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Abstract. The fog-computing based radio access network (F-RAN) is proposed
in 5G systems facilitating the deployment of IoT, where fog-computing based
access points (FAPs) provide both computational and radio resource closer to
IoT devices (IoTDs). On one side, IoTDs try to associate with the FAPs to
minimize the power consumption. On the other side, the concentration of IoTDs
leads to the long execution delay which consists of transmission time and
processing time, where we assume an equal share of computing resource for co-
FAP IoTDs. As a result, we investigate multi-objective optimization (MOP) for
IoTDs association in F-RAN considering both radio and computing resource.
The objects involve minimizing the power consumption and the execution delay
of IoTDs. Then we apply quantum-behaved particle swarm optimization with
low complexity to solve the MOP. Simulation results show the proposed
algorithm achieves a tradeoff between the two objects. It consumes a little more
power consumption and brings a big improvement of the average execution
delay.

Keywords: Internet of Things � Fog computing � Device association �
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1 Introduction

Internet of Things (IoT) is a worldwide network that connects ubiquitous smart devices
with little or no human intervention [1], and it can support a wide range of applications,
such as smart cities [2] and intelligent transportation [3]. However, a huge volume of
data will be generated, and some applications have poor performance due to the limits
in terms of power, storage, and computing ability of IoT devices (IoTDs). Fog com-
puting is a promising opportunity to provide shared computing and storage resources to
the close proximity of IoTDs and overcome these limitations, which is proposed first by
CISCO as “cloud at the edge” [4]. Meanwhile, most of the data exchange in IoT makes
use of wireless communication. The fog-computing based radio access network (F-
RAN) is proposed in 5G systems facilitating the deployment of IoT, where wide-
coverage and fog-computing based access points (FAPs) brings both computational
and radio resource closer to IoTDs [5].
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There are many research efforts for allocating radio and computing resources in
IoT. A device association algorithm is proposed considering downlink rate for human-
to-human communications and uplink transmit power for coexisted IoTDs [6]. Small-
cell assisted traffic offloading in IoT is investigated to minimize the total power con-
sumption with secrecy requirement [7]. [8] proposes joint distributed computing and
content sharing among numbers of cooperation F-APs achieving low latency. [9]
studies matching between IoT users and resources with the object of cost performance.
These works are with single objective by the ignorance to the degradations of other
performance. In [10], allocating computing resource of service providers for IoTDs in
cloud computing is considered for maximizing the profit of the broker while mini-
mizing the response time and the energy consumptions. [11] addresses the spectrum
allocation problem with respect to both spectrum utilization and network throughput in
the cognitive radio-based IoT. [12] optimizes the offloading probability and trans-
mission power with one FAP to jointly minimize the energy consumption, execution
delay and payment cost. However, they just consider either computing resource or
radio resource.

All the above analysis motivates us to investigate multi-objective optimization for
IoTDs association in F-RAN considering both radio and computing resource. On one
side, IoTDs try to associate with the FAP to minimize the power consumption. On the
other side, the concentration of IoTDs sharing the computing resource of one FAP
leads to long execution delay which consists of the transmission time and the pro-
cessing time. To achieve this, we formulate it as an MOP involving minimizing both
the power consumption and the execution delay of IoTDs. Then, the MOP is solved
based on quantum-behaved particle swarm optimization with low complexity.

2 System Model and Problem Formation

2.1 System Model

We consider a F-RAN network. As shown in Fig. 1, the macro base station
(MBS) connects with the center cloud, while small base stations act as FAPs. To
facilitate IoTD association, the dual connectivity technology is adopted. MBS provides
communicating and computing the control data for IoTDs, and L FAPs (FAP1, FAP2,
…, FAPL) provide services for the traffic data of K IoTDs (IoTD1, IoTD2, …, IoTDK).
We focus on the association control in this paper which decides the binary association
indicator xkl. Let xkl ¼ 1 when IoTDk associating with FAPl.

Power Consumption of IoTDs. Since most of IoTDs are battery operated and require a
long battery life, one of the most important metrics is power consumption of IoTDs.
However, the transmission quality between the IoTDs and FAPs should be met first. In
detail, the signal to interference noise ratio from IoTDk at FAPl is defined as follows.

SINRkl ¼ gklpl
�ðIkl þ r2Þ � gklpk

�
r2 ð1Þ

where pk and gkl are the transmission power and channel gain from IoTDk at FAPl.
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r2 represents the channel noise. Considering the relative small transmitting power
of IoTDs and the propagation of the signal, the interference is ignored. It is required
that SINRkl �Cmin

k in order to ensure a successful transmission. The minimum power
consumption of IoTDk associating with FAPl is

pkl ¼ Cmin
k r2

�
gkl: ð2Þ

The corresponding transmitting rate is

rkl ¼ W log2ð1þCmin
k Þ; ð3Þ

where W is the channel bandwidth.

Execution Delay of IoTDs. We assume the computing rate of FAPl is Cl and an equal
share of Cl for co-FAP IoTDs. The execution delay of IoTDk consists of the trans-
mission time and the processing time. The time and power consumption for IoTDs to
receive the results can be ignored, due to the fact that the size of the outcome for many
applications is in general much smaller. Thus, the execution delay for the data size Dk

when IoTDk associating with FAPl is

tkl ¼ Dk=rkl þ jDk

.
ð1
.XK

k¼1
xklÞCl

h i
; ð4Þ

where the required computing rate jDk is linear with Dk.

Fig. 1. The model of the F-RAN network
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2.2 Problem Formulation

Based the two metrics discussed in the previous subsection, the association control
problem can be formulated as a multi-objective optimization as follows.

minf
XK

k¼1

XL

l¼1
xklpkl;

XK

k¼1

XL

l¼1
xkltklg; ð5Þ

s.t.

XL

l¼1
xkl � 1; 8k ¼ 1; 2; � � � ;K; ð6Þ

XL

l¼1
xklpkl\Pmax

k ; 8k ¼ 1; 2; � � � ;K; ð7Þ
XK

k¼1
xkl �Bl; 8l ¼ 1; 2; � � � ; L; ð8Þ

xkl 2 f0; 1g; 8k ¼ 1; 2; � � � ;K; l ¼ 1; 2; � � � ; L: ð9Þ

Constraint (6) enforces that each IoTD can only associate with one FAP. (7) sat-
isfies the maximum power constraint for each IoTD. (8) ensures that the association do
not exceed the capacity constraint for each FAP, where Bl is the number of the channel
for FAPl and each IoTD accesses one channel.

3 QPSO-Based Algorithm for Multi-objective Association

This section presents the algorithm for the multi-objective association problem. It
includes two steps as follows.

First Step is Problem Transformation. The previous multi-objective optimization with
constraints is transformed to a single-objective and unconstrained optimization problem
in the use of the weighted method and the penalty method as follows,

min a1ð
XK

k¼1

XL

l¼1
xkl

pkl
Pmax
k

Þþ a2ð
XK

k¼1

XL

l¼1
xkl

tkl
tmax
k

gÞ

þ k �
XK

k¼1
maxð

XL

l¼1
xklpkl � Pmax

k ; 0Þþ
XL

l¼1
maxð

XK

k¼1
xkl � Bl; 0Þ

n o :

ð10Þ

In the transformation, a dimensionless quality is firstly obtained corresponding to
each objective in order to maintain the balance between the two objectives. In addition,
a1 and a2 are weight factors reflecting the relative importance of the power con-
sumption and the execution delay, where a1 þ a2 ¼ 1. k is the penalty coefficient
which is multiplied by the violation of the constraints in (7)–(8) as the penalty function.
The remaining constraint in (6) will be processed in the next step.
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Second Step is QPSO-based Algorithm. The transformed problem in (10) is still
computationally difficult. This problem can be considered as a combinational problem
of (IoTDk, FAPl) pairs. Its solution is a binary association matrix, the size of which is
K rows and L columns. So the computational complexity of this problem is Oð2L�KÞ,
which shows that this problem is an NP-hard problem. Thus, the heuristic algorithm
with low complexity should be considered for this problem. Quantum-behaved particle
swarm optimization (QPSO) performs well in terms of computation cost and solution
quality [13], so we apply the QPSO algorithm to solve this problem.

QPSO is a population-based optimization tool. The population or swarm represents
the set of potential solutions, and each particle in the population represents a solution
position. For the problem in (10), the ith particle is represented by a K-dimensions
vector~yi ¼ ðyi1; yi2; � � � ; yiKÞ. In~yi, each yik corresponds to IoTDk, and its value is the
special index of the associated FAP. Since each element has only one value, the
constraint in (6) that each IoTD can only associate with one FAP is satisfied.

At the beginning of the QPSO algorithm, an initial swarm consisted of M particles
is randomly generated. Particles in the swarm move by iteration through the search
space to find a new position with the best function value. After each movement, the
best position of each particle and the best position of the swarm are recorded by~yibest
and ~ygbest respectively. At each iteration, each particle moves its position by the fol-
lowing equations

~yi ¼
~zi � b � ~ymbest �~yi

�� �� � lnð1=lÞ; l� 0:5

~zi þ b � ~ymbest �~yi
�� �� � lnð1=lÞ; l\0:5

(
ð11Þ

~ymbest ¼ 1
M

XM

i¼1
~yibest ð12Þ

~zi ¼ u~yibest þð1� uÞ~ygbest ð13Þ

b ¼ xmax � ðxmax � xminÞðiter=itermaxÞ ð14Þ

where u and l are random numbers in the range [0, 1],~ymbest is the mean of~yibest, b is
the iterating coefficient reducing linearly. The algorithm ends when the number of the
iterations reaches the maximum or the function value error is satisfied.

The QPSO algorithm for the association problem is performed at MBS as the
control process, after which IoTDs associate with FAPs accordingly for the traffic data.

4 Performance Evaluation

In this section, the performance of the proposed algorithm is evaluated by simulation.
We consider a network with 10 FAPs distributed randomly within a cell with the radius
1000 m. Each FAP has the capacity limit Bl = 5, the computing rate Cl in the range
[500, 600] Mcycles/s. A number of IoTDs [25, 50] are also distributed randomly within
the cell. Each IoTD has the minimum SINR requirement Cmin

k in the range [8, 10] dB,
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the maximum power as 23 dBm, the data size Dk in the range [2, 8] kbits, and the
corresponding required computing cycles as 104*Dk. For the wireless propagation
between IoTDs and FAPs, we set the pass loss constant as 10−2, the path loss exponent
as 4, the multipath fading gain as the Rayleigh distribution with unit mean, and the
shadowing gain as the log-normal distribution with 4 dB deviation. As for the QPSO
algorithm, we set the size of the swarm as 150, and the number of the iterations as 150.
The number of simulation snapshots is set as 200.

The convergence of the proposed QPSO-based MOP IoTDs association algorithm
is firstly testified. The values of the two objects which are the average power con-
sumption and the average execution delay of each IoTD at the end of each iteration are
shown in Fig. 2(a) and (b) respectively. It can be seen that the values of the two objects
achieve convergence when the number of the iterations ends.

(a) (b)

Fig. 2. The convergence of the average power consumption (a) and the average execution delay
(b) of each IoTD in the proposed QPSO-based MOP IoTDs association algorithm

(a) (b)

Fig. 3. The performance of the proposed MOP IoTDs association algorithm in terms of the
average power consumption and the average execution delay compared with the IoTDs
association algorithm minimizing power consumption in [8]
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The performance of the proposed MOP IoTDs association algorithm is compared
with the IoTDs association algorithm minimizing power consumption in [8]. The
results of the two objects with the number of IoTDs are shown in Fig. 3(a) and
(b) respectively. As the capacity constraint of each FAP, part of IoTDs have to asso-
ciate with the further FAP and the average power consumption increases with the
number of IoTDs for both algorithms. Meanwhile, more co-FAP IoTDs share the
computing resource of each FAP, so the average execution delay also increases with
the number of IoTDs for both algorithms. The compared algorithm optimizes the power
consumption, so numbers of IoTDs maybe crowding into one FAP causes longer
execution delay. The proposed algorithm achieves a tradeoff between the two objects. It
consumes a little more power consumption and brings a big improvement of the
average execution delay.

5 Conclusion

In this paper, we investigate the IoTDs association problem in F-RAN where FAPs
provide both computational and radio resource closer to IoTDs. We first analyze the
power consumption and the execution delay for IoTDs which consists of the trans-
mission time and the processing time. Then we formulate the association as an MOP
minimizing both the power consumption and the execution delay. Since the MOP is
computationally different, we apply quantum-behaved particle swarm optimization
with low complexity to solve the MOP. Simulation results show the proposed algo-
rithm achieves a tradeoff between the two objects. It consumes a little more power
consumption and brings a big improvement of the average execution delay.
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