
An Integrated Architecture for IoT Malware
Analysis and Detection

Zhongjin Liu1(&), Le Zhang2, Qiuying Ni2, Juntai Chen2, Ru Wang2,
Ye Li3, and Yueying He1

1 National Computer Network Emergency Response Technical
Team/Coordination Center of China, Beijing, China

lzj@cert.org.cn
2 Beijing University of Posts and Telecommunications, Beijing, China

3 Beihang University, Beijing, China

Abstract. Along with the rapid development of the IoT, the security issue of
the IoT devices has also been greatly challenged. The variants of the IoT
malware are constantly emerging. However, there is lacking of an IoT malware
analysis architecture to extract and detect the malware behaviors. This paper
addresses the problem and propose an IoT behavior analysis and detection
architecture. We integrate the static and dynamic behavior analysis and network
traffic analysis to understand and evaluate the IoT malware’s behaviors and
spread range. The experiment on Mirai malware and several variants shows that
the architecture is comprehensive and effective for the IoT malware behavior
analysis as well as spread range monitoring.

Keywords: IoT malware � Behavior analysis � Mirai � Architecture

1 Introduction

With the rapid development of the Internet of things (IoT) technology, the number of
smart devices has increased greatly. According to analysis reports, the number of smart
devices (excluding smart phones, tablets and computers) will grow to 28.1 billion by
2020. The IoT devices have been used in a wide range of applications, such as smart
grid, intelligent transportation, intelligent home, etc.

Along with the rapid development of the IoT, the security issue of the IoT devices
has also been greatly challenged [1]. The vulnerability of IoT devices have drawn
hackers’ attention, especially for those who are interested in DDoS attacks. Consid-
ering the significant number of devices, IoT has been gradually becoming one of the
weakest part of the computer network. The spread and evolution of the IoT malware,
such as botany, worm, and malicious software, are both speeding up.

The most famous IoT malware “Mirai” has been used in some of the largest and
most disruptive distributed denial of service (DDoS) attacks [2]. Since the source code
of Mirai was published on the Internet, it has become an architecture for building new
malware. The variants of the Mirai are constantly emerging.

However, there is lacking of an IoT malware analysis architecture to extract and
detect the malware behaviors, which mainly lies in three aspects:

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
B. Li et al. (Eds.): IoTaaS 2018, LNICST 271, pp. 127–137, 2019.
https://doi.org/10.1007/978-3-030-14657-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14657-3_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14657-3_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14657-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-14657-3_14

(1) Network security researchers have carried out extensive and in-depth research on
PC and mobile malware analysis. Since IoT devices run embedded systems on
different hardware architectures and platforms, such as ARM, PowerPC, etc.
There is lacking of a cross-platform architecture for analyzing the malicious code.

(2) The analysis of malware is usually carried out case by case. These work are
independent and short of association analysis. Therefore, there is lacking of an
architecture for comparative analysis of different malware variants.

(3) Malware network behavior monitoring is an effective method for malware
detection. How to extract network behaviors of IoT malware and detect them on
wide area of Internet still needs to study.

A survey [3] show that The detection patterns used in static analysis include string
signature, byte-sequence n-grams, syntactic library call, control flow graph and opcode
(operational code) frequency distribution etc. In view of this problem that the extracted
opcode sequences cannot represent the true behaviors of an executable. Ding presents a
control flow-based method to extract executable opcode behaviors [4]. But they don’t
have much concern about the key behavior in malicious code, however the key
behavior can reflect malicious behavior.

Researchers have less dynamic analysis of IoT malware and more dynamic analysis
of mobile mal-ware. Because dynamic analysis tools require intensive computation
power, which are inadaptable to IoT devices due to the resource-constraint problem [5].
Moreover, most advanced analysis techniques are highly dependent on the underlying
system platform. Building these analysis techniques require ad-hoc development for
different platforms in the diversified IoT environments [6, 7]. Besides it is difficult to
make dynamic analysis due to the trouble in applying it in an actual environment and
be-cause of the overhead of tracking data flow to a low level [8].

In [9, 10], techniques to cluster network traffic patterns associated with botnets are
presented. The characteristics observed include the flow patterns between hosts, such as
the number of connections and amount of data exchanged. Similarly, using machine
learning and network traffic features, [11] presents an approach to detect malware
related traffic.

Researchers have proposed a few approaches [12, 13] to detect the existence of
botnets in monitored networks. Almost all of these approaches are designed for
detecting botnets that use IRC or HTTP based C&C, but these solutions lack corre-
lation analysis of traffic from two dimensions of time and space.

This paper proposes an integrated analysis architecture for the IoT malware. The
architecture integrates static analysis, dynamic analysis, variant evolution analysis and
network behavior detection to achieve the goal of extracting and detecting IoT malware
in the large-scale network.

2 Architecture Design

To solve the problem, we propose an architecture to analyze the IoT malware behaviors
in static and dynamic manner. Based on the behavior, we focus on the network
behavior analysis and intend to detect IoT malware in large-scale network (Fig. 1).

128 Z. Liu et al.

The architecture consists of two layer: Behavior Analysis layer and Behavior
Detection layer.

The Behavior Analysis layer consists of two module, the static analysis module
extracts function call graph, host behavior and network behavior by code reverse
analysis; the dynamic analysis module captures network traffic and analyze memory
log by running code in the virtual environment.

The Behavior detection layer matches the malware traffic with behavior signature.
Based the traffic, the module is able to analysis the malware spreading and traffic
pattern between bots and Command and control server (C&C).

3 Design Details

Based on the proposed architecture, we propose the method to derive and detect the
static and dynamic behavior of different IoT malware. The analysis process is shown in
Fig. 2.

IoT Hardware
& Software

IoT malware
Sample

Mirai

X86 MIPSARM ……

Android Linux VxWorks Win ……

OMG Satori Wicked ……

Behavior
Analysis

Behavior
Detection

Static Analysis Dynamic Analysis

Behavior Detection

Function call graph
Host behavior

Network behavior

Virtual running environment
Network traffic capture

Memory log analysis

IoT Malware Analysis and Detection Architecture

Behavior signature matching Traffic statistical analysis
Malware spread analysis Command and control traffic analysis

Fig. 1. IoT malware analysis and detection architecture

IoT
Malware
Samples

Dynamic
Analysis

Sta
Analysis

Virtual
Running
Environment

Code
Reversing
Analysis

Func on Call
Network behavior
Host behavior

Memory log
Network traffic

Evo on
Analysis

Behavior
detec on

Traffic
analysis

Malware
Spreading
pa ern

Command
and Control
pa ern

……

Fig. 2. The malware analysis process

An Integrated Architecture for IoT Malware Analysis and Detection 129

Internet of things botnets virus attacks through more Internet of things devices, and
traffic is huge in every attack. With the “Mirai” botnet attack as an example, we have a
complete understanding of the embedded system attack on its static analysis, dynamic
analysis, evolution analysis and traffic analysis, and our overall analysis process is as
follows:

3.1 Static Analysis

The static analysis can extract the function call diagram, host-side behaviors and
network-side behaviors, which helps to analyze the malicious code accurately. We are
intend to analysis the malware from 3 aspects:

(1) Extracting the function call graph. Malicious code has a lot of behaviors, but in
the process of malicious code variety, some specific function call processes are
similar or even remain the same, such as: turning off the order of some processes
in the host, occupying the resource of the system, and sending the specified
information to the network server. Through the analysis of the function call
process, it can be more easily determined from the whole structure of malicious
code, and can provide the basis for the process of dynamic analysis to achieve the
function of common verification.

(2) Extracting the behaviors of host. The host may be forced to perform some
behavior after the host is infected with malicious code, which may prevent the
running of the normal function of the host or open the new function without
affecting the normal function of the host. The form or naming of malicious code
may change, but the behavior of the final implementation will not change. The
analysis of the behavior of the host end can help us correctly judge the behavior
similarity and make up for the shortcomings of the simple analysis of the mul-
tiplexing function. In Mirai, for example, the host’s behaviors: closing the
watchdog process, preventing host to clear malicious code during reboot, closing
the specific port and taking up it, deleting a specific file and kill corresponding to
the process.

(3) Extracting the behaviors of network. The attacker in order to quickly infect the
IoT equipment and effectively control of the host, the host usually performs
certain specific network behavior operations, these network behavior operations
maintain the connection between the attacker and the host, and the spread of the
malicious code. Taking Mirai as an example, the behaviors of the network: the
scanner module scans other potentially infected devices, and reports the infected
devices to reach the goal of expanding the botnet; regularly sending messages to
the C&C server, this host has been identified and stay active; upload and
download some files.

3.2 Dynamic Analysis

The sandbox is a virtual environment which is often used to execute untested or
untrusted programs or code without risking harm to the host machine or operating
system. The sandbox is a powerful tool for dynamic analysis of IoT malware. However,

130 Z. Liu et al.

IoT malware has compilation formats for various platforms. Current sandbox is not
able to run IoT malware directly.

We intend to handle this problem in two ways: First, run malicious code based on
x86 sandbox directly by source code cross-platform compilation; second, integrate
virtual machine, such as qemu, into sandbox, to simulate an embedded running
environment for non-x86 instruction sets.

3.3 Evolution Analysis

Based on the extracted features from static and dynamic result, we are able to carry out
evolution analysis. By comparing the extracted features of different malwares, such as
function calls, traffic pattern, configuration table, we are able to analyze the evolution
of the IoT malwares.

From the static result, take Mirai for example, if a set of functions that exist in Mirai
sample also exists in the variant samples, then the Mirai and variant may belong to the
same malware family. Therefore, we compare the similarity of different samples based
on the reusable library. When we get a variant sample, we calculate the similarity of the
function in the reuse function library, then divide the samples into different families.

For the dynamic result, we compared the similarities and differences between IoT
malware by comparing host behaviors and network behaviors.

3.4 Detection and Traffic Analysis

Based on the extracted behaviors, we match the network traffic data by source IP,
destination IP, source port number, destination port number and data packet signature
in large-scale network. We can further extract relevant information based on these
network traffic data.

We perform statistical analysis on network traffic data, including statistics on port
numbers and the geographical situation of infected bots. Further, we perform cluster
analysis on the Network traffic data and measure the similarities between different data
sources to find out if there are multiple different variants in the data.

We analyze the behaviors of different variants from space and time dimensions,
including the scope, time distribution, propagation method, and communication
behavior, and then assess the degree of harm of different variants.

4 Experiment and Results

To evaluate the architecture, we integrate many tools and develop the entire system based
on these tools. For static analysis, we use IDA disassembly tools to analyzes malicious
code and extract key behaviors of malicious code; for dynamic analysis, we use cuckoo
sandbox to extract the characteristics of host behaviors and traffic. To make comparison
of different variant of malware, we obtain and test Mirai, satori, OMG and Wicked
samples in the experiment. Furthermore, we capture malware related traffic in the large-
scale network based on the static and dynamic signatures. The result is shown below.

An Integrated Architecture for IoT Malware Analysis and Detection 131

4.1 Static Analysis

(1) Function flow chart analysis

The function control flow chart can be obtained by static disassembly of the Mirai code
through IDA and other disassembler tools. As shown in the Fig. 3, we obtain the
following modules.

Bot main module: Firstly, anti-debugging, disabling watchdog function to prevent
the device restart remove malicious files, then making sure that an independent
example is running in the device, then opening the killer module, attack module,
scanner module, finally, keeping links between BOT and CNC server, accepting and
sending necessary information.

Kill module: Closing the specific ports and occupying, deleting specific files and
killing corresponding processes to achieve the function of occupying resources alone.

Attack module: Parsing attacked command and launching Dos attack.

Scanner module: When bot scan other potentially infected devices, if bot can log
in to a new bot with a weak password, the successful result will be reported to CNC
server. The botnet expands rapidly through this pattern.

Connect, accept, and send module: Realizing links between BOT and CNC
server, accepting and sending necessary information.

(2) Key behavioral operations

Each function represents the different functions, the key functions of many have the
malicious behavior, and the key functions are divided into two classes: host behavior
and network behavior, which can be better combined with dynamic analysis and flow
analysis. The results of the classification are shown in the following Table 1:

Anti-
beduggingResolve_cnc_addr

Disabled watchdog
function

Ensure single
instance

Successful
bind the port

main

Attack_initkiller_init scanner_init

Attack_udp
Attack_tcp
Attack_gre
Attack_http

Kill the process of
the specific port

Bind the control port
Delete specific files

Weak password
login and report

working

Connection
Accept
Send

network

Fig. 3. Functions of the Mirai code

132 Z. Liu et al.

4.2 Dynamic Analysis

In the sandbox setting, both host and guest machine (virtual machine) use Ubuntu
system. The sandbox is installed on the host machine and the recompiled IoT malware
runs in the virtual machine environment. We analyzed the malicious code of several
Mirai botnet variants and obtained the following results (Table 2).

Analysis the packages of BJNP protocol (network protocol used by Canon printers
and scanners), the malicious code can discover the network printers and scanners
within the local area network (LAN) through send BJNP protocol discovery request
package to broadcast address. Then find printers and scanners support BJNP protocol.

It is able to launch attacks to printers and scanners, such as Exhaustion of print
consumables attack; read print log, access to private information; printer configuration
changes (if the network printer has changed the administrator password, theoretically
could firstly send the content to the attacker machine then send the content to the
severs’ printers and scanners by ARP cheat).

4.3 Evolution Analysis

According to the results of the static and dynamic analysis of the malware on the IoT,
we analyzed the similarity and differences between Mirai and the Mirai variants
(Table 3).

Table 1. The results analyzed by IDA

Class Function name Means

Host behavior anti_gdb_entry() anti-debugging
close_watchdog() disabling watchdog
ensure_single_instance() ensure single instance
killer_init() killer module initialize
bind() bind the specific ports
kill() kill the specific process

Network behavior attack_init() attack module initialize
scanner_init() scanner module initialize
establish_connection() establish connection
teardown_connection() tear down connection
accept() accept messages from CNC
send() send messages to CNC

Table 2. The results analyzed by sandbox

Source Destination Protocol Source port Destination port Package number

192.168.56.101 224.0.0.251 MDNS 5353 5353 23
192.168.56.101 192.168.56.255 BJNP 8612 8612 16
192.168.56.101 192.168.56.255 BJNP 8612 8610 16

An Integrated Architecture for IoT Malware Analysis and Detection 133

4.4 Network Traffic Analysis

We collected traffic data of two IoT malwares. Therefore, we consider the traffic can be
divided into two IoT events. Each IoT event is not related to each other. We compare
the different port scanning behavior and evaluate the spread area of two malwares.

4.4.1 Port Number Statistical Analysis
We perform statistical analysis on the destination port numbers in the two events to
obtain the following information (Fig. 4):

From the figure we can see that the Event 1 mainly scan port 7547, using the remote
command execution vulnerability rather than the weak password Trojans are signifi-
cantly different from the behavior of the previous Mirai [14]. From our statistical data,
this variant is in an extremely active state, and the daily record of the active scan source
is in the million level. The port number scanned in event 2 is much smaller than the
port number in Event 1, and may also be related to the amount of data. Event 2 has the
highest proportion of port number 23.

We can figure out that malware 1 prefer 7547 port to spread itself. However,
malware 2 use many ports to spread itself, the ports include some widely used ports,
such as 23, 22, 2000, 445, 80, 81, 3389, 8545, 2323.

Table 3. The comparison between Mirai and variants

Name Feature For Mirai For variants

Satori Transmission
Mode

A Telnet scanner component
is downloaded in an attempt
to scan to identify vulnerable
devices and use the Mirai
Trojan to infect after
infecting an IoT device

Two embedded
vulnerabilities are exploited
in an attempt to infect remote
devices connected to ports
37215 and 52869 in-stead of
using the scanner component

Target device Scanning ports 2323 and 23 Connected to ports 37215
and 52869

OMG Configuration
table

Include killing processes,
Telnet brute force logins, and
launching DDoS attacks

Setting up a firewall to allow
traffic to penetrate two
random ports

IoTroop Exploitation Using the default credentials
of the IoT device

Exploiting a wider range of
vulnerabilities to target a
wider range of products

DDoS loader Placing a Mirai-style DDoS
engine on the device

Placing a loader that
constantly communicates
with the C2 server

Wicked Persistence Cannot persist and keep on
device after restart

Downloading payloads on
demand from C&C servers,
and adding code to home
router firmware to make
malware lasting

134 Z. Liu et al.

4.4.2 Distribution of Infected Areas
The color depth in the picture shows the severity of the infection. Focusing on the
variant of scanning port number 7547, we can find that the infection of bots in China is
the most serious (Fig. 5).

Fig. 4. Destination port numbers of different IoT malwares’ interest

Fig. 5. Regional distribution of the infected botnets

An Integrated Architecture for IoT Malware Analysis and Detection 135

After preliminary analysis, we analyze the distribution of infections in various cities
in China. The distribution of data is not evenly distributed, but the focus is on variants
of the scanning port number 23. The most serious infection area is in east area of China.

5 Conclusion and Future Work

In this paper, we propose an integrated architecture for IoT malware analysis and
detection. By integrating IDA disassembly tool and cuckoo sandbox, we successfully
extract the behaviors of the Mirai malware and several variants. We are also able to
analysis the evolution and spread of IoT malwares through large-scale network traffic
analysis.

Our future work is to make this architecture adapt to more novel variants of the IoT
malware. We will apply existing static and dynamic analysis methods to different
embedded systems. Simultaneously, we can perform cluster analysis on network traffic
data to distinguish different traffic patterns of different variants.

References

1. Jing, Q., et al.: Security of the IoT: perspectives and challenges. Wirel. Netw. 20(8), 2481–
2501 (2014)

2. Kolias, C., et al.: DDoS in the IoT: Mirai and other botnets. Computer 50(7), 80–84 (2017)
3. Gandotra, E., Bansal, D., Sofat, S.: Malware analysis and classification: a survey. J. Inf.

Secur. 5(02), 56 (2014)
4. Ding, Y., et al.: Control flow-based opcode behavior analysis for Malware detection.

Comput. Secur. 44, 65–74 (2014)
5. Zhang, Z.K., Cho, M.C.Y., Wang, C.W., et al.: IoT security: ongoing challenges and

research opportunities. In: IEEE International Conference on Service-Oriented Computing
and Applications, pp. 230–234. IEEE (2014)

6. Davidson, D., Moench, B., Jha, S., et al.: FIE on firmware: finding vulnerabilities in
embedded systems using symbolic execution. In: Usenix Conference on Security, pp. 463–
478. USENIX Association (2013)

7. Zaddach, J., Bruno, L., Francillon, A., et al.: Avatar: a framework to support dynamic
security analysis of embedded systems’ firmwares. In: Network and Distributed System
Security Symposium (2014)

8. Ham, H.S., Kim, H.H., Kim, M.S., et al.: Linear SVM-based android malware detection for
reliable IoT services. J. Appl. Math. 2014(4), 1–10 (2014)

9. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: clustering analysis of network traffic for
protocol-and structure-independent botnet detection. In: Proceedings of USENIX Security
Symposium (2008)

10. Strayer, W.T., Lapsely, D., Walsh, R., Livadas, C.: Botnet detection based on network
behavior. In: Lee, W., Wang, C., Dagon, D. (eds.) Botnet detection. Advances in
Information Security, vol. 36, pp. 1–24. Springer, Boston (2008). https://doi.org/10.1007/
978-0-387-68768-1_1

136 Z. Liu et al.

http://dx.doi.org/10.1007/978-0-387-68768-1_1
http://dx.doi.org/10.1007/978-0-387-68768-1_1

11. Bekerman, D., Shapira, B., Rokach, L., Bar, A.: Unknown malware detection using network
traffic classification. In: Proceedings of IEEE Conference on Communications and Network
Security (CNS) (2015)

12. Binkley, J.R., Singh, S.: An algorithm for anomaly-based botnet detection. In: Proceedings
of USENIX SRUTI 2006, pp. 43–48, July 2006

13. Edwards, S., Profetis, I.: Hajime: analysis of a decentralized internet worm for IoT devices.
Rapidity Netw. (2016)

14. Li, F.: Blog. https://blog.netlab.360.com/a-few-observations-of-the-new-mirai-variant-on-
port-7547/

An Integrated Architecture for IoT Malware Analysis and Detection 137

https://blog.netlab.360.com/a-few-observations-of-the-new-mirai-variant-on-port-7547/
https://blog.netlab.360.com/a-few-observations-of-the-new-mirai-variant-on-port-7547/

	An Integrated Architecture for IoT Malware Analysis and Detection
	Abstract
	1 Introduction
	2 Architecture Design
	3 Design Details
	3.1 Static Analysis
	3.2 Dynamic Analysis
	3.3 Evolution Analysis
	3.4 Detection and Traffic Analysis

	4 Experiment and Results
	4.1 Static Analysis
	4.2 Dynamic Analysis
	4.3 Evolution Analysis
	4.4 Network Traffic Analysis
	4.4.1 Port Number Statistical Analysis
	4.4.2 Distribution of Infected Areas

	5 Conclusion and Future Work
	References

