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Abstract. Edge is a very important type of feature for human detection
and Histogram of Oriented Gradient (HOG) is the most popular method
to encode edge information since proposed. Because HOG detects edges
based on intensity gradients, it is not invariant with respect to image
illumination. In this paper, we propose three new types of features based
on local phase: Local Phase based symmetry (LPS), Local Phase based
Asymmetry (LPA), and Histogram of Oriented Asymmetry (HOA) for
human detection. The LPA and HOA are similar with gradient magni-
tude and HOG features, but from different perspective. The key idea
is the intensity around an edge point in an image is always asymme-
try. Thus we can detect edges by measuring the asymmetry of the local
structure at every point in the image. This is achieved by analyzing the
phase of its constituent frequency components. This asymmetry mea-
surement is invariant with respect to image contrast. After the asym-
metry is computed, this value could be distributed to different orienta-
tion bins according to gradient orientation. We also measure symmetry
around each point which yields LPS. This is useful to detect torso and
limbs. These local phase induced features are combined with the clas-
sical Aggregated Channel Features (ACF) and are fed into the boosted
decision tree (BDT) framework. Experiment shows that the proposed
features are complementary to the ACF features and will increase the
detection accuracy.
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1 Introduction

Human detection is an active research topic in recent years. The application
includes Advanced Driver Assistance Systems (ADASs), visual surveillance and
human-robot interaction, etc. Recently, deep learning methods have achieved the
state-of-the-art accuracy [7,16], but these methods rely on high-end GPU device
because of the high computation cost. On the other hand, hand-craft features
together with boosted decision tree (BDT) methods are also competitive for its
light-weight CPU implementation [3,10,19]. Among all the handcraft features,
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Histogram of Oriented Gradient (HOG) [4] is the most popular one for human
detection.

The basic idea of HOG is to compute gradients in every point in the image.
Then distribute the gradients magnitude to several orientation bins and form his-
togram in different cells. Currently, the HOG features are usually used together
with gradient magnitude and CIE-LUV color. The resulting features are called
Aggregated Channel Features (ACF) [5]. Many newly devised features are based
on ACF, like LDCF [12], InformedHaar [17], Checkerboard [18] and MRFC [2],
etc.

Though very effective for human and general object detection, the HOG
features have an intrinsic limitation rooted in the gradient computation. In the
implementation of HOG, the gradients are computed by the intensity difference,
which is sensitive to local contrast. The computed edge of a person in the image
will have different strength because of different illumination conditions, or just
because the person wear clothes of different color. This is contrary to the goal
of invariant representation in feature design. The existence of an edge should
determined by the image structure, not the intensity difference. Though HOG
compensates for the contrast variance by local normalization, this operation is
coarse. For example, the strength of an edge with low contrast will be suppressed
by an edge with high contrast in the local region.

Is there an alternative way to capture edge information? The answer is pos-
itive. By inspecting the edges in an image, we could see that the edge points
usually locate about the midpoint of a transition ramp and the intensity around
this point exhibit an approximate asymmetry. Based on this insight, we could
detect edges by measuring the local asymmetry. Peter Kovesi [11] proposed a
method measuring the symmetry and asymmetry based on local phase. For a
point to be an symmetry point, all frequency components must have phase 0 or
π. Conversely, for a point to be an asymmetry point, all frequency components
must have phase π/2 or 3π/2. Thus we could measure the extent of asymmetry
by phase deviation from π/2 or 3π/2. This type of features are called Local
Phase based Asymmetry (LPA). We could also measure the extent of symmetry
by phase deviation from 0 or π. This type of features are called Local Phase
based Symmetry (LPS). The reason we compute LPS is that symmetry is a
useful cue for human detection [1,3]. Following the idea of HOG, we distribute
the estimated asymmetry level to different orientation bins. The resulting fea-
tures are called Histogram of Oriented Asymmetry (HOA). The symmetry and
asymmetry measurement only considers the structure of the local signal hence is
invariant to local contrast. We add all these symmetry and asymmetry induced
feature channels to ACF channels and put them into BDT to train a human
classifier. The experiment result shows that the combined channels have supe-
rior performance than ACF.
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2 Method

In this section, we first introduce the symmetry and symmetry measure for
one dimensional signal, then we extend this method to color image, finally we
introduce the HOA and show how these features are used for human detection.

2.1 Symmetry and Asymmetry Measure for One Dimensional
Signal

As we stated in Sect. 1, to measure the symmetry and asymmetry around a
point of a signal, we could compute the local phase deviation of its constituent
frequency components of the signal. Suppose I(x) is a one dimensional signal
and φn(x) is the phase of the nth frequency component at point x. According
to [11], the symmetry S(x) and asymmetry R(x) could be estimated as

S(x) =
∑

n

An(x)�|cos(φn(x))| − |sin(φn(x))|�
An(x) + ε

=
∑

n

�|en(x)| − |on(x)|�
An(x) + ε

(1)

R(x) =
∑

n

An(x)�|sin(φn(x))| − |cos(φn(x))|�
An(x) + ε

=
∑

n

�|on(x)| − |en(x)|�
An(x) + ε

, (2)

where �·� = max(·, 0), An(x) =
√

en(x)2 + on(x)2. ε is a small value to avoid
zero denominator. In our experiment, ε is set to 0.001. en(x) and on(x) is the
even and odd parts of the bandpass filtered signal, which are computed as

en(x) = I(x) ∗ gen(x) (3)
on(x) = I(x) ∗ gon(x), (4)

where gen(x) is a bandpass filter and gon(x) is its Hilbert transform. Log-Gabor
filter [9] is usually chosen as the bandpass filter. The advantage of log-Gabor
filter is that it has zero DC component for arbitrary large bandwidth. Note that
in the original implementation [11] there is another term to compensate for the
noise influence. But in our paper, the features extracted in this stage will be fed
into the BDT and the decision tree will automatically choose a threshold for a
feature. Thus the noise compensation is not necessary here.

2.2 Symmetry and Asymmetry for Color Images

To detect edges in an image which may exhibit various orientations, we can
perform the previous operations with bandpass filters of different orientations
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and combine the result. But the more efficient way is to use the monogenic
signal [8]. The monogenic signal is a generalization of analytic signal to 2D case
with the Hilbert transform in the analytic signal replaced by Riesz transform.
For 2D signal, the symmetry and asymmetry estimation is similar with Eqs. 1
and 2, except now there are two odd parts

o1n(x) = I(x) ∗ go1n (x) (5)

o2n(x) = I(x) ∗ go2n (x), (6)

where the frequency representation of go1n (x) and go2n (x) is given by the Riesz
transform of Gn(ω)

GR
n (ω) =

iω

|ω|Gn(ω) = [Go1
n (ω), Go2

n (ω)]. (7)

The on(x) in Eqs. 1 and 2 is then replaced by

on(x) =
√

o1n(x)2 + o2n(x)2 (8)

For color image, there are three channels. We first convert the image from RGB
space to LUV space, and then compute S(x) and R(x) for three channels sep-
arately. Finally we take the maximum value of the three computed channels as
the final feature.

2.3 Histogram of Orientated Asymmetry

For human detection, it is beneficial not only detect edge, but also know the
orientation of the edge. In the HOG implementation, the gradient magnitude
is distributed to several predefined orientation bins, which encodes orientations
of edges. In the same way, we could also distribute the asymmetry value to
different orientations to indicate which axis the local structure is asymmetry
to and the resulting features are HOA. As we stated in Sect. 1, the asymmetry
could be taken as a similarity measure to an edge structure. Thus the distributed
asymmetry value will represent the edge orientations. The orientation in each
point could be estimated by the two odd filtered signals

ori(x) = atan2(o1n(x),−o2n(x)). (9)

However, because in our experiment we will use the ACF features together
with our features, the orientation has already been computed by the gradient
based method. To save computation, we just use this gradient based orientation
to compute HOA. The number of orientation is set to six, the same with that
in ACF features. Together with the symmetry and asymmetry feature channels,
we have 1 + 1 + 6 = 8 new feature channels. As for ACF features, these channels
are further aggregated with a shrinkage factor. In our experiment, we set the
shrinkage factor to four.
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3 Experiments

3.1 Experiments for One Dimensional Signal

We first show the symmetry and asymmetry features for a one dimensional
signal from real data. We convert a human image (see Fig. 2(a)) from RGB color
space to LUV color space and show the U channel in Fig. 1(a). A row from this
channel is selected as our 1D signal (denoted by the red dash line). The first row
of Fig. 1(b) is the selected 1D signal. Compared with the left image, we could see
that the visual edge points are about the middle point of the transition ramp.
The second row and the third row of Fig. 1(b) show the computed LPS and LPA.
The peaks of the LPS correspond to the peaks or troughs of the original signal.
The peaks of the LPA correspond to the transition ramp of the original signal,
which correspond the edge of the image. Note that the value of the LPA range
from 0 to 1 and a high value does not correspond to a high intensity difference.
This is what we want because we need a descriptor to capture the edge structure
which is invariant of the local contrast.
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Fig. 1. Illustration of LPS and LPA for one dimensional signal. (a) The U channel of
an human image. (b) From the top to bottom: the selected 1D signal, the LPS and the
LPA. (Color figure online)

3.2 Experiment for a Color Image

In this section, we show the symmetry and asymmetry feature maps for a color
image. The original color image is show in Fig. 2(a). The LPS feature map is show
in Fig. 2(b). From the figure, we can see that the LPS feature map have high
response at head, torso and limbs. These features are discriminative for human
detection. Figure 2(c) shows the LPA feature map, which effectively capture
the edge information of the image. Again, we find the asymmetry response is
irrelevant with the local contrast, only correlated with the local structure.
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Fig. 2. Illustration of the LPS and LPA feature maps for a color image. (a) The original
color image. (b) The LPS feature map. (c) The LPA feature map.

3.3 Evaluation on INRIA Dataset

In this section, we evaluate our proposed method on the INRIA person dataset.
Miss Rate (MR) vs. False-Positive-Per-Image (FPPI) curve and log average miss
rate are used as evaluation metric [6]. The log average miss rate is computed
by averaging miss rate at 9 FPPI points that are evenly spaced in the log-space
ranging from 10−2 to 100.

We incorporate the proposed features into the BDT framework to train a
human detector. The model size is set as 128 × 64. Five frequency components
are used to compute symmetry and asymmetry features whose center frequencies
are 2π/λk, where λk = 10 ∗ 1.5k−1, k = 1, 2, ..., 5. The training process includes
three hard negative mining stages. The final classifier consists of 4096 level-3
decision trees. To show the effectiveness of our new features, two models are
trained. The first model only use the 10-channel ACF features to train. For the
second model, the first 2048 weak classifiers still use the ACF features to train.
For the latter 2048 weak classifiers we replace the seven gradient based channels
with our local phase based channels (but keep the color channels). Both models
are evaluated on the test set, thus we can see how the detection accuracy evolves
with the weak classifier number.

The test result is shown in Fig. 3. As shown in the figure, with increasing
number of decision trees, the log average miss rate (the lower the better) gradu-
ally decreases (though with fluctuation). For both models, the first 2048 trees use
the same features, hence the log average miss rate is always the same. However,
as the gradient based channels are replaced by our local phase based channels
for the later 2048 trees, the second model achieves higher accuracy than the
first one. After 4096 decision trees the ACF features only achieve 13.25% log
average miss rate, while our method achieves 11.39%. This improvement shows
the effectiveness of our new features.
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Fig. 3. Weak classifier number versus the log average miss rate on the INRIA test
dataset.
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Fig. 4. Comparison with state-of-the-art non-CNN methods on the INRIA test dataset.

Next, we compare our detector with other non deep learning detectors using
MR vs. FPPI curves in Fig. 4. For a fixed FPPI point, we prefer a lower MR,
thus the curves close to the left-bottom corner are better. Log average miss rate
is given at the legend to rank different method. From the figure, we can see
that our detector outperforms other detectors, except a slightly worse than the
SpatialPooling [14]. Note that we only use 18 feature channels in total, while
SpatialPooling has used 259 feature channels. Except for ACF features, it also
used other feature types like covariance [15] and LBP [13].
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4 Conclusion

In this paper, we propose three types of local phase based features, LPS, LPA,
and HOA. The LPA and HOA are alternatives for gradient magnitude and HOG.
Compared with gradient magnitude and HOG, the advantage of LPA and HOA
is its invariance with respect to local contrast. LPS is used for capture the
symmetry structure of a human. Experiment for one dimensional signal and
color image shows the visual reasonability of this method. Experiment on INRIA
person data set shows that these features will boost the performance of the ACF
features.
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