model.

In this work, the e1071’s package of R software was used.

Decision Tree. Decision Tree model is one of the most widely used techniques for
text-based automatic classification [39]. It is a tree-based knowledge representation
methodology, which is used to represent classification rules in a simple structure. Tree’
non-terminal nodes represent tests on one or more attributes, and terminal nodes reflect
decision outcomes [40].

Decision Tree has several advantages over traditional supervised classification
algorithms [41]. In particular, it is strictly nonparametric and does not require
assumptions regarding input data distributions. Also, for missing values, it accepts
nonlinear relations between features and classes and can receive both numeric and
categorical inputs naturally [42].

1

2
C                        G 

C                        A 

p:                    1         2         3         4         5         6          7         8          9       10

OD:              AB      CA      BA      AC      GC      CG       CI        -          -          - 
Counter:       43       42       42        41        7         6         1          -          -          - 

B                                  A 

A                               B 

A                     C 

C                        D 
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C                                    I
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A                      C 
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3
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Fig. 2. Application of the Top-K model for the first three days of the test set.
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To generate a decision tree model to classify the destination based on available
training data’s attribute values, J48 was performed. J48 is an open source Java
implementation of the C4.5 algorithm in the Weka data-mining tool.

In this work, RWeka’s package of R software was used.

Model Search
To obtain a traveler’s behavior representative sample throughout a year, they were
selected 5,000 travelers with at least 300 validations inferred with success for each
traveler group previously defined in Sect. 3.1 (G1–6). Student’s groups (G1, G2 and,
G3) do not have enough travelers in these conditions. So, in these cases, a reduced
number of travelers were used (NG1 = 870, NG2 = 4,337 and NG3 = 3,707).

For each traveler group (G1–6) and model (Top-K, NB, and J48) 15 repetitions were
computed. Each repetition included 50 travelers randomly selected. Predictions started
on the 2nd day (January 2nd) by using the 1st day (January 1st) as a training set. Also, the
training set was updated with previous journeys for each iteration. Consequently, for
each traveler on an nth day, the model was trained with the corresponding training set,
up to the (n − 1)th day, and predicted the journeys’ destination for the nth day. After
performing predictions, all journeys are added to the training set, and the iteration
moves on (n + 1)th day. Thus, the test set is always composed of journeys of one day
while training set continuously grows.

For each simulation, two different approaches were considered. Firstly, a simulation
was applied to all days of the week (Sunday to Saturday), i.e., not distinguish different
patterns of weekdays and weekends. Then, to consider such differences, two another
simulation was performed, one for weekdays (Monday to Friday) and another for
weekend days (Saturday and Sunday).

Model Evaluation
Accuracy measure (2) was applied to evaluate the algorithm’s performance. This
measure uses the confusion matrix, a two-way table, which summarizes the classifier’s
performance to represents the proportion of correctly identified results. Considering
one class as positive (P) class and other as negative (N) class, four quantities may be
defined: true positives (TP), true negatives (TN), false positives (FP) and false nega-
tives (FN). So, the accuracy (A) is given by:

A ¼ TPþ TN
TPþ TN þFPþFN

ð2Þ

4 Results

Results are represented in two main sections. Firstly, a sensibility analysis of Top-K
model is presented. Here, it is discussed the average accuracy variability for different K
values (1st section). Secondly, the accuracy of the destination’s prediction is analyzed
taking into account the various traveler group routines (G1–6), the influence of different
periods (weekdays and weekends) and the models’ sensibility (Top-K, NB, J48). In this
study, frequency and the average number of daily travels are analyzed (2nd section).
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4.1 Sensibility Analysis

Figure 3 shows the annual average accuracy on weekdays and weekends for different K
values (2–16) and traveler groups (G1–6). As it can be observed, the highest values are
always obtained for travelers from group G4, both on weekdays and on weekends (65%
and 45%, respectively). Travelers from group G6 and G2 has, respectively, the lowest
average annual accuracy on weekdays (48%) and weekends (28%). Nonetheless, as it is
possible to observe when K value is higher than ten, the accuracy keeps approximately
a constant value for all traveler groups. Thus, a K value of 10 was adopted to retain
more information.

4.2 Prediction Analysis

Figure 4 shows the monthly accuracy of destination’s prediction for each traveler
group (G1–6) on different time periods (weekdays and weekends) using three different
models (Top-K, NB, J48). The variation represents the standard deviation using 15
repetitions.

In general, the maximum levels of accuracy to predict the destination of a traveler
using UPT are reached after the model learn two months of travel patterns. For travelers
from groups with high variance of daily travel patterns, such optimal is only achieved
three to four months after the model starts the learning process. This usually happens,
for example, for elderly and retired people (G6), since these travelers tend to frequent a
big list of different places. Thus, a long-time period is required to identify all locations
used by these travelers. This suggests the model’s efficiency is directly affected by the
number of different destinations used by a traveler and historical data available.

An in-depth analysis of average monthly accuracy variability shows different levels
between different traveler groups, which is in line with the above findings. G4 and G5
are the groups with highest average accuracy. During weekdays, values are around
65% and 55%, respectively, for almost every month. Standard deviation has also lower
than the remaining analyzed groups which suggest a higher confidence level.

In fact, G4 and G5 are mostly workers. Travelers from these groups have no fixed
period for vacations. However, many of them keep routines in summer which may
explain the higher accuracy values obtained. As opposite, particular groups of students
(G1 and G2) need to restart frequently the learning process due holiday or exam
periods, which affect the average capability of models to predict destination of these
travelers. In these cases, the average accuracy range, during weekdays, between 25%
and 55%. Lower accuracy values are obtained during periods of routine change.

For each traveler group, similar model performances were achieved for each ana-
lyzed model (Top-K, NB, J48). Accuracy monthly differences between each model are
constant ranging between 1% and 5% (Fig. 4). A daily analysis of this accuracy shows
higher differences.

Figure 5 shows an example for traveler group G4 distinguishing (i) weekdays and
(ii) weekends. Note, however, in both graphs of Fig. 5. There is an evident similarity
between the results from different models (Top-K, NB, and J48). This suggests,
regarding accuracy, all models can be used equivalently.
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Although no variations of ranking accuracy performance between the models are
observed, differences between weekdays and weekends can be identified. During week-
days J48 presents the highest values of accuracy (AG1 = 49.4%, AG2 = 47.3%,
AG3 = 51.4%, AG4 = 63.2%, AG5 = 53.8% and AG6 = 47.2%), while during week-
ends thebestmodel isNB(AG1 = 29.9%,AG2 = 29.0%,AG3 = 33.5%,AG4 = 48.9%,
AG5 = 43.3% and AG6 = 46.5%). Additionally, besides accuracy other factors as the
computing timemust be considered by decisionmakers to select the most efficient model.

Analysis of accuracy’s performance in predict a journey destination by traveler
group allow to conclude the model ranking is not affected by short routines interrup-
tion. Short routines could be public holidays with one or two days, medium routines
interruptions (as occurred during public holidays Easter and Christmas with one or two
weeks), or even long routines interruption as summer vacations (July and August).
Still, especially during long break travel patterns, the average capability of models to
predict the journey destination decreases (Figs. 4 and 5). Such changes are not usually
observed for short and medium interruptions. An exception to these patterns is the
perceived for elderly and retired people (G6). For this traveler group, no significant
variations of accuracy are observed across the year. This happens for this group
because travel patterns seem not change significantly over the year. For long inter-
ruption periods, a high variance of the standard deviation is also observed.

Fig. 3. Annual average accuracy of the prediction of journey destination for (i) weekdays and
(ii) weekends of 2013. Predictions were made for different K values (2 to 16) and traveler groups
(G1–6).
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Fig. 4. Monthly accuracy of destination’s prediction recorded for each model (Top-K, NB, J48),
traveler group (G1–6) and time period (weekdays and weekends).
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Since all models have similar values of average monthly accuracy for prediction of
journey destination, Fig. 6 shows the daily accuracy (grey line) and the average
number of daily travels (black line) for G4 using Top-K algorithm. The variation
represents the standard deviation using 15 repetitions.

The average number of daily travels displayed in Fig. 6 was obtained by dividing
the number of journeys in each group by the number of signature cards used. During
weekdays and weekend days, the average number of trips is approximately constant
along the year. The main exceptions are observed during strikes (February 1st, March
5th, June 27th, November 7th, November 26th) or public holidays (January 1st, February
12th, March 29th, April 25th, May 1st, June 10th, June 24th, August 15th, December
25th). During these periods, both on weekdays and weekends, a smaller number of
signature travel cards are recorded (approximately 20%).

The average number of daily travels for G4 individuals are around 2.2 travels daily,
which suggest that, on weekdays, journeys are mostly home-to-work and work-to-

Fig. 5. Daily accuracy of the prediction of journey destination recorded during the (i) weekdays
and (ii) weekends of 2013 for the traveler group G4 and applying different models (Top-K, NB
and J48).
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home. On weekends, this average has approximately the same values, which indicate
the travelers go to a place and return.

Regarding the accuracy of destination’s prediction, differences between weekdays
and weekends were obtained. On weekdays, the average accuracy of travelers is around
65%. If holidays and strikes are excluded, it is possible to verify the very regular
patterns for travelers from group G4, throughout the year, either during weekdays
either weekend. In this group, deviations are lower and the accuracy only down about
10% in the summer months. In summer, the excellent weather usually invites travelers
to visit different places in the city.

5 Policy Implications

Personalized information provision to travelers is a new research topic. While in closed
urban networks the prediction of traveler destination is irrelevant, the opposite not
happens with an open system as the implemented in Metropolitan Area of Oporto.

Fig. 6. Daily accuracy of destination’s prediction (grey line) and average number of daily
travels (black line), recorded during (i) weekdays and (ii) weekend days of 2013, for the traveler
group G4 using the Top-K algorithm.
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As explained previously in Sect. 1, such personalized information can be used to
redesign the UPT network, by providing customized transport services, or incentivize
travelers to change specific patterns. The redesign of UPT network can bring several
benefits for travelers, namely: (i) to optimize travelers waiting time; (ii) allow to use
public transport by a lower price by choosing a different transport route or time;
(iii) benefit from offers or discount vouchers; and (iv) explore unknown parts of the city
for travels with similar purpose (e.g. shopping, leisure). For transport providers, such
redesign may: (i) improve levels of service appraisal; (ii) optimize the efficiency of
services provided; and (iii) develop innovative and competitive services.

In this work, we obtained a maximum average accuracy of models evaluated
ranging between 55% and 65%. Although these values are quite low, the results’ deep
analysis suggests the acceptance of many wrong predictions as correct by travelers. It
happens because in Oporto’s city the density of UPT stops is very high: 3,959 stops
distributed by 1,575 km2. Thus, for time-saving, travelers often use close stops to their
primary destination.

Such happens especially during journeys affected by traffic congestion (e.g., acci-
dents) or trips with double purpose (e.g., take a cafe before work).

For some traveler groups (e.g., G1 and G2) and particular days (e.g., weekend and
public holidays) low levels of accuracy in journey destination’s prediction are
achieved. In these cases, personalized information cannot be provided with confidence.
It seems not be critical to the overall system since during days with higher congestion
(mostly weekdays) an acceptable level of confidence was achieved to the majority of
travelers’ population (G4 = 47.6%, G5 = 19.8% and G6 = 23.9% of total travelers
using Andante).

6 Conclusions

Three models (Top-K, NB, and J48) were used to predict journeys destination for
travelers of urban public transport of Oporto (Portugal). More than 90 million of trips
recorded from signatures cards in two main transport providers of the city along one year
were considered. Travelers were targeted in different groups, and different periods were
analyzed. The results obtained show no differences statistically significant between the
three prediction methods studied. Also, they provide answers to the initial questions:

• It is possible to predict the journey destination based on traveler’s past. Such
predictions are improved when past travel data are used. Additionally, some dif-
ferences in accuracy in prediction of journey destination are observed between
weekdays and weekends. While on weekdays, the higher average accuracy is
reached between the second (February) and the fourth (April) months, on weekends,
although little pronounced, the accuracy continuously grows over the year;

• Several differences were found between the predictions of journey destination for
different traveler groups. The degree of success is widely affected by travel patterns.
Since group G4 (normal) is the most regular, the high accuracy is found for this
group. On the opposite, the worst values are found for students (G1, G2, and G3),
the most irregular. In general, groups with stable work (G4) have established
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routines while groups without work (G1–3 and G6) are very flexible regarding
journey destinations;

• Significant differences in predictions of journey destination were found between
(i) weekdays and weekends, and (ii) regular and irregular days. On weekends, the
average accuracy is 20% to 30% lower than weekdays for all travelers. When a
model is applied to all days of the week (i.e., without distinction between weekdays
and weekend) 10% lower accuracy is obtained during weekends, which highlights
the importance to predict weekdays and weekends separately. The learning process
is also affected by the interruption of routines during irregular days (strikes, public
holidays or school holidays). During these periods accuracy decreases 20–30%.

All this knowledge allows transport providers to detailed know their customers and to
adjust the network or service. Future work expects to study the variation of travel
patterns during irregular days, the model sensibility to sample size and to the use of
past data. To improve the results for weekends and irregular days, an analysis of more
efficient models using these datasets must be explored. Other types of travelers (as
tourists) must also be investigated. Additionally, since the high density of stops in
Oporto’s city may be a reason for the low accuracy values, prediction of the user
destination within a certain radius should be analyzed.
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