
Actor-Critic for Multi-agent System
with Variable Quantity of Agents

Guihong Wang and Jinglun Shi(&)

South China University of Technology, Guangzhou 510641, China
eew.guihong@mail.scut.edu.cn, shijl@scut.edu.cn

Abstract. Reinforcement learning (RL) has been applied to many cooperative
multi-agent systems recently. However, most of research have been carried on
the systems with fixed quantity of agents. In reality, the quantity of agents in the
system is often changed over time, and the majority of multi-agent reinforce-
ment learning (MARL) models can’t work robustly on these systems. In this
paper, we propose a model extended from actor-critic framework to process the
systems with variable quantity of agents. To deal with the variable quantity
issue, we design a feature extractor to embed variable length states. By
employing bidirectional long short term memory (BLSTM) in actor network,
which is capable of process variable length sequences, any number of agents can
communicate and coordinate with each other. However, it is noted that the
BLSTM is generally used to process sequences, so we use the critic network as
an importance estimator for all agents and organize them into a sequence.
Experiments show that our model works well in the variable quantity situation
and outperform other models. Although our model may perform poorly when
the quantity is too large, without changing hyper-parameters, it can be fine-tuned
and achieve acceptable performance in a short time.

Keywords: Multi-agent � Reinforcement learning �
Variable quantity of agents � Communication � Fine-tune

1 Introduction

In recent years, owning to the great progress in deep learning, reinforcement learning
(RL) has attracted a lot of attention from researchers [1]. By combining with deep
neural network, it has been applied to a variety of fields and solved many problems,
such as game playing including Atari video games and Go game high-dimensional
robot control and etc.

Previous works have extended reinforcement learning to multi-agent domain. In
cooperative systems, where all the agents share the goal of maximizing the discounted
sum of global rewards, most researchers fix the quantity of agents in the systems and
pay more attention to the communication between them. The CommNet [2] uses a
single network to control agents. Each agent sends its hidden state as communication
message to the embedded communication channels. The averaged message from other
agents then is sent to the next layer of a specific agent. Unlike CommNet, developed
from DQN, ACCNet [3] and MADDPG [4] are both extended from actor-critic policy

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
B. Li et al. (Eds.): IoTaaS 2018, LNICST 271, pp. 48–56, 2019.
https://doi.org/10.1007/978-3-030-14657-3_5

http://orcid.org/0000-0003-4534-7297
http://orcid.org/0000-0003-3933-9274
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14657-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14657-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14657-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-14657-3_5

gradient method. They collect actions from all agents, and put the concatenation of
them into the critic network, using the critic as a communication medium. However,
these methods should fix the quantity of agents before training, and when the quantity
is changed, both of them should be retrained. In lots of practical applications, we
cannot know the quantity of agents in the environment in advance. Additionally, the
number may change over time. Take the urban traffic control as an example, the cars in
the road are always moving, so it’s impractical to fix the quantity of agents in the
learning model.

Tampuu [5] etc. simply use independent Deep Q-learning Network (IDQN) to
control agents. This approach avoids the scalability problem, but because of the
experience replay, a thorny problem appears that the environment may become non-
stationary from the view of each agent. To solve this problem, Leibo et al. [6] have
limited the size of experience replay buffer to keep track of the most recent data, while
Foerster [7] uses a multi-agent variant of importance sampling and fingerprint to nat-
urally decay obsolete data in the experience replay memory. Similarly, DIAL [8] also
uses a single network for each individual agent, but in their model, each network has an
extra output stream for communication actions. When communication is to be per-
formed, the source agent outputs a communication signal and puts it into the target
network for the next timestep. However, the environment may still become non-
stationary since the message needs to be delayed for one timestep.

Recurrent neural network (RNN) has also been an effective method for coordi-
nating variable quantity agents in some research [9]. The actor network in our proposed
method is similar to the BiCNet [10] which uses BLSTM [11, 12] unit as a commu-
nication medium between agents. With BLSTM, it shares all parameters so that the
number of parameters is independent of the number of agents and allows it to train
using only a smaller number of agents, while freely scaling up to any larger number of
agents during the test. However, RNN should be used in the sequence situation while in
most natural systems, it can’t directly regard the agents as a sequence.

In this work, we propose a model extended from actor-critic framework to process
the multi-agent systems with variable quantity agents. In our model, we add a feature
extractor to embed variable length states. The actor networks play the role in making
decision for agents, and similar to BiCNet [10], by employing BLSTM, the agents can
communicate and coordinate with each other. However, it is noted that the BLSTM is
generally used to process sequences, so we use the critic network as an importance
estimator for all agents and organize them into a sequence, sorting by their importance.
Besides, because of partial observability, we embed a long short term memory (LSTM)
layer in the critic network for single agent to maintain its historical states. Our
experiments show that our model can still work when the quantity of agents is changed,
and if the model cannot perform well in the systems with too many agents, it can be
fine-tuned in the new system and get acceptable performance in a short time.

Actor-Critic for Multi-agent System with Variable Quantity of Agents 49

2 Proposed Method

2.1 Preliminaries: Multi-agent Markov Games

In this paper, we consider a fully cooperative multi-agent setting in which the system is
composed of a set of states S, a set of actions A1;A2; . . .;AN and a set of rewards
R1;R2; . . .RL. Each agent i uses a stochastic policy phi : Si �Ai 7! ½0; 1� to choose
actions, and later the next state will be produced according to the state transition
function T : S � A1 �A2 � . . .�AN 7! S. Simultaneously, each agent i will obtain
rewards as a function of the state and agent’s action ri : S � Ai 7!R. In this setting, all
agents should cooperate with each other to maximize the global expected return:

R ¼
XN

i¼1

XT

t¼0
ctrit ð1Þ

where c is a discount factor, T is the time horizon and N is the total quantity of agents.
In addition, we use local observation setting in which each agent has its own obser-
vations. The states of an selected agent Si can be divided into Ss, Se and So. Ss is the
property of itself, while So is a set of states of its observed agents and Se stands for a
set of states of observed objects that can’t be controlled in the system.

In reinforcement learning, there are several terminologies. State value function,
denoted VpðsÞ, is defined as the expected return when starting in s and following the
policy p thereafter. It can be formulated as:

VpðsÞ ¼ Ep½RtjSt ¼ s� ¼ Ep

X1
k¼0

ckrtþ kþ 1jSt ¼ s
h i

ð2Þ

Similarly action value function or Q-value, denoted Qpðs; aÞ is defined as the
expected return starting from s taking the action a, and thereafter following policy p:

Qpðs; aÞ ¼ Ep½RtjSt ¼ s;At ¼ a� ¼ Ep

X1
k¼0

ckrtþ kþ 1jSt ¼ s;At ¼ a
h i

ð3Þ

2.2 Feature Exactor

In our setting, the states contain three parts: the selected agent’s states Ss, the other
observed agents’ states So ¼ fSo1; . . .; SoN�1g and observed objects’ states in the
system Se ¼ fSe1; . . .; SeMg. Because of partial observability, both the quantity of
other observed agents N and observed objects M may change when the selected agent
move, which means that the length of So and Se are variable.

To achieve the goal that the network can deal with the variable length features, we
add a module to preprocess the states. Let Soi 2 Rd and So ¼ fSo1; . . .Song 2 Rn�d . As
the Fig. 2 shows, similar to textCNN [13], we apply a filter w 2 Rh�d�c with c channels
to a window of h agents and produce a new feature map fm 2 Rðn�hþ 1Þ�c after a
convolution operation. Besides, we apply a mean pooling operation over all windows
and then get a feature vector fvo1 2 Rc. This pooling scheme naturally deals with
variable lengths and reduce the influence of the operation that we organize the other

50 G. Wang and J. Shi

agents’ states into So randomly (Fig. 1). As the pooling operation may compress and
lose useful information, we use a number of filters with different window length and
then make a concatenation of them as fvo ¼ ½fvo1; fvo2; . . .� to get more rich information.

The operation for the Se ¼ fSe1; . . .; SeMg is the same to that for the Soi 2 Rd . Let
the output of the feature extractor for Se as fve ¼ ½fve1; fve2; . . .�. At last, we concatenate
fvo, fve and the feature of the selected agent as the input for the subsequent deep neural
network.

2.3 Critic Network

The critic network is used to estimate the current state value of a single agent. In order
to make the estimations as accurate as possible, we need to collect all the useful states
that the agent can obtain.

As the Fig. 2a shows, the inputs to the critic network is composed of three parts: the
state of the environment, the state of the current agent, and the state of the other agents
processed by the feature exactor mentioned in the previous section. The three parts are
joined together and put into deep neural network. The structure of the network is shown
in the Fig. 2b. Considering the local observation setting, we add a LSTM layer over
time before the output layer to remember the historical states which is beneficial to
estimate current state value more accurately. The output of the network is a continuous
value that represents the state value of the selected agent in the current state.

The training of the network uses a supervised learning approach, where the time
differential loss is shown as follows:

loss ¼ Er;s½ðy� VðstÞÞ2� ð4Þ

y ¼ rit þVðstþ 1Þ ð5Þ

Fig. 1. The structure of feature exactor 1-dimension filters is applied to states and after the
convolution operation, new feature maps are processed by mean pooling operation, followed by a
concatenation among different filters.

Actor-Critic for Multi-agent System with Variable Quantity of Agents 51

Wherein rit represents the reward obtained by the agent i at time t; st represents the
states of the agent at time t.

2.4 Actor Network

Actor networks are used to map agents’ states into actions. In our framework, the actor
networks are still decentralized, indicating that each agent makes decisions based on its
local information.

The structure of the actor network is shown in the Fig. 2c. The input module is the
same to the critic network, where feature extractors are applied. Furthermore, we use a
BLSTM layer to help the agents communicate with each other. However, the structure
of the RNN is used to process sequence, and if the rankings in the sequence is changed,
the obtained result may be different. In multi-agent systems, multi-agents cannot be
naturally considered as a sequence in most situations, and different ranking of the
agents may output different result. So we need a criterion to depend which order is
proper.

In the multi-agent decision-making process, important agents should have high
priorities for decision-making. Each agent can be sorted according to its importance,
and then makes decision successively by order. Maximizing global score is the
ambition for every agent, so the agents that have stronger scoring ability should be
given greater importance. With this idea, we use the critic network to evaluate the
importance of the agents in the system. We apply the critic network to all agents and
get their state value. Then we sort them according to their state value and successively
input them into the actor networks. It is noted that the critic network is only used in
training steps. The state value describes the potential scoring ability in certain states
and thus it can be regarded as the importance of the agents.

In single-agent actor-critic algorithms [14], agent update its parameters with local
rewards. The gradient can be formulated as follows:

Fig. 2. Our proposed model. a is the process of feature extractor dealing with variable length
states. b is the structure of a critic network while c is the processes of the actor networks.

52 G. Wang and J. Shi

rhJðhÞ ¼ Es� ql;a�p½rh log pðajsÞðrþVhvðs
0 Þ � VhvðsÞÞ� ð6Þ

Wherein qp is the distribution of state, hv is the parameter of value network, and hv
is the parameter of actor network.

However if we directly use this update in the multi-agent setting, it may encourage
the agents to maximize their local return and ignore the global return leading to a local
optimum. To eliminate this contradiction, we update the network with a global tem-
poral difference loss, aiming to stimulate all agents coordinate to maximize the global
return. The parameters of the actor network for agent i update as follow:

rhi JðhiÞ ¼ Es�ql;a� pi ½rhi log piðaijsiÞd� ð7Þ

d ¼ d1 þ . . .þ dN ¼
XN

1
ri þVhviðsiÞ � VhviðsiÞ ð8Þ

3 Experiments

3.1 Experiment Setup

Environment. To perform our experiments, we modify the environment proposed in
pysc2 [15], a challenging environment for reinforcement learning. In our task, there is a
large map with some agents and 50 mineral shards. Rewards will be earned when an
agent touch a mineral shard. To achieve the optimal score, the agents should split up
and move independently. Whenever all mineral shards in the map have been collected,
a new set of Mineral Shards are spawned at random locations. The collection time is
limited to 3 min. Besides, the agents only have local vision, and can just perceive the
presence of other agent and mineral shards within its scope (Fig. 3).

Baselines. We implement two baseline networks: independent DQN (IDQN) and
BiCNet. This two networks are able to process the variable quantity issue, but without

a b

Fig. 3. The figure a is global view of our environment, where red objects are mineral shards and
green objects are agents. The figure b is a local view. (Color figure online)

Actor-Critic for Multi-agent System with Variable Quantity of Agents 53

local information processing units, they work poorly in the system with variable
quantity of agents. We fix the length of the local state, and train and test this two models
in the system with fixed quantity agents. Differently, we train the proposed model with
certain quantity and test with variable quantity. For example, the IDQN and BiCNet will
train on the system with 3 agents, and test on that system to evaluate its ability. While
our model will train on the system with 3 agents, and test on the system with 2, 3, 5 or
more agents. Our model shares all parameters so that the number of parameters is
independent of the number of agents and allows it to train using only a smaller number
of agents, while freely scaling up to any number of agents during the test.

3.2 Results

We train our model with four systems, and test them in 6 systems with different agents.
As it is shown in the Fig. 4, with the increase of the quantity, the reward become larger.

It is because that more agents can get more mineral shards. But the growth rate is
different. The tr.20 model can outperforms the other models in most scenarios, In most
of the scenarios that the train quantity is larger than the test quantity, indicating that the
agents can co-ordinate with each other and split well very well to increase the global
reward. It can work well in different systems with different quantities of agents. The
agent collect local information in the task, where the local scope can be regarded as a
small system with variable quantities of agents, so it can have strong generalization
ability.

It should be noted that as the quantity increase, model tr.2 and tr.3 work worse, and
tr.5 and tr.10 also not work as well as tr.20. It is because that when the agents in the
system increase, conflict between agents also increase. Model tr.20 is trained with 20
agents, so it can adapt for more complicated situations. While tr.2 and tr.3 only is
trained with little agents, so the model haven’t master the knowledge for complicated
situations. That is to say, when an agent meet with ten or more agents, it may not know
how to perform efficiently.

0
200
400
600
800

1000
1200
1400
1600
1800

2 3 5 10 15 20

re
w

ar
ds

quantity of agents
IDQN BiCNet Our(tr.2) Our(tr.5) Our(tr.10) Our(tr.20)

Fig. 4. Results of the models. tr.2 means that the model is trained on the system with 2 agents.

54 G. Wang and J. Shi

Although our model have limitation on generalization in some respects, with highly
scalable structure, it needn’t change any hyper parameters and the networks can be
fine-tuned in the systems with more quantity of agents. As the Fig. 5 shows, we choose
model tr.2, tr.3 and tr.3 to be fine-tuned in the system with 20 agents, and compare the
learning curve to other models.

Compared to other models that are retrained from scratch, the fine-tuned models
can spend less time to reach the acceptable performance. Because the ability of dealing
with variable quantities of agents, the three fine-tuned have a stronger ability to score in
the beginning. Besides, the learning curve of them are steep before about 15000
episodes and become gentle after that. Without adjusting hyper parameters, previous
knowledge in the networks can be transferred to the new one, so they can win at the
starting line. In general, the fine-tuned models outperform IDQN and BiCNet, but they
are not as good as our model that is retrained from scratch. It seems that fine-tuning
may cause the network get into local optimum while retraining can help the model
break away from local optimum and go farther. However, in some time-critical sys-
tems, our model can save a lot of time especially when the quantity of agents is very
large and achieve acceptable performance.

4 Conclusion

In this paper, we proposed a model extended from actor-critic framework for the
systems with variable quantities of agents. We not only design a feature exactor for
networks to deal with variable quantity issue and embed a BLSTM layer in the actor
networks, enabling agents to co-ordinate with each other. Furthermore, we use the critic
network to compute the importance of all agents and sort them into a sequence.
Experiments show that our model work well in the variable quantity situation and
outperform other models. Although our model may perform poorly when the quantity

0

200

400

600

800

1000

1200

1400

1600

1800

0 5000 10000 15000 20000 25000 30000 35000 40000

re
w

ar
ds

episodes

IDQN

BiCNet

Our

Our(tr.2)

Our(tr.5)

Our(tr.10)

Fig. 5. Learning curve of different models trained with 20 agents.

Actor-Critic for Multi-agent System with Variable Quantity of Agents 55

is too large, without changing hyper-parameters, it can be fine-tuned and achieve
acceptable performance in a short time.

References

1. Li, Y.: Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274 (2017)
2. Sukhbaatar, S., Fergus, R.: Learning multiagent communication with backpropagation. In:

Advances in Neural Information Processing Systems (2016)
3. Mao, H., et al.: ACCNet: Actor-Coordinator-Critic Net for Learning-to-Communicate with

Deep Multi-agent Reinforcement Learning. arXiv preprint arXiv:1706.03235 (2017)
4. Lowe, R., et al.: Multi-agent actor-critic for mixed cooperative-competitive environments.

In: Advances in Neural Information Processing Systems (2017)
5. Tampuu, A., et al.: Multiagent cooperation and competition with deep reinforcement

learning. PLoS ONE 12(4), e0172395 (2017)
6. Leibo, J.Z., Zambaldi, V., Lanctot, M., Marecki, J., Graepel, T.: Multi-agent reinforcement

learning in sequential social dilemmas. arXiv preprint arXiv:1702.03037 (2017)
7. Foerster, J., et al.: Learning to communicate with deep multi-agent reinforcement learning.

In: Advances in Neural Information Processing Systems (2016)
8. Foerster, J., Assael, Y.M., de Freitas, N., Whiteson, S.: Learning to communicate with deep

multi-agent reinforcement learning. In: Advances in Neural Information Processing Systems,
pp. 2137–2145 (2016)

9. Foerster, J.N., Assael, Y.M., de Freitas, N., et al.: Learning to communicate to solve riddles
with deep distributed recurrent q-networks. arXiv preprint arXiv:1602.02672 (2016)

10. Peng, P., Wen, Y., Yang, Y., et al.: Multiagent Bidirectionally-Coordinated Nets: Emergence
of Human-level Coordination in Learning to Play StarCraft Combat Games. arXiv preprint
arXiv:1703.10069 (2017)

11. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Sig.
Process. 45(11), 2673–2681 (1997)

12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

13. Kim, Y.: Convolutional neural networks for sentence classification. Eprint Arxiv (2014)
14. Konda, V.R., Tsitsiklis, J.N.: Actor-critic algorithms. In: Advances in Neural Information

Processing Systems (2000)
15. Vinyals, O., Ewalds, T., Bartunov, S., et al.: Starcraft ii: A new challenge for reinforcement

learning. arXiv preprint arXiv:1708.04782 (2017)

56 G. Wang and J. Shi

http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1706.03235
http://arxiv.org/abs/1702.03037
http://arxiv.org/abs/1602.02672
http://arxiv.org/abs/1703.10069
http://arxiv.org/abs/1708.04782

	Actor-Critic for Multi-agent System with Variable Quantity of Agents
	Abstract
	1 Introduction
	2 Proposed Method
	2.1 Preliminaries: Multi-agent Markov Games
	2.2 Feature Exactor
	2.3 Critic Network
	2.4 Actor Network

	3 Experiments
	3.1 Experiment Setup
	3.2 Results

	4 Conclusion
	References

