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Abstract. In view of the shortcomings of language model N-gram, this paper
presents a Long Short-Term Memory (LSTM)-based language model based on
the advantage that LSTM can theoretically utilize any long sequence of infor-
mation. It’s an improved RNN model. Experimental results show that the per-
plexity of the LSTM language model in the PBT corpus is only one-half that of
the N-gram language model.
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1 Introduction

The language model is widely used in natural language processing, machine translation
and speech recognition, and it can directly affect the performance of the corresponding
system. Language models are usually divided into two categories: one is a statistical
language model based on large-scale corpus. In actual use, the model can only reflect
the adjacent constraint relationship of the language due to the limitation of space and
time of the system, and cannot solve the recursion problem when the processing
language distance is long. The other is a rule-based language model. The model is
suitable for the processing of closed corpus, which can effectively reflect the long-
distance constraint relationship and recursion phenomenon in language, but the sta-
bility of this model is poor, and it is open in processing. Sexual corpus does not have a
good consistency in knowledge expression. The commonly used language model is the
statistical model N-gram, but it has two disadvantages. First, the semantics of word
vectors are not satisfactory in the continuous space. When the system adjusts the
parameters of a word or phrase, the word or phrase with similar meanings will also be
changed accordingly. Second, the appearing probability of a word depends only on the
first few words, and it does not perform well in a particularly long context. In view of
the above drawbacks, based on the theory that LSTM can theoretically take advantage
of arbitrary long sequence information, a LSTM-based language model is proposed.
The model converts each word in the sentence into a word vector and trains it through
the LSTM network. Then, it obtains the probability distribution of the word. The
experimental results show that the perplexity of the LSTM-based language model in the
PBT corpus is only half of that of the N-gram language model.
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2 N-Gram Language Model

N-gram refers to a sequence of N items in a given piece of text or speech. Items can be
syllables, letters, words, or base pairs. The N-gram model is a statistical language
model. Usually N-grams are taken from texts or corpus [1]. When N = 1, it is called
unigram. When N = 2, it is called bigram. When N = 3, it is called trigram, and so on.

For a sequence of m words (sentences), the probability P(wy,...,®,) can be
calculated according to the chain rule:

P(wy,...,0n) = P(w))P(wz|o)P(ws|or, w3). . . P(Oy|or,...,on-1) (1)

In order to reduce the computational difficulty, Markov approximation is used for
the above formula, i.e., the probability that the current word appears is only related to
the appears the current word. In this way, it is unnecessary to trace back to the initial
word of the sentence at the time of calculation, thereby it can greatly reduce the length
of the above formula (1):

P(wi|or, @), ...,0i-1) = P(0i|®i—pi1,. .., 0i-1) (2)

When N = 1, a unigram model is:
P(wy, Wy, ..., Op) = HP(w,-) (3)
When N = 2, a bigram model is:
P(Wi, W, ..y Wy) = Hp(wi|wH) (4)

When N = 3, a trigram model is:

m

P(Wl,Wz,...,Wm) = HP(W,‘|Wi_2Wl‘_1) (5)
i=1

A set of parameters can be calculated by the maximum likelihood method to obtain
the maximum value of the training sample probability.

For the unigram model, where C(wy,...,w,) represents the frequency of occur-
rence of N-grams (w1, . .., w,,) in the training corpus data, M represents all the words in
the corpus:

C(W,)
P(wi) = (6)
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For the bigram model:

C(wi—1wj)
P i\ Wi— = 7
(1) = g )
For the N-gram model:
V= softmax(W(s)ht) (8)

In actual use, because the training corpus is very limited, when the test corpus from
the same source is used to verify the training results, some N-grams do not appear in
the training corpus. This means that the probabilities calculated by the above formula
may be zero, which leads to data sparseness. For languages, the existence of data
sparseness makes it not satisfy the law of large numbers, and the calculated probability
is distorted. The solution called smoothing or discounting is needed.

The N-gram model predicts the follow-up words based on discrete unit words (for
example, n prefix words) that do not have a genetic property in the text. In a continuous
context, using only n prefix words as the window range may not be sufficient to
accurately describe the context information, and thus does not have the semantic
advantage that the word vectors in the continuous space satisfy. Similar-meaning words
have similar word vectors. When the model adjusts the parameters of a particular word
or phrase, similar words or phrases will change accordingly. At the same time, the size
of n prefix words’ memory information, used for current word prediction during the
operation of the system, will increase exponentially, resulting in an inestimable
probability. Therefore, in the face of a large continuous space, it is very difficult to
capture context information between vocabularies without processing after the memory
information is extracted.

3 LSTM-Based Language Model

Long Short Term Memory Networks, also known as LSTM [2], is a recursive time-
recurrent neural network that can effectively handle long-term dependency problems in
time series. LSTM network structure was proposed by Hochreater and Schmidhuber in
1997 and further improved and promoted by Alex Graves. In the fields of image
analysis, machine translation, handwriting recognition, speech recognition, etc., LSTM
has a very outstanding performance and has gotten a flourishing development [3].
LSTM solves long-term dependency problems by transforming RNNs. The long-
term memory of information is a self-distribution for LSTM. It does not need to be
achieved through deliberate learning. The advantage of LSTM is that it can take into
account all the predicative vocabulary in corpus when training the language model.
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Fig. 1. LSTM structure

Figure 1 shows the structure of the LSTM network, where repeated blocks repre-
sent hidden layers in each iteration. Each hidden layer contains several neurons. Each
neuron first performs a linear matrix calculation on the input vector and then outputs
the corresponding result [4] after the nonlinear function of the activation function. In
each iteration, the output of the last iteration interacts with the next word vector of the
text to determine whether the information is saved or discarded and the current state is
updated. x; is the input of the hidden layer in this round of iterations. According to the
current state information, the predicted output value of the hidden layer y is obtained
and the output feature vector #, is provided for the next hidden layer. Whenever there is
a new word vector input in the network, the word vector is combined with the output of
the hidden layer at the previous moment to calculate the output of the hidden layer at
the next moment, and the hidden layer is used cyclically to maintain the latest state.

Each hidden layer is finally connected with a layer of traditional feedforward
network as the output layer. Each node y; in the output layer corresponds to the
unnormalized logarithmic probability of the word i at the next moment, and then the
output value y is normalized by the softmax function:

3 = softmax(W“h,) 9)

¥; is the probability distribution calculated by the hidden layer based on all the
vocabularies in each round of iterations, that is, when the weights of the entire pre-
order vocabulary of the document and the observed word vector x(t) are all determined,
the subsequent words can be predicted by the model. The variable |V| of W) e RM*Pr
and § € RM represents the dictionary size of the entire corpus.

In a recurrent neural network, cross-entropy is usually used as a loss function [5].
Equation (10) represents the superposition of cross entropy over the entire corpus when
the t-th iteration is performed:

i
JOO) == yiy x log(31)) (10)
=
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For a corpus of size T, the cross entropy is calculated as follows:

1T 14

T
J:—%Z]U)(Q)Z—TZZ)’:,/‘XIOg()A’r,i) (11)

=1 j=1

4 Analysis of Experimental Results

4.1 N-Gram Language Model Experiment

The dataset used in the experiment is the Penn Treebank (PTB) corpus. The language
model is built by SRILM, and the used statistical data of the corpus file is: file testfile.
txt: 3761 sentences, 78669 words and 4794 OOVs. The 1-gram (unigram), 2-gram
(bigram) and 3-gram (trigram) models are constructed respectively and the corre-
sponding complexity is calculated. The results are shown in above Table 1, where
logprob represents logP(T), ppl represents perplexity of all words, and ppll represents
perplexity in addition to </s > :

ppl = 10 A (—logP(T)/(sen + word))

(12)
ppll = 10 A (—logP(T)/Word)

where Sen and Word represent sentences and words respectively.

Table 1. Three N-gram language models and their perplexity

LogProb PPL PPL1

1-gram | logprob = — 233580.5 | ppl = 1020.147 | ppll = 1451.559
2-gram | logprob = — 185313.2 | ppl = 243.7525 | ppll = 322.4552
3-gram | logprob = — 173834.8 | ppl = 173.4205 | ppll = 225.4726

4.2 LSTM Language Model Experiment

The training model parameters are as follows: the initial value of the relevant
parameters is randomly and uniformly distributed, the range is [-init_scale, +init_scale],
and init_scale is 0.1; the learning rate is set to 1. When the number of iterations of text
training exceeds the maximum value max epoch, it gradually decreases, and the
learning rate decay also gradually decreases when the maximum number of iterations is
exceeded. The number of LSTM layers is 2 layers, the number of nodes in each hidden
layer is 200, the sequence length of a single data is 20, and the dictionary size is 10 K
words. At the same time, a batch strategy is adopted, the scale of each batch of data is
set to 20, and dropout method is used in order to prevent overfitting.
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Firstly, a multi-layer LSTM unit is set up to preprocess the training corpora, and the
dictionary id in the training text is converted into a vector format. Text data is
sequentially input to the LSTM unit according to the sequence, and the stored state of
the previous time period of the LSTM and the current input collectively calculate the
output and state of the current unit (the probability of occurrence of the next word).
Gradient descent is used to update weights, and gradients can be appropriately pruned
(scaled) in order to control gradient explosions. The training corpus is divided into
multiple batches, and records such as the cost and state of the network output are
recorded, and the results are output according to the number of iterations. Each time a
10% iteration is completed, the current epoch progress, perplexity (natural constant
index of the cross-entropy loss function), and training speed (words per second) are
displayed. Return the result of the perplexity function at the end of the training.

The operating system is Windows 10, 1709 version, the CPU is Intel i5-6300hq,
and the GPU is trained in the Nvidia GTX 960 m environment. Figure 2 shows the
decrease curve of Learning Rate. In Fig. 3, the Train Perplexity is the perplexity of the
training set, and the Valid Perplexity is the perplexity of the verification set. It can be
seen that with the decrease of the Learning Rate, the decrease of perplexity finally tends
to be stable. After 13 epochs, the Train Perplexity value was 40.692, the Valid Per-
plexity value was 119.441, and the Test Set’s Test Perplexity value was 115.702.
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Fig. 2. Decrease curve of learning rate
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Fig. 3. Train perplexity and valid perplexity trends

4.3 Results and Analysis

The comparison of perplexity can be obtained between the two models from the
previous experimental results (Table 2):

Table 2. Perplexity of LSTM model and N-gram model

Model name | Perplexity

Unigram ppl = 1020.147 ‘ppll = 1451.559
Bigram ppl = 243.7525 ‘ppll = 322.4552
Trigram ppl = 173.4205 ‘ppll = 225.4726
LSTM 115.702

From the above table, in the N-gram model, when the model is unigram, that is,
n = 1, the perplexity degree is the highest; when the model is the bigram, that is, n = 2,
the perplexity degree is the second, and when the model is trigram, that is, n = 3, the
perplexity degree is the lowest. This is because, for an n-gram model, the larger the
value of n, the more constraint information for the result, and the more accurate the
model, that is, the trigram has more constraint information on the occurrence of sub-
sequent words, and the reliability is also higher. However, the increase of n causes the
model to become more complex, which increases the amount of computations when the
model is built. The perplexity of the language model built by LSTM is only 115.702,
which is equivalent to half of the trigram. Therefore, this experiment proves that the
performance of language model based on LSTM is obviously better than that of N-
gram model.
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5 Conclusion

At present, the traditional speech recognition technology has not been able to adapt
well to the needs of the big data era, and no deeper information can be excavated from
the massive data. Deep learning has excellent modeling ability of big data and excellent
fitting ability. Using deep learning to study speech recognition has important theoretical
significance and practical value. This paper discusses the commonly used traditional
statistical language model N-gram, and proposes a language model, based on the
improved RNN model—LSTM model, to solve the problem that the N-gram model
does not meet the semantic deficiency of word vectors in continuous space, and the
LSTM language model has obvious advantages in performance compared with the N-
gram.
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