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Abstract. Cloud detection is one of the major techniques in remote sensing
image processing. Many cloud detection algorithms have been developed
recently. According to the type of remote sensing images that are used to detect
cloud, they can be divided into two major categories: visible image-based
methods and multispectral image-based methods. The first category mainly uses
structure and texture characteristics for thick cloud detection, while the second
category often uses the specific spectral bands for good results. In general, the
existing methods above deal with cloud detection as a binary classification
problem, cloud or non-cloud. However, as cloud has various forms and types, it
is inappropriate to simply classify detection results into cloud or non-cloud. In
this paper, we present a novel cloud detection method using orthogonal sub-
space projection (OSP), which can yield gradable cloud detection results. This
detailed detection result not only conforms to the characteristics of cloud, but
also brings more valuable guidance to subsequent interpretation of remote
sensing images. Additionally, the proposed method only uses four universal
bands including red, green, blue and near-infrared bands for detection, and has
no requirement for special spectral bands, which make it more practical.
Experiment results indicate that the proposed method has excellent results with
high speed and accuracy.
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1 Introduction

Space imaging systems have the ability to collect digital images with high resolution
and wide coverage of land surface. However, the captured rich information also brings
great challenges to information storage, transmission, extraction and application.
According to statistics, more than 50% of the optical remote sensing images are
covered by clouds of different thickness, which consumes most transmitted time and
link bandwidth, therefore affects the downlink priority of important information. Fur-
thermore, cloud increases the difficulty in identifying important targets such as aircrafts
and ships. Accordingly, the study of real-time cloud detection technology is of great
significance for reducing data on-board and improving the intelligent processing ability
of remote sensing images.
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Cloud detection technology of remote sensing image has been one of the major
techniques in remote sensing image processing. It can be summarized in two cate-
gories: visible image-based methods and multispectral image-based methods. The
visible image-based methods include linear dimension compression for feature space
[1] and multi-attribute fusion algorithm [2], etc. These methods mainly focus on how to
effectively extract cloud features to achieve better cloud detection results.

Recently, carrying multispectral or hyperspectral imaging spectrometer [3] gradu-
ally become a development trend of satellite surveying approach, basically because it
can provide remote sensing image processing with favorable conditions. Under this
circumstance, multispectral image-based methods often use the specific spectral char-
acteristics to detect cloud, of which the threshold, pattern classification and multi-
dimensional space analysis methods are the most notable. The threshold method takes
full advantage of the spectral characteristics of cloud, simple and easy to FPGA
implementation, but relying on the specific spectrum to ensure the performance of the
algorithm. The HCC algorithm [4] used on EO-1 satellite and the ACCA algorithm [5]
used on Landsat-7 satellite, both select representative spectral bands to complete cloud
detection. To improve the cloud detection result, some researchers use both the spectral
and statistical features of cloud, and then use a classifier to separate clear and cloudy
pixels. Reference [6] combined the texture features and spectral features of cloud with
MODIS remote sensing data, followed by a neural network to complete detection.
Generally the pattern classification method has better cloud detection results than the
threshold method. However, it is more complex and more difficult to implement.
Finally, the multi-dimensional space analysis method uses the signal processing prin-
ciple to detect cloud. In [7], a cloud detection based on ICA is proposed, which is
processed in higher space and has relatively large computation amount.

It turns out that many different methods generally deal with cloud detection as a
binary classification problem. Cloud detection results are either cloud or non-cloud.
However, as the form and type of cloud is various, it is not appropriate to simply
classify the cloud detection results into cloud or non-cloud. Therefore how to further
subdivide the cloud detection results to different levels of cloud products, is not only
more accordant with the features of cloud, but also brings more valuable guidance to
subsequent interpretation of remote sensing images. Although in [8], a multilevel cloud
detection algorithm is proposed based on deep learning, it can only detect two levels of
cloud, thick cloud and thin cloud, and also need more cloud samples corresponding to
the two different levels, accordingly it increases the complexity of the algorithm.

In addition, most multispectral image-based methods are based on specific sensors,
MODIS [11], Landsat or AVHRR [9, 10], etc., which cannot be widely used on
different satellites. By contrast, four-band (red, green, blue, and near-infrared) remote
sensing images are generally accessible and universal. Nearly all optical sensors such
as those equipped on HJ-1a/1b, ZY-3 and GF series satellites can provide four-band
remote sensing images. Although cloud detection in four-band remote sensing images
is more general and applicable, it is too difficult to implement with its little spectral
information. This paper focuses on orthogonal subspace projection for cloud detection
in four-band remote sensing images. Our proposed algorithm not only can yield refined
levels of cloud products, but also has low complexity.
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In summary, the presented method has the following two main contributions.

(1) A gradable cloud detection approach is proposed. The new approach applied
orthogonal subspace projection (OSP) to cloud detection and yields more detailed
information about cloud thickness.

(2) The novel approach generalized the OSP algorithm from hyperspectral unmixing
to cloud detection in four-band remote sensing images, which is more universal
and practical.

The remainder of this paper is organized as follows. Section 2 introduces four-band
cloud detection. Section 3 describes the experimental data, results and discussions.
Section 4 analyzes the computation complexity and Sect. 5 draws the conclusion.

2 Four-Band Cloud Detection Based on OSP

Generally, input pixel can be seen as a mixed pixel with cloud contamination. Inspired
by the OSP unmixing algorithm, we first introduced the concept of unmixing to cloud
detection and tested its validity through experiments.

Different with hyperspectral unmixing problem, four-band cloud detection based on
OSP has its difficulties and particularity. First, cloud has various forms and types,
leading to the variability of the target subspace. Second, the spectral information of
four-band (red, green, blue, and near-infrared) is much less than those in hyperspectral
image. To solve these problems, our proposed algorithm is improved from two aspects:
optimizing background subspace estimation and expanding cloud subspace. By using
the improved OSP methods, graded cloud detection results can be generated for four-
band remote sensing images.

2.1 Estimation of Background Subspace

In hyperspectral image processing, ATGP algorithm proposed by REN [13] can
automatically generate the background with no required a priori knowledge. However,
it is not ideal to directly apply the method to our four-band cloud detection because of
the little spectral information. Furthermore, there is no guarantee that each generated
signature is completely different from the desired target in the spectral characteristics,
so leakage often happens from the cloud subspace to the background subspace.

As to the background generation of multispectral image, we proposed a multi-band
automatic target generation process (MATGP) based on the ATGP algorithm. Followed
by the background generation (ATGP), a false background removing processing is
designed. The detailed implementation is given as follows.

Let the undesired background U generated by ATGP is

U ¼ u1 u2 � � � ui � � � um½ �

where U is an L * m matrix and ui 1� i�mð Þ is the ith background signature.
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Let t be an L * 1 column vector and denote the desired target. Then the spectral
similarity between t and ui is given by

specoffi t; uið Þ ¼ tTui
ffiffiffiffiffiffi

tT t
p

�
ffiffiffiffiffiffiffiffiffi

uTi ui
p

Let Th be a spectral similarity threshold. The removing processing is given as
follow:

If specoffi is greater than Th then the corresponding background ui is removed from
<U>. Otherwise, the corresponding background ui is preserved in <U>. Finally, the
updated background is the true background with qualified conditions.

Figure 1 shows the four GF-1 bands labeled by (a)–(d). For the purpose of com-
parison, the maximum number of target required to search was all set to 11 to terminate
the background generation. The ATGP result is shown in Fig. 2(a), where target
labeled by 1–3 is of cloud subspace (cloud subspace is not shown here), and target
labeled by 4–11 is of background subspace. It is clear that target 5 and target 8 are
cloud-like targets and will result in the loss of cloud.

Fig. 1. Four-band images

472 S. Hou et al.



The MATGP result is shown in Fig. 2(b). It can be seen that cloud-like targets are
all removed and the remaining is a good estimation of the background.

Figure 3 gives the corresponding cloud detection results with the above two dif-
ferent background estimation algorithm. Figure 3(a) used ATGP background search
algorithm, which resulted in the loss of most cloud. Figure 3(b) used MATGP back-
ground search algorithm and yielded better results.

2.2 Estimation of Target Subspace

In the OSP algorithm, target t is generally known as a priori information. Usually, the
target is modeled by extracting a single spectral signal. However, not only the type and
forms of cloud are varied, but also the thickness and the height of cloud are different.
Therefore, the spectral features of cloud exhibit significant variability. In order to
improve the modeling of spectral characteristics of cloud, we expand cloud subspace
from a single vector to P-dimension subspace (P > 1).
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Fig. 2. Search of background (a) ATGP background (b) our MATGP background
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Fig. 3. Cloud detection result (a) using ATGP background (b) using MATGP background
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2.3 Adaptation of Four-Band Cloud Detection Based on OSP

In our four-band cloud detection, we only have 4 bands, whereas the total objects in
remote sensing images are mostly larger than 4. Therefore we cannot distinguish all the
objects by their spectral information. In other words, directly using OSP for our four-
band cloud detection is not ideal. Under such circumstances, the number of bands must
be expanded to meet the classification conditions [12]. In remote sensing images, less
than ten objects are usually adequate to model any given areas of a given spatial
resolution [14]. Here we extended the four-band remote sensing images to 18 bands.

3 Experiments

The four-band remote sensing images collected by GF-1 were used for experiments,
which were blue band (0.45 µm–0.52 µm), green band (0.52 µm–0.59 µm), red band
(0.63 µm–0.69 µm) and near-infrared band (0.77 µm–0.89 µm), with a spatial reso-
lution of 8 m.

The following gives the experimental results with a wide range of GF-1 area.
Figures 4, 5 and 6 show the original four-band images, the OTSU results and the
gradable cloud detection results respectively. It can be found that our method not only
detects the cloud regions accurately, but also provides more detailed information about
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Fig. 4. Four-band images
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cloud thickness. As is seen in Fig. 6, different color in the color bar illustrates different
categories of cloud. For example, red areas represent thick clouds, yellow areas rep-
resent the edge of cloud, and light blue areas represent thin cloud, etc. At the same
time, the scale values from high to low, in turn, indicate that the detected area is cloud,
very likely to be cloud, may be cloud or non-cloud. The gradable cloud products can be
more helpful for subsequent intelligent processing tasks (for example, cloud removal
task [15] and ROI compression [16]).

4 Computation Complexity

In this paper, an OSP-based method is applied to detect cloud. In the algorithm,
background U and cloud target t only need to be computed once. When real-time cloud
detection is used on satellite, only multiplication and addition operations are imple-
mented in the cloud detector. If the number of bands is L, our detector only needs L
multiplications and L-1 additions for each pixel. As cloud detection in different pixel is
independent of each other, multiple detectors can be used in parallel to speed up
processing. Therefore, our method is a rapid cloud detection method with high degree
of parallelism and very low computational complexity.

5 Conclusion

In this paper, a gradable cloud detection method in four-band remote sensing images is
proposed. The method not only can yield gradable cloud detection results, but also has
no requirement for special spectral bands. Moreover, it even has no strict limit on the
number of bands. Therefore our method is more practical to satellite cloud detection.
Our method has been tested on real remote sensing images with different scene, and the
experimental results have proved its efficiency.

Fig. 5. OTSU results
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Fig. 6. Gradable cloud detection results (Color figure online)
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