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Abstract. The proliferation demand of mobile users (MUs) for video
contents, which will occupy up to 78% of data traffic by 2021, poses a
serious challenge of system delivery capacity to the macro base stations
(MBSs) and the small cell base stations, e.g., femtocell base stations
(FBSs), in 5G networks. In this paper, we propose a social-aware caching
and resource sharing (SCS) scheme that can help the MBSs and the FBSs
relax the backhaul links and provide the MUs with high system delivery
capacity. Particularly, we formulate an SCS optimization problem under
the constraints on the number of replicas of each video cached in the
FBSs and the target signal to interference plus noise ratio (SINR) of the
cellular users (CUs) that share the downlink resources. This problem is
then solved for maximum system delivery capacity by finding the best
placements to cache the videos in the FBSs and the best device-to-device
(D2D) pairs shared the same downlink resources with the CUs to offload
the videos over D2D communications. Importantly, the behavior of MUs
to access the videos and the social relationship of each D2D pair are
considered in the SCS optimization problem to efficiently improve the
system performance. Simulation results are shown to demonstrate the
benefits of the proposed SCS scheme compared to other conventional
schemes.

Keywords: 5G caching · D2D communications ·
Downlink resource sharing · Social-aware networks · Video delivering

1 Introduction

By 2021, there will be 11.6 billion mobile devices connected to wireless networks,
generating a huge amount of data traffic, i.e., reaching 49 exabytes per month [1].
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In this scenario, video traffic which yields 78% of data traffic will be challenging
for 5G networks to serve mobile users (MUs) high quality of service (QoS). One
of the main challenges is the extremely congestion at the backhaul links of the
macro base stations (MBSs) and the small cell base stations (SCBs). This in turn
degrades the system delivery capacity of 5G networks. To address this challenge,
caching techniques, e.g, caching at MBSs, SCBs, and/or MUs, have been feasibly
proposed for 5G network, without changing network infrastructure [2].

Caching at the MBSs (MBS caching) is a simple method that can reduce the
backhaul traffic, while providing the MUs with high QoS [3,4]. However, it is not
high efficient enough for relaxing the backhaul links under a massive number of
MUs. To further assist MBS caching, caching at SCBs, e.g., femtocaching, has
been studied to gain high system capacity and low latency [5–8]. The congestions
at the backhaul links of the MBSs and SCBs are also reduced by edge caching
technique, namely device-to-device (D2D) caching [9–11]. In addition, the most
efficient caching technique that has been carefully studied is multi-tier caching.
Multi-tier caching enables to cache at all MBSs, SCBs, and MUs simultaneously
to reduce the traffic and the energy consumption at the MBSs [12], increase the
system capacity [13], and deliver the videos to the MUs efficiently [14,15].

Importantly, it is certain that if the impact of social relationship between
the MUs, following the Indian Buffet Model [16,17], is taken in to account, the
performance of caching techniques is significantly improved. In particular, based
on the social-tier factor, the MUs who are of similar interests, enough encounter
duration, and adjacent to each other, will communicate with each other via D2D
communications. The social-tier factor together with video request probability
and distance of D2D pairs obtained from practical cellular networks can be also
exploited to increase the system throughput by caching in D2D networks [18–20].

Motivated by the aforementioned analysis, in this paper, we propose an opti-
mal social-aware caching and resource sharing (SCS) solution that can help the
MBSs and the femtocell base stations (FBSs) relax the backhaul links and pro-
vide the MUs with maximum system delivery capacity. To do so, we take the
advantages of social relationship of D2D pairs and the video popularity to find
both the optimal caching placements at the FBSs and the optimal selections
of each MU (namely cellular user (CU) that share its downlink resource) and
the D2D pairs (that benefit from the downlink resource shared by the CU). We
further consider the target peak signal-to-noise ratio (PSNR) of the CUs to limit
the effect of the interference generated by D2D communications on the CUs, and
thus guaranteeing a high QoS for the CUs.

The rest of this paper is organized as follows. In Sect. 2, we introduce the sys-
tem models consisting of 5G SCS, channel, social, and system delivery capacity
models. Based on the system models, the SCS problem is formulated and solved
in Sect. 3. We present the performance evaluation in Sect. 4. Finally, Sect. 5 con-
cludes the paper.
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Fig. 1. 5G social-aware caching and downlink resource sharing model.

2 System Models

In this section, we first propose the 5G SCS model and describe how it works.
Then, we present the channel models between the MBS and the MUs, the FBSs
and the MUs, and the TXs and the RXs. Afterward, the social model of each
D2D pair is introduced. Finally, the system delivery capacity is derived as the
objective function of the SCS optimization problem.

2.1 5G SCS Model

In this paper, we consider a 5G network of two layers, i.e., device layer and
social layer, as shown in Fig. 1. The device layer consists of one MBS, J FBSs,
(K +2N) MUs, and I videos. There are three types of MUs including K cellular
users (CUs) and N D2D pairs. Each D2D pair has a D2D transmitter (TX) and
a D2D receiver (RX). The CUs share their downlink resources with the D2D
pairs for D2D communications. In this network, an MU can request the videos
regularly from the MBS, the FBSs, or the TXs with videos cached in advance. It
means that besides being served by the MBS, the joint femtocaching and D2D
caching scheme is deployed to further serve the MUs higher system delivery
capacity. Assuming that we consider a scenario where the network parameters



76 M.-P. Bui et al.

remain at least in a maximum video streaming session in a particular area, e.g.,
stadiums, concert or meeting halls, campuses, and office buildings, the detailed
SCS is deployed at the MBS in three steps as follows:

– Step 1 - Updating network parameters: If the network has any significant
changes, the MBS updates the new system parameters, e.g., number of videos
(I), number of CUs (K), number of D2D pairs (N), social relationship of each
D2D pair, system bandwidth, and information of channels, etc.

– Step 2 - Maximizing system delivering capacity: Based on the parameters in
step 1, the MBS formulates the SCS optimization problem and solves it for
optimal caching index uj,i, j = 1, 2, . . . , J , i = 1, 2, . . . , I and optimal sharing
index vk,n, k = 1, 2, . . . , K, and n = 1, 2, . . . , N , for maximizing the system
delivering capacity. Here, uj,i = 1 if the FBS j decides to cache the video i,
otherwise uj,i = 0 and vk,n = 1 if the CU k decides to share its downlink
resource with the D2D pair n, otherwise vk,n = 0.

– Step 3 - Caching videos and sharing downlink resource: After solving the SCS
optimization problem, the MBS assigns which FBS to cache which video and
which CU to share its downlink resource to which D2D pairs, for delivering
the videos to the MUs.

2.2 Channel Model

For the ease of modelling the channels, the channel splitting and F-ALOHA
[21,22] are used to control the cross-tier and co-tier interference due to the
overlaid problem of the MBS and the FBSs. A CU can share its downlink resource
with any D2D pair of TX and RX. During the resource sharing, the transmissions
of the MBS and the TXs have interference effects on the RXs and the CUs,
respectively. We denote Gs,d

S,D as the channel gains between S and D; here S ∈
{M,F,T} standing for {MBS, FBS, TX} and D ∈ {C,T,R} standing for {CU,
TX, RX}; s ∈ {j, n}, j = 1, 2, . . . , J except that j = 0 indicates the MBS,
n = 1, 2, . . . , N and d ∈ {k, n}, k = 1, 2, . . . , K. The Gs,d

S,D is modeled as [22]

Gs,d
S,D = hs,d

S,Dgs,dS,D, (1)

where hs,d
S,D is the exponential power fading coefficient and gs,dS,D = ||h||−ξ is the

standard power law path loss function in which ξ is the path loss exponent, h is
the distance between S and D, and ||.|| is the Euclidean norm.

2.3 Social Model

We take the social model, i.e., social relationship between the TX and the RX
of the D2D pair n, into account to compute the probability that if this pair has
a relationship close enough or not, for offloading the video i of duration T i

min.
To do so, let Xm be the contact duration of the D2D pair n and Xn be the
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number of encounters, m = 1, 2, . . . ,Xn, the expected contact duration Mn and
the variance Vn are sequentially given by [16,17]

Mn =
∑Xn

m=1 Xm

Xn
(2)

and

Vn =
∑Xn

m=1(Xm − Mn)2

Xn
. (3)

By following [18,23–25], we have the encounter duration distribution mod-
elled as gamma distribution expressed as

X ∼ Γ (κn, θn) = Γ (M2
n/Vn, Vn/Mn) (4)

and the probability density function (PDF) is defined as

f(x;κn, θn) =
1

θκn
n

1
Γ (κn)

xκn−1e− x
θn , (5)

where Γ (κn) =
∫ ∞
0

tκn−1e−tdt.
Thus, the probability that the D2D pair n is qualified to offload the video i

of duration T i
min, is given by

si
n = 1 −

∫ δT i
min

0

f(u;κn, θn)du = 1 − γ(κn,
δT i

min

θn
)

Γ (κn)
, (6)

where δ ≥ 1 is added to flexibly adjust the duration of all videos and

γ(κn,
δT i

min

θn
) =

∫ δT i
min
θn

0 tκn−1e−tdt.

2.4 System Delivery Capacity

The system delivery capacity is defined as the total throughput delivered from
the MBS, FBSs, and TXs to the MUs. The system delivery capacity is computed
by analyzing the signal to interference plus noise ratio (SINR) of the channels
from the MBS, FBSs, and TXs to the MUs, presented in the sequel.

Capacity Delivered to the CUs: The CU k can share its downlink resource
with the D2D pair n and receive the video from the MBS or the FBSs. The SINRs
of the channels from the FBS j and the MBS to the k-th CU are respectively
given by

γj,k,i
F,C =

uj,iP
j
FGj,k

F,C

N0
(7)

and

γ0,j,k,i
M,C =

(1 − uj,i)P 0
MG0,k

M,C

N0 +
∑N

n=1 si
nvk,npn,iPn

T Gn,k
T,C

. (8)
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In (7), if the FBS j decides to cache the video i (uj,i = 1), the CU k is served
by the FBS j over the channel capacity characterized by the transmission power
of the FBS j (P j

F ), the channel gain between the FBS j and the CU k (Gj,k
F,C ),

and the power of additive white Gaussian noise (AWGN)(N0). In (8), otherwise
(uj,i = 0), the CU k is served by the MBS over the channel capacity characterized
by the transmission power of the MBS (P 0

M), the channel gain between the MBS
and the CU k (G0,k

M,C), the interference affected by the transmission power of the
TX n (Pn

T ) over the channel gain between it and the CU k (Gn,k
T,C) if the CU k

agrees to share the downlink resource with the D2D pair n (vk,n = 1), and the
AWGN (N0). In addition, pn,i is the probability of the TX n to cache the video
i, which depends on the access rate (i.e., the popularity) of the video i (ri) and
the percentage of available storage of the TX n (βn), defined as

pn,i = ari + bβn, (9)

where a, b ∈ [0, 1], a + b = 1, and by following Zipf-like distribution [26], the
access rate of the video i, which represents the behavior of the MUs toward the
video i, is defined as

ri =
i−α

∑I
i=1 i−α

, (10)

here α ≥ 0 represents the skewed access rate among different videos.
By using Shannon-like capacity, given the system bandwidth W , the capacity

delivered to the CUs is expressed as

RC = W

J∑

j=1

K∑

k=1

I∑

i=1

ri

[

log2
(
1 + γ0,j,k,i

M,C

)
+ log2(1 + γj,k,i

F,C )
]

. (11)

Capacity Delivered to the TXs: Because the TXs are not affected by the
interference from others, the SINRs of the channels from the FBS j and the
MBS to the TX n are simply given by

γj,n,i
F,T =

uj,iP
j
FGj,n

F,T

N0
(12)

and

γ0,j,n,i
M,T =

(1 − uj,i)P 0
MG0,n

M,T

N0
, (13)

where Gj,n
F,T and G0,n

M,T are the channel gains from the FBS j and the MBS to the
TX n.

Similarly, the capacity delivered from the FBS j and the MBS to the TX n
is expressed as
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RT = W
J∑

j=1

N∑

n=1

I∑

i=1

ri

[

log2
(
1 + γ0,j,n,i

M,T

)
+ log2(1 + γj,n,i

F,T )
]

. (14)

Capacity Delivered to the RXs: The capacity delivered to the RX n come
from not only MBS and the FBS j but also the TX n. The SINRs of the channels
from the TX n, the FBS j, and the MBS to the RX n are given in sequence as
follows:

γn,k,i
T,R =

si
nvk,npn,iP

n
T Gn,n

T,R

N0 + P 0
MG0,n

M,R +
∑N

l=1,l �=n si
lvk,lpl,iP l

TGl,l
T,R

, (15)

γj,n,k,i
F,R =

uj,i(1 − si
nvk,npn,i)P

j
FGj,n

F,R

N0
, (16)

and

γ0,j,n,k,i
M,R =

(1 − uj,i)(1 − si
nvk,npn,i)P 0

MG0,n
M,R

N0
, (17)

where Gn,n
T,R, G0,n

M,R, and Gj,n
F,R are the channel gains from the TX n, the MBS,

and the FBS j to the RX n, respectively. In (15), the RX n is affected by the
interference from not only the MBS but also the others TX l �= n, l = 1, 2, . . . , N .

So far, the capacity delivered from the MBS, the FBS j, and the TX n to
the RX n is respectively expressed as

RR = W

N∑

n=1

K∑

k=1

I∑

i=1

ri

[ J∑

j=1

(
log2(1 + γ0,j,n,k,i

M,R )

+ log2(1 + γj,n,k,i
F,R )

)
+ log2(1 + γn,k,i

T,R )
]

.

(18)

Finally, from (11), (14), and (18), the overall average system delivery capacity
per each MU is given by

R =
RC + RT + RR

K + 2N
. (19)

Solving the SCS optimization problem for maximum R in (19) by finding the
optimal caching index uj,i and optimal sharing index vk,n is presented in the
following section.

3 SCS Optimization Problem and Solution

To formulate the SCS optimization problem and solve it for maximizing the
system delivery capacity R (19) by finding uj,i and vk,n, we further consider
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Algorithm 1. Exhaustive matrix search
Input: Initial parameters given in Table 1
Output: R∗, u∗

J×I, v
∗
K×N

1: Generating two feasible matrix search spaces U ′ ∈ U and V ′ ∈ V that satisfy (21)
2: R ← ∅

3: for each matrix uJ×I in U ′ do
4: for each matrix vK×N in V ′ do
5: R(uJ×I , vK×N ) = R, computing (19)
6: R ← R ∪ R(uJ×I , vK×N )
7: end for
8: end for
9: R∗ = max R

10: {u∗
J×I,v

∗
K×N} = argmax R

the constraints on the number of replicas of each video (c∗
i ) due to the limited

storage capacity of the FBSs and the target SINR of the CUs (γ0). The SCS
optimization problem is expressed as follows:

max
uj,i,vk,n

R (20)

s.t.

⎧
⎪⎨

⎪⎩

∑J
j=1 uj,i ≤ c∗

i , i = 1, 2, . . . , I
∑N

n=1 si
nvk,npn,iP

n
T Gn,k

T,C ≤ P 0
M G0,k

M,C

γ0
− N0,

k = 1, 2, . . . ,K, i = 1, 2, . . . , I,

(21)

where c∗
i in the first constraint, which is found such that the average number of

replicas in the FBSs is maximized for high video hit rate, is given by

c∗
i = arg max

1≤ci≤J,i=1,2,...,I
∑I

i=1 ci≤C∗,1≤C∗≤IJ

I∑

i=1

rici, (22)

here C∗ is used to limit the number of replicas cached in the FBSs. The linear
programming optimization problem (22) can be solved by using primal-dual
interior point method [27,28]. In addition, the second constraint of (21) comes
from (8) by letting γ0,j,k,i

M,C ≥ γ0 and ignoring the term (1 − uj,i). It means that
the higher value the γ0 increases, the higher SINR the CUs gain.

It can be observed that finding the optimal caching and sharing indexes,
i.e., uj,i and vk,n, is equivalent to finding the two optimal matrices u∗

J×I

and v∗
K×N in the two matrix search spaces: U = {u1

J×I , u
2
J×I , . . . , u

2J×I

J×I } and
V = {v1

K×N , v2
K×N , . . . , v2

K×N

K×N }, respectively. In this paper, exhaustive matrix
search, which is described in Algorithm 1, is used to solve (20) and (21) for
u∗
J×I and v∗

K×N [15]. The memory and time complexities of the Algorithm 1 are
O(2J×I+K×N ). In case of large scale of 5G networks, it is impractical to search
the total space of 2J×I+K×N matrices done at the MBS, the search space is
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Table 1. Parameters setting

Symbols Specifications

I 4 videos

J 3 FBSs

K 3 CUs

N 5 D2D pairs

{θn} {20, 20, 20, 20, 20} [16]

{κn} {1, 1, 1, 1, 1} [16]

{T i
min} {15, 20, 10, 5} s

δ 10

α 1

W 5 MHz

P 0
M 5 W

P j
F Fixed to 1 W

Pn
T Fixed to 0.1 W

γ0 10 dB

N0 10−13 W

ξ 4 (path loss exponent)

{βn} {0.1, 0.3, 0.5, 0.7, 0.9}
a, b 0.5, 0.5

C∗ 8

divided into multiple sub-search spaces. An FBS is then assigned a sub-search
space for deploying exhaustive matrix search separately to obtain a sub-optimal
solution. Finally, all the FBSs send the sub-optimal solutions to the MBS for
finding the global optimal solution.

4 Performance Evaluation

In this paper, we simulate the system by deploying the parameters as shown
in Table 1. In addition, the distances from the MBS to the MUs, the FBSs to
the MUs, the CUs to the TXs, and the TXs to the RXs, are randomly dis-
tributed from 100 m to 500 m, 50 m to 250 m, 50 m to 100 m, and 1 m to 50 m,
respectively. To evaluate the system performance of our proposed optimization
solution (SCS), we compare SCS to the other three schemes, i.e., none down-
link resource sharing (None-DRS), average system delivery capacity (AVE)
and minimum system delivery capacity (MIN). In None-DRS, there is no
downlink resource shared by the CUs; in AVE, the system delivery capacity is
averaged over the total number of the two feasible matrices generated in the
step 1 in the Algorithm 1; and in MIN, the minimum system delivery capacity
is min R instead of max R in the step 9 of the Algorithm 1.
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Fig. 2. Capacity performance versus δ.

We first evaluate the performance of SCS, None-DRS, AVE, and MIN
versus different duration set of all the considered videos by changing δ from 1 to
30. The results in Fig. 2 show that the system delivery capacity increases if we
increase δ from 1 to 10, but it decreases if we continue to increase δ. The reason
is that if δ is too low (or high), the probability of D2D communications is too
high (or low). Both high probability of D2D communications (high interference
impact on the CUs) and low probability of D2D communications (not exploiting
D2D communications for offloading the videos) result in low system delivery
capacity. So, the system delivery capacity gains the highest value at a certain
value of δ, i.e., δ = 10. It interestingly means that the duration of videos can be
adjusted to meet the social relationship of the D2D pairs, and thus obtaining
the highest system delivery capacity. Obviously the performance of None-DRS
is not affected by δ. In comparison, the proposed SCS is better than the others
and reduced to the performance of None-DRS if δ is too low (or high); and
None-DRS outperforms AVE and MIN schemes.

Figure 3 shows the performance of system delivery capacity versus the skewed
access rate among different videos by changing α from 0 to 2. We can see that
exploiting the skewed access rate improves the system performance. And thus,
while SCS increases the system delivery capacity with respect to the increase
of α, AVE and MIN decrease it. The results obviously imply that serving
less number of high popular videos, i.e., high access rate, yields high system
performance. The performance of None-DRS is higher than AVE and MIN
and mostly not affected by α due to too less number of videos deployed. And, our
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Fig. 3. Capacity performance versus α.
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Fig. 4. Capacity performance versus number of D2D pair.

SCS provide higher system delivery capacity compared to None-DRS, AVE,
and MIN schemes.

In Fig. 4, the system performance is investigated by changing the number
of D2D pairs N from 0 to 5. If N = 0, the SCS and None-DRS have the
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Fig. 5. Capacity performance versus γ0.

same result because the system delivery capacity comes from the MBS and the
FBSs to serve only the CUs. The system delivery capacity clearly increases and
becomes saturated with the help of D2D communications when we increase N .
The results demonstrate that SCS gains the best performance and None-DRS
is better than AVE and MIN. In addition, we should select a proper number of
D2D pairs such that the PSNR of the CUs is guaranteed and the system delivery
capacity is high enough, i.e., before getting saturated.

Finally, we investigate the system performance under the impact of the target
SINR of the CUs γ0. As shown in Fig. 5, the system delivery capacity of SCS
decreases and approaches None-DRS when γ0 increases. The reason is that
if γ0 is low, more D2D pairs are shared the downlink resource from the CUs
to offload the videos for higher system delivery capacity, otherwise, less D2D
pairs are for offloading with lower system delivery capacity. However, the system
delivery capacity of MIN increases because when γ0 increases, more candidate
matrices that cause higher interference impact on the CUs are removed from the
search space V. Under the parameters set in Table 1, the decrease of SCS and
the increase of MIN make AVE slightly increases. It can be seen obviously that
the results of None-DRS are not affected by γ0 because there is no interference
impact from D2D communications on the CUs. In this scenario, the proposed
SCS also surpasses the other three schemes and None-DRS outperforms AVE
and MIN.
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5 Conclusion

In this paper, we have proposed a social-aware caching and resource sharing
optimization solution for video delivering at high capacity in 5G networks. In
particular, the social relationship of D2D pairs is exploited to optimally cache
the videos in the FBSs and to share the downlink resource of the CUs with
the D2D pairs for maximizing the system delivery capacity. The optimization
solution is carefully analyzed by taking into account the access rate (i.e., the
popularity) of the videos and the target PSNR of the CUs for higher system
performance. The interesting result obtained is that a proper duration set of
videos selected in accordance with a given set of social relationship of D2D pairs
can provide the highest system delivery capacity.
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