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Abstract. Caching in wireless network is an effective method to reduce
the load of backhaul link. In this paper, we studied the problem of wire-
less small cell network caching when the content popularity is unknown.
We consider the wireless small cell network caching problem as a rank-
ing problem and propose a learning-to-rank based caching strategy. In
this strategy, we use the historical request records to learn the rank of
content popularity and decide what to cache. First, we use historical
request records to cluster the small base stations (SBS) through the k-
means algorithm. Then the loss function is set up in each cluster, the
gradient descent algorithm is used to minimize the loss function. Finally
we can get the ranking order of the content popularity for each SBS, and
the files are cached to the SBS in sequence according to the order. From
Simulation results we can see that our strategy can effectively learn the
ranking of content popularity, and obtain higher cache hit rate compared
to the reference strategies.
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1 Introduction

As smart phones and mobile network develop, the main business of wireless
network is transferred from traditional communication services to mobile data
services, this makes the mobile network face heavier and heavier load pressure.
In 5G networks, deploying small base stations in hotspots to relieve the load
pressure of wireless networks is a common method, but there are still lots of
problems to be solved. Especially the limited capacity of backhaul links has
attracted the attention of many scholars. One solution to handle this problem
is to deploy caching devices in wireless network edge devices to cache popular
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content, such as base stations or mobile terminals, so that users can get those
content directly from the caching devices when they request. This method can
not only reduce the backhaul link’s load pressure, but also reduce the file transfer
delay and improve the user satisfaction [1,2,10].

In the wireless network caching technology, how to determine the popular
content is a very important issue. Most of the research uses content popularity
to determine the popular content. However, In the actual system, content pop-
ularity is constantly changing and difficult to get the accurate value in advance.
So how to determine the content of caching without knowing of content pop-
ularity has become the focus of research. In [3], the author consider the cache
problem as a multi-armed bandit problem, and propose a learning based caching
algorithm. Then author in [8] take the context information into consideration.
Author in [12] use the collaborative filtering algorithm in mobile social network,
and propose a learning based caching strategy. But most of these works are focus
on predict the value of content popularity.

When content popularity is already known, many researches modeled the
caching problem as a 0–1 integer programming problem, and many researchers
use greedy algorithm to handle this problem, such as [5,6,9]. Besides, the most
popular caching strategy [8] which always caching the files with highest con-
tent popularity. We can find that many caching strategies are caching the most
popular file or the file have highest gain to the system. So in this paper, we
model the wireless small cell network caching problem as a ranking problem, no
longer focusing on the value of content popularity, but is the ranking relationship
between the content popularity. And we solve this problem by a learning-to-rank
method [11].

The main contribution of this paper are as follows. We model the caching
problem in wireless small cell network as a sorting problem when the system
have no knowledge of content popularity. And we give a learning-to-rank based
algorithm to solve this problem. In the simulation results, we can find that our
strategy can get higher cache hit rate than reference strategies and close to the
optimal strategy.

Rest of this paper is organized as follows: In Sect. 2 we give the system model
and the optimization problem. Section 3 we describe the details of the learning-
to-rank based caching strategy. Section 4 we simulate the propose strategy and
compared with some existing strategies. Finally, we make a summary of this
paper.

2 System Model

We consider a wireless small cell network with M SBSs which are distributed in
one area, assuming that the coverage of these SBSs does not overlap, and each
one of them is equipped with a caching device, which can cache popular files
and connect to the core network through the backhaul link. When a user in a
SBS’s service range requests a file, the system first look for the file on the SBS’s
cache device, if found, it will be sent directly to the user by the SBS. If the file
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is not cached, the SBS will request the file from the core network, then the core
network will send the file to SBS through the backhaul link and send it to the
user.

All users request files from the file library F = {f1, f2 . . . , fN} with a total
number of N , each file have a size of Sf = {s1, s2 . . . , sN}. All the SBS equipped
a cache device with cache memory of S Mb. We assume that the small base
stations in the system are distributed in different areas, such as schools, factories,
office buildings, etc. Therefore, users of different SBS may have different content
preferences, so the content popularity in different SBS is not the same. The
probability that the user is in the service range of each SBS is equal. We use
P ∈ IRM×N to represent the content popularity of all SBSs, which the element
pm,i represents the probability of the user in i-th SBS’s coverage request for
i-th file. And we use the matrix X to represent the cache matrix, the element
xm,i = 1 represents the m-th SBS cached the i-th file, otherwise is 0.

We aim to maximize the cache hit rate in our system, which is the probability
of finding the corresponding file on the SBS’s cache device when the user requests
a file. So the optimization problem for our system is as follows:

max
X

CHR =
1
M

M∑

m=1

N∑

i=1

pm,ixm,i

s.t.
N∑

i=1

sixm,i ≤ S,m = 1, 2, · · · ,M, i = 1, 2, · · · , N

xm,i ∈ {0, 1},m = 1, 2, · · · ,M, i = 1, 2, · · · , N

(1)

We can see that the optimization variable of this optimization problem is a binary
variable. With known of the content popularity P , the optimization problem is
a 0–1 integer programming problem. The 0–1 integer programming problem is a
typical NP problem [7], there are many algorithm can solve this problem, such as
greedy algorithm, branch and bound. But in our system, content popularity P is
not a known parameter, so solving this problem becomes very difficult. In next
section we propose a strategy based on a learning-to-rank to solve this problem.

3 Learning-to-Rank Based Caching Strategy

In this section, we propose a cache strategy based on learning-to-rank. Learning-
to-rank is a kind of machine learning method that used for information retrieval
[4]. We use the historical request record to learn the rank of content popularity
and decide what to cache.

The caching strategy proposed in this section has two steps. The first step is
to cluster the SBSs, which replaces the process of feature extraction in learning-
to-rank [4]. Next step is to determine the caching files of each SBS based on the
historical request record in each cluster by learning-to-rank method.
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3.1 k-means Based Small Base Station Clustering

We cluster the SBSs according to the historical request record R ∈ IRM×N ,
ri,j represents the number of requests to j-th file received by i-th SBS, and
Ri represent the i-th row of the historical request record which is the historical
request record of the i-th SBS. We normalize the historical request record matrix
R, so as to improve the clustering accuracy, and get a new matrix R∗,. Then we
use k-means algorithm to cluster the SBSs, the process is as follows:

(1) We initialize k clusters C1, C2 . . . Ck, and randomly select k rows from R∗ as
the initial centroid μ

(1)
1 , μ

(2)
2 . . . μ

(k)
k of these clusters.

(2) We allocate each SBS into the cluster which have the smallest Euclidean
distance between the SBS’s historical request record and the centroid.

Cm = {R∗
i : ‖R∗

i − μ(t)
m ‖2 ≤ ‖R∗

i − μ(t)
n ‖2, 1 ≤ n ≤ k} (2)

(3) According to the clustering results, we can get the new centroid of each
cluster which is calculated by the follow formula:

μ(t+1)
m =

1
|Cm|

∑

R∗
i ∈Cm

R∗
i (3)

Repeat the step 2 and step 3, until the centroid of all the clusters is
unchanged. Then we can get the cluster results and each cluster’s histor-
ical request record H1,H2 . . . ,Hk. And the SBSs in the same cluster with
similar content popularity.

3.2 Learning-to-Rank Based Caching Algorithm

In this step, we use the learning-to-rank method to enable the base station to
learn the ranking of content popularity and decide what file to cache for each
cluster.

We assume there is a final ranking matrix H∗
m = UTV for each cluster. And

we use the top one probability [4] to calculate the probability of the highest
number of requests for each file, the formula is as follows:

PHm(i)(hm
i,j) =

ϕ(hm
i,j)∑N

n=1 ϕ(hm
i,n)

(4)

The ϕ(x) represents a monotone increasing and constant positive function,
in this paper we define this function as an exponential function.
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Then the cross entropy loss function in our system can be obtained as follows:

L(U, V ) =
Mm∑

i=1

{−
N∑

j=1

PHm(i)(hm
i,j) log PHm(i)(g(UT

i Vj))} +
λ

2
(‖U‖2F + ‖V ‖2F )

=
Mm∑

i=1

{−
N∑

j=1

Iij
exp(hm

i,j)∑N
n=1 Iinexp(hm

i,n)
log

exp(g(UT
i Vj))∑N

n=1 Iinexp(g(UT
i Vn))

}

+
λ

2
(‖U‖2F + ‖V ‖2F )

(5)
where g(x) represents the sigmoid function, which is g(x) = 1/(1 + e−x), and
λ represents the regularization coefficient. The value of the assumed probability
distribution H∗

m can be obtained by minimizing this loss function. In order to We
use the gradient descent algorithm to minimize the loss function, the gradient is
shown in the following form:

∂L(U, V )
∂Ui

=

N∑

j=1

Iij(
exp(g(UT

i Vj))∑N
n=1 Iinexp(g(UT

i Vn))
− exp(hm

i,j)∑N
n=1 Iinexp(hm

i,n)
)g

′
(UT

i Vj)Vj + λUi

∂L(U, V )
∂Vj

=

Mm∑

i=1

Iij(
exp(g(UT

i Vj))∑N
n=1 Iinexp(g(UT

i Vn))
− exp(hm

i,j)∑N
n=1 Iinexp(hm

i,n)
)g

′
(UT

i Vj)Ui + λVj

(6)

We can update the value of U and V until the loss function is convergence, and
the updating formula are as follows:

Ui = Ui − α
∂L(U, V )

∂Ui

Vj = Vj − α
∂L(U, V )

∂Vj

(7)

Finally, we can get the value of U and V , then we can calculate Pi = UT
i V

to get the ranking of the files for each SBS by sort the value of each element of
Pi in descending order. According the ranking of the files for each SBS, we can
cache the files in descending unit the cache memory is filled. The whole process
of our algorithm are given in Algorithm1.
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Algorithm 1. Learning-to-Rank Based Caching Algorithm
1: Inputs: historical request record R,cluster number k
2: Cluster the SBSs by k-means algorithm
3: Get historical request record H1, H2 . . . , Hk

4: for m = 1, 2 · · · , k do
5: initialize the loss function by (5)
6: while Loss function is not convergence do
7: Calculate the gradient by (6)
8: Update U and V by (7)
9: end while

10: for i = 1, 2 · · · ,Mm do
11: Get the ranking of the files by (8)
12: while SM < S do
13: Cache file to the SBS
14: end while
15: end for
16: end for
17: Output: cache matrix X

4 Simulation Results

In this section, we simulate the performance of the proposed strategy and com-
pared it with some existing algorithms.

We assume that there are 100 SBSs which are divided into four categories,
each with a different Zipf distribution file order. Each SBS has different Zipf
distribution parameters, which follow a uniform distribution with a mean of 0.5.
The learning rate of gradient descent algorithm is 0.5, and the regularization
coefficient λ = 0.8. There is 100 files in the file library, and all files with size of
1 Mb. The capacity of the cache device in each SBS is 20 Mb. And each SBS
receive 200 times request from the user to set up the historical request record.
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Fig. 1. Cache hit rate varies with cluster number k.
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To better observe the simulation results of the proposed strategy, we com-
pared our strategy with three existing strategies. First is the OPT strategy,
which let the SBSs known the content popularity in advance and cache the opti-
mal files. Next is the random cache strategy, in this way the SBSs will cache some
files by random. Finally is the collaborative filtering based cache strategy [12],
this strategy uses collaborative filtering algorithm to decide which file should
cache. The idea of the collaborative filtering algorithm is the SBSs have similar
request records will request the same files in the future. All simulation results
are averaged after repeating 1000 times.

In Fig. 1 we simulate the cache hit rate in different number of cluster. From
the Fig. 1, we can see that when the number of clusters k = 1, the SBSs is not
clustered, the cache hit rate of the system is 36% when our strategy is used,
slightly higher than the collaborative filtering strategy. With increase of the
cluster number, the cache hit rate of propose strategy is gradually rising, and it
reaches the maximum of about 44.5% when the number of clusters is between 4
and 5. This is also in accordance with our simulation settings. When the cluster
number is higher than 5, the cache hit rate has decreased, this is because the
number of SBSs in each cluster is decreased. The cluster numbers can be decided
by the elbow method.
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Fig. 2. (a) Cache hit rate varies with Zipf parameter (b) Cache hit rate varies with
historical requests numbers

Next, we analyze the influence of Zipf distribution parameters on the system
performance. From Fig. 2(a) we can see that, when the Zipf parameter is less
than 0.2, the cache hit rate in propose strategy is slightly less than the strategy
based on collaborative filtering. This is because when the Zipf parameter is very
small the request probability of each file is almost same, so it is difficult to
learn the rank of content popularity. With the increase of Zipf parameters, the
cache hit rate obtained in propose strategy is more than the strategy based on
collaborative filtering and close to the optimal strategy. Finally, we present the
simulation results of the cache hit rate varies with the historical request numbers
in Fig. 2(b). In this picture, it can be seen that when the number of requests is
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only 50 times, the proposed strategy can get a cache hit rate of close to 40%.
As the number of requests increase, the cache hit rate of the proposed strategy
is also increasing, and the cache hit rate is about 45% when the number of
requests is 500 times. On the other hand, the performance of strategy based
on collaborative filtering is much lower than random cache strategy, when the
numbers of requests is higher than 300 times, this is because the collaborative
filtering strategy only considers whether the file was requested rather than the
numbers of requests. So we can get the conclusion that the strategy proposed in
our paper has stronger learning ability and can make the system performance
close to the performance of the best strategy by learning.

5 Conclusions

In this paper, we propose a learning-to-rank based caching strategy for wire-
less small cell networks. This strategy consider the wireless small cell network
caching problem as a sorting problem, and the history request record is used to
learn the rank of content popularity. Then the files are cached to the small base
station in sequence according to the order. Simulation shows that this strategy
can effectively learn content popularity ranking, thus caching the appropriate
content, and the performance is close to the optimal cache strategy. Compared
to the reference caching strategy this strategy can adapt to more scenes and
obtain higher cache hit rate.
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