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Abstract. In this paper, the power allocation problem in cognitive
underlay system is studied given a number of samples of interference
channel’s gain. System throughput of secondary users is aimed to be
maximized while limiting the worst-case interference outage probability.
With only a number of samples of interference channel’s gain, we define
an uncertain region of possible probability density function (PDF) of
interference channel’s gain and further derive the closed-form expression
for the interference outage probability constraint. By replacing the for-
mulated constraint on interference outage probability with closed-form
one, we show the originally formulated problem is a convex optimization
problem.
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1 Introduction

Underlay cognitive communication is a popular technique in face of spectrum
shortage problem, which permits the licensed user (primary user) and unlicensed
user (secondary user) to coexist on the same band while limiting the interference
to primary user [1]. Thus how to limit the interference is an important issue.
In literatures, the interference channel’s gain is usually assumed to be a ran-
dom variable. Thus a probabilistic constraint should be imposed on the event of
interference outage, in which the interference to the licensed receiver is above a
given threshold [2]. In this case, the distribution of interference channel’s gain
should be known perfectly. This assumption is hard to realize and some litera-
tures suppose the distribution of interference channel’ gain to be uncertain.

In this paper, we only assume a number of samples of interference channel’s
gain and define the an uncertain region of probability density function (PDF) of
interference channel’s gain. Then over the uncertain region of PDF, closed-from
interference outage probability is derived. With this transformation, the power
allocation problem aiming at system throughput maximization is shown to be
convex.
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2 System Model and Problem Formulation

Consider a cognitive radio system in underlay mode. There are N primary users,
each of which occupy a spectrum with bandwidth B. These N primary users con-
stitute the set N � {1, 2, . . . , N}. There are M secondary transmitters commu-
nicating to a secondary base station. These M secondary transmitters constitute
the set M � {1, 2, . . . ,M}.

These M secondary transmitters will access into the secondary base station
over N channels via non-orthogonal multiple access (NOMA). On nth channel,
the mth secondary transmitter will transmit with power pn,m. Suppose Pm is
the maximal total transmit power of mth secondary transmitter, then the set of
pn,m should be subject to the following constraints

pn,m ≥ 0,∀n ∈ N ,m ∈ M, (1)

and
N∑

n=1

pn,m ≤ Pm,∀m ∈ M. (2)

At the secondary base station, the technique of successive interference can-
cellation (SIC) is resorted to [3]. By assuming the channel gain between mth
secondary transmitter and the secondary base station on channel n as hn,m,
the following throughput can be achieved for mth secondary transmitter on
channel n,

CN
n,m = ln

⎛

⎜⎜⎜⎝1 +
pn,mhn,m

1 +
M∑

m′=m+1

pn,m′hn,m′

⎞

⎟⎟⎟⎠ . (3)

Then the system throughput of the M mobile users can be written as

CN =
N∑

n=1

M∑

m=1

CN
n,m =

N∑

n=1

ln

(
1 +

M∑

m=1

pn,mhn,m

)
. (4)

When the secondary users are transmitting information, they will also gener-
ate interference to primary users. Denote the channel gain from mth secondary
transmitter to the primary receiver on channel n as gn,m. At the beginning of
every fading block, mth mobile user will measure hn,m and then determine the
transmit power pn,m. On the other hand, due to the separation between primary
user system and secondary user system, it is hard for the secondary transmitter
m to measure gn,m in every fading block. In this paper, gn,m is assumed to be an
identically and independently distributed random variable. In this case, to limit
the interference to primary receiver, the interference outage probability should
be limited, i.e.,

Pr

(
M∑

m=1

pn,m · gn,m ≥ In

)
≤ εn,∀n ∈ N (5)
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where In is the threshold of interference and εn ∈ (0, 1) is tolerable outage
probability for channel n. Note that (5) is equivalent with the following constraint

Pr

(
M∑

m=1

pn,m · gn,m ≤ In

)
≥ 1 − εn,∀n ∈ N . (6)

For the random variable gn,m, only a limit number of samples of gn,m can
be obtained by investigating the historical signaling signal. Suppose the number
of samples is S, denote S samples of gn,m as ĝ1n,m, ĝ2n,m, ..., ĝS

n,m, and define
S � {1, 2, ..., S}. We wish to describe the distribution of gn,m, i.e., f(gn,m)
according to ĝs

n,m for s ∈ S. Specifically, with ĝs
n,m for s ∈ S, we want to make

sure that f(gn,m) falls into the uncertain region of distribution functions F(gn,m)
with probability at least (1 − α), which can be also written as F(gn,m, α) for the
ease of presentation in the following. In this case, given α predefined, a robust
form of constraint (6) should rewritten as

inf
f(gn,m)∈F(gn,m,α),

∀m∈M
Pr

(
M∑

m=1

pn,m · gn,m ≤ In

)
≥ 1 − εn,∀n ∈ N . (7)

In this paper, our target is to maximize CN by optimizing pn,m for m ∈ M by
conforming to the associated constraints. Specifically, the following optimization
problem is to be solved

Problem 1

max
pn,m,∀n∈N ,m∈M

N∑

n=1

ln

(
1 +

M∑

m=1

pn,mhn,m

)

s.t. pn,m ≥ 0,∀n ∈ N ,m ∈ M,

N∑

n=1

pn,m ≤ Pm,∀m ∈ M,

Constraint (7).

3 Transformation and Optimal Solution

Looking into Problem1, it can be seen that constraint (7) is not in closed-
form, which leads to the hardness. For the ease of discussion, the following
notational conventions are claimed first. Denote gn = (gn,1, gn,2, . . . , gn,M )T ,
pn = (pn,1, pn,2, . . . , pn,M )T , and ĝs

n as the sth group of sampling of the vector
gn, for n ∈ N and s ∈ S. Define μ̂n as the sample mean of the vector gn and
Σ̂n as the sample covariance of the vector gn over the S samples for n ∈ N ,
respectively. Suppose Pn,m is the general probability measure for the random
variable gn,m for n ∈ N and m ∈ M. Let Pn and P

∗
n indicate a general and the

true (which is unknown in advance) probability measure for the random vector
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gn for n ∈ N , respectively. Define Pn,S

(
P

∗
n,S

)
as the measure of the samples gs

n

for s ∈ S, which is actually a S-fold product distribution of Pn (P∗
n). E

P[·] is the
expectation of a random vector or matrix under the probability measure P.

Define Gn as the value such that ||gn||2 ≤ Gn almost surely for n ∈ N , when
S > (2 + 2 ln(2/α)), it can be proved that with probability at least (1 − α), the
probability measure P

∗
n falls into the following region [4]

F I(gn , α) =
{
Pn

∣∣∣∣Pn ∈ Ξ(Gn), ||EPn [gn] − μ̂n||2 ≤ Λ1(α, S,Gn),

||EPn
[
gngT

n

] − E
Pn [gn]EPn

[
gT

n

] − Σ̂||F ≤ Λ2(α, S,Gn)
} (8)

where

Λ1(α, S,Gn) =
Gn

S

(
2 +

√
2 ln(1/α)

)
, Λ2(α, S,Gn) =

2G2
n

S

(
2 +

√
2 ln(2/α)

)
,

Ξ(Gn) means the set of probability measures such that the norm of the associ-
ated random vector gn is no larger than Gn for n ∈ N , and ||·||F is the Frobenius
norm of a matrix.

With F I(gn, α) defined, the next step is to transform constraint (7) to be
closed-form expression. The following lemma can be expected.

Lemma 1. Given F I(gn, α), constraint (7) will hold when the following con-
straint holds

μ̂T
npn + Λ1(α, S,Gn) · ||pn||2

+
√

1−εn

εn

√
pT

n

(
Σ̂n + Λ2(α, S,Gn) · I

)
pn ≤ In,∀n ∈ N (9)

where I is the identity matrix.

Proof. Define

VaRPn
εn
(gT

n pn) = inf
{
t|Pn(gT

n pn ≤ t) ≥ 1 − εn

}
. (10)

According to [5], there is

sup
Pn∈FI(gn ,α)

VaRPn
εn
(gT

n pn) = μ̂T
npn + Λ1(α, S,Gn)||pn||2

+
√

1−εn

εn

√
pT

n

(
Σ̂n + Λ2(α, S,Gn)I

)
pn.

(11)

Thus when the right-hand side of (11) is smaller than In, which is the exact
expression of (9), it is straightforward to see that constraint (7) will hold.

This completes the proof.

Remark: It can be seen that the transformed constraint in (9) is a second-order
cone constraint with the vector pn, which defines a convex region of pn for n ∈ N .
Additionally, it can be checked that the objective of Problem1 is concave, thus
Problem1 is a convex optimization problem, whose global optimal solution can
be achieved by existing methods.
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