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Abstract. Intelligent vehicles use surround sensors which perceive their
environment and therefore enable automatic vehicle control. As already
small errors in sensor data measurement and interpretation could lead to
severe accidents, future object detection algorithms must function safely
and reliably. However, adverse weather conditions, illustrated here using
the example of rain, attenuate the sensor signals and thus limit sensor
performance. The indoor rain simulation facility at CARISSMA enables
reproducible measurements of predefined scenarios under varying con-
ditions of rain. This simulator is used to systematically investigate the
effects of rain on camera, lidar, and radar sensor data. This paper aims
at (1) comparing the performance of simple object detection algorithms
under clear weather conditions, (2) visualizing/discussing the direct neg-
ative effects of the same algorithms under adverse weather conditions,
and (3) summarizing the identified challenges and pointing out future
work.

Keywords: Object detection · Camera · Lidar · Radar · Perception ·
Rain · Adverse weather condition · Vehicle safety ·
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1 Introduction

Active and integral safety systems rely on data given by surround sensors such
as camera, lidar, and radar. Using the obtained information, control systems can
take over forward and sideways guidance of vehicles in order to assist the driving
task or to prevent imminent accidents. These systems could thus be regarded
as precursors on the way to autonomous driving. However, each surround sen-
sor has limited capabilities under certain circumstances, especially under adverse
weather conditions [11,12]. Water droplets in the air cause scattering and absorp-
tion effects and limit sensor performance. Note that incorrect detections and
classifications increase the risk of an accident.

Each sensor type outputs raw data with different physical unit and quantity.
In this work, we focus on images of camera sensors, point clouds of lidar sensors,
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Fig. 1. Procedure for investigating the weather effects on object detection algorithms.
Each surround sensor type is analyzed individually.

and video signals of radar sensors. Figure 1 shows the general procedure for
investigating weather effects on object level. The effects are sensor specific and
must be investigated individually.

Object detection algorithms process raw sensor data to detect objects in
the surrounding. The camera algorithms used in this work output bounding
boxes with corresponding classification scores. In case of lidar, the algorithms
group points into ground plane and obstacles. Lastly, the radar algorithms detect
objects when the received intensity exceeds an adaptive threshold value.

Outline
This paper aims to present challenges under rainy conditions. Object detection
algorithms that process data from two identical scenarios with various weather
conditions are investigated. Even minor changes in sensor data can lead to major
challenges in the detection task. Therefore, testing algorithms under adverse
weather conditions is mandatory to ensure safe autonomous driving.

This paper is organized as follows. Section 2 gives an overview on related work
done in the field of object detection under adverse weather conditions. Further,
Sect. 3 describes the experimental setup and used object detection algorithms
for each sensor type. Section 4 discusses the results and challenges under rainy
conditions where Sect. 5 presents the scientific contribution of this paper.

2 Related Work

In this section, we will present the related work with focus on object detection
under adverse weather conditions. Today, the robustness is mainly tested in clear
weather conditions, while only little research is focusing on adverse conditions.

2.1 Camera

Garg and Nayar published several works about the effects of rain on camera.
In [5], a geometric and photometric model for refraction and reflection from a
single raindrop was presented. It was shown that raindrops redirect light from
a large field of view (approx. 165◦). Therefore, the brightness of raindrops does
not depend absolutely on their background. However, falling drops result in rain
streaks which depend on their background and the exposure time of the camera
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[6]. A method in order to reduce the effects of rain by setting the camera param-
eters (exposure time, F-number, distance of the focal plane) was presented in
[7]. More practical work was presented by Duthon et al. [2] in which they gen-
erated artificial rain in the laboratory and investigated the impact of rain by
using the Harris Corner Detector. The authors showed that lower rain intensi-
ties (approx. 40 mm/h) has nearly no influence on the Harris feature, whereas
higher intensities (approx. 130 mm/h) strongly impact the feature. The authors
in [12] showed that raindrops lead to increasing mean intensity of the image
and decreasing contrast, where the rain conditions are also generated by a rain
simulator.

This work focuses on the influence of rain on object detection, in which
we investigate the detection (based on histogram of oriented gradients (HOG)
features) and classification (based on AlexNet) separately.

2.2 Lidar

Wojtanowski et al. [19] showed that the impact of atmospheric extinction on lidar
is much more crucial than the impact of surface wetness. The light propagating
through the medium of rain gets strongly attenuated which drastically decreases
the sensor performance. Rasshofer et al. [15] showed that water drop reflections
could result in false positive scan points, especially in the near field (<10 m).
By using an indoor rain simulator, they investigated the maximum detection
range with different target reflectivities, sensors, and rain intensities. The higher
the rain intensity and the lower the target reflectivity, the shorter the detection
range. The authors in [12] showed that in case of high rain intensity the false
positives dominate which may hide the object completely. Using the multi echo
technology, object points can still be detected but with drastically decreased
intensity. Note that the sensor behavior is strongly hardware-dependent, due to
the fact that internal signal processing is unknown.

This paper focuses on the influence of rain on the clustering process of stan-
dard algorithms and presents additional challenging secondary effects.

2.3 Radar

The influence of rain on automotive radar sensors have been studied in [13],
where a reduction of the millimeter-wave signal can be observed. An electro-
magnetic wave traveling through rain will be absorbed, depolarized, scattered,
and delayed in time. Unlike lidar sensor, strong performance degradation can
be detected when a water film covers the radome. Gourova et al. [8] presented
experimental data of a standard automotive radar sensor and demonstrated the
detectability of strong rain, generated with a rain simulator. They conclude that
raindrops are especially visible in the near field (2–3 m). The authors in [12]
showed that the radar cross section values of surrounding objects decrease in
rainy scenarios and can lead to incorrect classification.

In this work, we focus on the influence of rain on adaptive threshold algo-
rithms, that are used for detecting objects based on the received intensity.
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3 Materials and Methods

In this section, we present the experimental setup used for gathering data from
surround sensors and the object detection algorithms.

3.1 Experimental Setup

Measurements are performed in the CARISSMA test facility which is equipped
with an indoor rain simulator capable of simulating various intensities and drop
size distributions over a length of 50 m. Rain is generated by different full cone
nozzle combinations. For this work, a rain intensity of 100 mm/h is selected to
make the effects clearly visible.

The sensor setup is placed in front of the rain simulator due to the fact that
not all sensors are waterproof. The images are recorded by an uEye camera (U3-
3250LE-C-HQ) with a resolution of 1.92 MP and a 6 mm focal length lens. Lidar
measurements are performed using a Velodyne VLP-16 sensor, which outputs a
point cloud with 16 layers. The video signals are output of the Inras RDL-77G-
TX2RX16 radar. We set the sweep bandwidth to 300 MHz and the ramp slope to
10 MHz/µs, which results in a range resolution of 0.5 m. The measurements are
performed with and without rain. For reproducible results, we use a standardized
Euro NCAP Vehicle Target (EVT) [16] which is placed at a distance of 10 m
from the sensors without a lateral offset. This setup is imitating an urban car-
following scenario. Figure 2 shows the test area in both conditions without a
target. Further, it is assumed that the rain is distributed uniformly in the sensor’s
field of view.

Fig. 2. CARISSMA test facility with an indoor rain simulator that enables measure-
ments from identical scenarios with various weather conditions. The full cone nozzles
produce many small water drops which lead to decreased visibility. It is assumed that
the rain is distributed uniformly in the sensor’s field of view.
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3.2 Object Detection Based on Camera

In this work, objects are detected in images by combining a cascade object
detector [18] based on HOG features [1] with a pre-trained AlexNet model [14].
The cascade object detector provides the bounding box which defines the region
of interest (ROI) for the classification based on AlexNet. Figure 3 shows the
result of object detection and classification under clear conditions. The camera
output is cropped to the size of 640× 480 pixels.

Fig. 3. Detection using a cascade object detector based on HOG (left) and classification
based on AlexNet model (right), which results in a score of 0.89.

Cascade object detection is a machine learning approach, in which a HOG-
based object detector is trained by a set of positive and negative images. In this
work, we provided 233 positive images of rear views of different vehicles and 380
negative images without vehicles. Training the cascade detector is applied in
form of simple stages where each stage is considered to be a weak learner. Each
stage is trained by using all provided positive samples and a part of the negative
image set. More negative samples are automatically generated from detections
in the provided negative images. In this way, each new stage will be trained to
correct mistakes done by previous stages, which results in a robust detector at
the end. We defined 50 stages and 50% false positive rate to achieve our results.

For classification, a transfer learning on AlexNet neural network is imple-
mented, which is an approach to reuse a pre-trained model or network and
customize it for another task. The pre-trained AlexNet model has been trained
on more than a million images and can classify 1000 object categories [14]. Rel-
evant objects in traffic scenarios are obstacles such as vehicles, pedestrians, or
traffic signs. Via transfer learning, the newly created model will classify only
these relevant objects. The final three layers of the model use features extracted
from the initial layers for classification. Therefore, only weight values of the final
layers are tuned, whereas those of the initial layers are constant.
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3.3 Object Detection Based on Lidar

Lidar sensors provide position and signal strength (intensity) information of
each single scan point of the point cloud. In this paper, we focus on two basic
algorithms that process position information. The ground plane segmentation is
based on a variant of the random sample consensus (RANSAC) [4,17], whereas
the clustering is based on a density-based algorithm.

The ground plane detection algorithm groups data into inliers and outliers
where the former one is determined by a chosen model. Here, we used the z-plane
as model input to determine the ground plane and subtract it from the original
point cloud. Therefore, a new point cloud is generated containing only obstacle
scan points. Note that the segmentation process in complex real world scenarios
is more challenging due to up and down gradients of the roads.

Clustering of lidar scan points into objects or obstacles is performed using the
density-based spatial clustering of applications with noise (DBSCAN) algorithm
[3], which groups points that are close to each other based on a distance measure
(e.g., Euclidean distance) and minimum number of points. The algorithm marks
points, which are not in dense regions as outliers. Figure 4 shows the results
under clear weather conditions.
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Fig. 4. Point cloud after ground plane segmentation (left) and clustering (right). The
multi-layer lidar sensor detects the target vehicle with four layers, which are clustered
correctly and highlighted in pink. (Color figure online)

The left image shows the segmented point cloud, where the magenta points
belong to the ground plane and the green points to objects and obstacles in
the surrounding. The image on the right side shows the results of the clustering
process, where all green points from the left image are divided into groups and
marked with different colors. It can be seen that the algorithms perform well
under clear weather conditions. All ground reflections are detected and separated
from the initial point cloud. The target object is clustered clearly and highlighted
in pink. The remaining clusters originate from the barriers (see Fig. 2).

3.4 Object Detection Based on Radar

This work focuses on object detection based on reflected intensity from surround-
ing objects. In addition to direct target reflections, the sensor receives reflections
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from unwanted objects (also called clutter). Adaptive threshold algorithms based
on different constant false alarm rate (CFAR) techniques are implemented for
filtering unwanted signals and detecting objects of interest. We focus on cell
averaging (CA-CFAR), cell averaging smallest of (CASO-CFAR), cell averaging
greatest of (CAGO-CFAR), and order statistic (OS-CFAR) methods.

In CFAR systems, target decisions are performed using the sliding window
technique, where the data of a reference window enter an algorithm for cal-
culating the decision threshold T based on clutter power Z and scaling factor
S. For estimating Z, the sliding window is split into leading and lagging part.
CA-CFAR uses the average of the averaged two parts as the clutter power Z.
CASO-CFAR and CAGO-CFAR combine the neighboring parts by selecting the
minimum (CASO) or the maximum (CAGO). The OS-CFAR method sorts all
cells inside the sliding window in ascending order and selects one certain value
as Z. A more detailed overview is given in [9] and [10]. The results based on the
radar output can be seen in Fig. 5.
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Fig. 5. Video signal under clear conditions, in which the target is positioned at a
distance of 10 m (left) and the corresponding CFAR thresholds (right).

The left image shows the video signal in clear weather conditions. It can be
seen that the target object at a distance of 10 m causes the highest reflections.
The remaining reflections are considered as clutter. The image on the right side
shows the result of the object detection based on CFAR algorithms. The sliding
window size is chosen as N = 6 and the scaling factor as 0.85. For OS-CFAR, the
reference cell value is chosen as 5th maximum. All CFAR techniques can detect
the target vehicle. Note that a lower threshold can lead to closer object position.

4 Experimental Results and Discussion

In this section, we present the influences of rain on object detection algorithms,
introduced in the previous section, and discuss potential challenges.
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4.1 Camera

The results of the object detection can be seen in Fig. 6. The left image shows the
detection without rain with a classification score of 0.89. The image on the right
shows the detection with rain, where the score is decreased by 21%. Further,
it can be seen that the bounding box is shifted to the left by 13 pixels and
increased in size by 6%. Note that incorrect position or size estimations can
lead to incorrect crash severity predictions. If the target is placed at a distance
of 30 m, the algorithms detect exclusively false positives for both conditions, as
they are classified by the AlexNet model as background. Hence, raindrops have a
direct negative influence on image features and therefore on the object detection
task.

Fig. 6. Object detection without rain (left) and with rain (right). The score decreases
from 0.89 to 0.70. The bounding box is shifted to the left by 13 pixels and covers a 6%
larger region.

For a more in-depth analysis, we visualize the distribution of oriented gradi-
ents under both weather conditions. It is known, that rain decreases the image
contrast and creates blurry effects. Figure 7 shows the histograms of the gray
scaled images of the target vehicle without (left) and with (right) rain. The ROI
is limited to the vehicle region. The channels spread over 0 to 180◦ using nine
bins. It can be seen that the gradient magnitudes decrease drastically and result
in a new histogram shape. The total magnitude (sum of all bins) decreases under
rainy conditions by 49%, which originates from smaller intensity changes around
edges and corners. It can therefore be concluded that rainy conditions affect raw
sensor data and limit the general sensor performance.
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Fig. 7. Comparison of HOG histograms in clear (left) and rainy (right) conditions.
The bins represent nine orientation angles. The total magnitude decreases in rainy
conditions by 49%.

4.2 Lidar

Rainy conditions are directly related to falling water drops and wet ground. The
left image in Fig. 8 shows the direct influence of rain on the lidar measurement.
The number of target vehicle scan points decreases by only 4%. However, some
transmitted light beams are deflected by the wet ground plane and form a mirror
image of the target vehicle below the ground. Therefore, an object at a distance
of 10 m is detected with 8 layers. This effect also occurs in images of camera
sensors in a weakened form (see image on the right of Fig. 6). Note that false
positive scan points, due to ground reflections, lead to missing ground plane
points. False positive scan points can also originate from falling drop reflections,
which are mainly visible in the near field.
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Fig. 8. Point cloud under rainy conditions including ground plane segmentation (left)
and clustering (right). Raindrop reflections can lead to false positive clusters, whereby
ground reflections can form a mirror image of the target vehicle. (Color figure online)
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The image on the right side of Fig. 8 shows the result of clustering in rainy
conditions. The ground reflections cause a mirror image whose scan points are
close to the real target reflections. Therefore, the algorithm clusters these points
to one object which is highlighted in red. The size is increased to about twice.
Moreover, falling drop reflections can also be close to each other and result in
clusters. Two false positive objects can be detected between sensor and target
vehicle. The majority of the raindrops reflections are detected as noise.

Further, rainy conditions affect the intensity of scan points. Absorption and
scattering processes reduce the amount of power, which is backscattered to the
receiver. Figure 9 illustrates different histograms under clear and adverse weather
conditions to show the influence in detail. Note that the intensity value depends
on the incident angle. A small angle to the vertical means that the intensity
value is likely to be higher in comparison to a large angle.
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(a) Object in clear weather condition
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(b) Object in rainy weather condition
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(c) Mirror image of target object
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(d) Raindrop reflections

Fig. 9. Intensity histograms of specific point clouds. The intensity of target object
reflections in clear weather condition is represented in (a). Rain leads to decreasing
object intensity (b), low intensity mirror image below the ground (c), and low intensity
raindrop reflections (d).
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The intensity histogram of the target vehicle under clear conditions shows
a wide range due to varying incident angles (see Fig. 9(a)). In case of rain, the
intensities decrease and the bars are shifted to the left (Fig. 9(b)). The resulting
mirror image contains mainly scan points with low intensities, but also some
points with higher intensities (see Fig. 9(c)). The falling water drop reflections
are limited to values between 0 and 1 (Fig. 9(d)). Therefore, a simple intensity-
based filtering is associated with loosing true positive scan points. It can be
concluded that rain leads to challenging segmentation and clustering tasks.

4.3 Radar

Raindrops scatter the transmitted wave back to the sensor which is visible in
the measured video signal. Figure 10 shows the received signal and adaptive
thresholds under clear and adverse weather conditions.
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Fig. 10. Video signal (black dotted line) and different CFAR threshold values under
clear (left) and rainy (right) conditions.

The left image shows the measured video signal (black dotted line) and the
performance of different CFAR algorithms in clear conditions, where the image
on the right shows the performance in rainy conditions. It can be seen that
the video signal in rainy conditions has higher intensity in the near field which
decreases with distance. The object reflection decreases by 1.23 dB due to extinc-
tion caused by water particles, but can be neglected in this work.

In clear conditions, all algorithms can detect the target object at 10 m pre-
cisely. The increased near field reflections under rain lead to changes in threshold
values. CASO-CFAR detects a false positive object at a distance of approx. 2.5 m.
At a distance of approx. 5 m CASO-CFAR, CAGO-CFAR, and CA-CFAR out-
put incorrect detections. Further, CASO-CFAR detects two more false positive
objects at distances of approx. 6 and 7 m. The target object is visible for each
algorithm. The OS-CFAR performs best without any false detections. Hence, it
can be concluded that adaptive threshold algorithms have possibilities of false
detections in non-homogeneous environment (with more clutter peaks).
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5 Conclusion

Intelligent safety systems are reliant on data from surround sensors such as cam-
era, lidar, and radar. Using this information, control systems can take over the
forward and sideways guidance of vehicles in order to assist the driver or to pre-
vent imminent accidents. It is known that sensor signals suffer much attenuation
while propagating through the atmosphere, especially under adverse weather
conditions. This paper presents the influence of rain on basic object detection
algorithms for camera, lidar, and radar sensors. Initial static tests show that
each sensor can generate false positive objects due to changed weather condi-
tion. The problem is that incorrect environmental perception, especially in the
area of integral safety, can result in incorrect actions and hence severe accidents.

Camera sensors suffer mainly from decreased gradient magnitudes, which
result in changed position and size of the bounding boxes during the detection
task. Further, the classification scores can decrease which represent the increas-
ing uncertainty. Lidar sensors can generate false positive scan points or even
false positive objects from raindrop reflections. Moreover, the wet ground can
lead to deflections of the laser light which can result in mirror images below the
ground. These effects increase the complexity of ground plane detection and scan
point clustering. Radar sensors receive the backscattered waves from raindrops
which lead to increased reflection intensities in the near field. Scattering and
absorption processes result in decreased object intensity, which can be neglected
within close distances. Changes in received intensity are associated with changes
in threshold values, so that three of four algorithms under test generate false
positive objects.

Future work includes the use of additional detection algorithms for all types
of surround sensors. Furthermore, different objects enable the investigation of
false classifications in detail. More in-depth analysis is intended by varying the
rain intensity from low to extremely high. Finally, dynamic tests can increase
the level of realism and include the benchmark of tracking algorithms.
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