l‘)

Check for
updates

An ns-3 MPTCP Implementation

Kashif Nadeem and Tariq M. Jadoon®

Electrical Engineering Department,
Syed Babar Ali School of Science and Engineering,
Lahore University of Management Sciences, Lahore, Pakistan
kshfnadeem@gmail.com, jadoon@lums.edu.pk

Abstract. Multipath TCP (MPTCP) achieves greater throughput by
sending packets from a single byte stream across multiple interfaces and
thus, potentially exploits multiple available network paths. This allows
end hosts to aggregate bandwidth and network resources. Network simu-
lators such as ns-3 [1] provide researchers with a convenient tool to evalu-
ate protocols and architectures and their importance can not be overem-
phasized. There are currently 3 existing implementations of MPTCP in
ns-3. We evaluate these implementations and find that they lack sev-
eral key features and are therefore, inadequate for furthering research.
We implement MPTCP in ns-3-dev (Developer’s version) and introduce
multiple path managers namely default, ndiffports and fullmesh creating
an MPTCP patch for ns-3 [2]. The simulation results show improvements
in throughput and Flow Completion Times (FCTSs) in comparison with
previous work. Our implementation [3] is compatible with the current
version (ns-3.29).

Keywords: MPTCP - ns-3 - Computer networks - Simulator

1 Introduction

Applications such as Facebook, Google, etc., require low latency and place
bounds on the response time of a query initiated by a user. Excessive delays
in response time of queries impact revenue and user experience. Transmission
Control Protocol (TCP) [4] fails to provide high throughput to large flows and
complete latency sensitive flows within time bounds. As TCP only uses a single
interface of an end host even if other interfaces available, it thus, under utilizes
network resources. In recent years, a number of transport layer protocols have
been proposed to improve throughput such as, DCTCP [5], D2TCP [6], PIAS
[7], etc. However, these protocols also use a single interface and do not exploit
multiple interfaces even if available.

Modern network devices such as computers, smart phones and tablets typi-
cally have more than one network interface and can thus, be multihomed. Smart
phones have wi-fi and 3G /4G interfaces whilst, laptops have Ethernet and wi-fi

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved

T. Q. Duong et al. (Eds.): Qshine 2018, LNICST 272, pp. 48-60, 2019.
https://doi.org/10.1007/978-3-030-14413-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14413-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-14413-5_4

An ns-3 MPTCP Implementation 49

interfaces. Previous studies have shown that simultaneously using multiple inter-
faces can achieve higher throughput and can complete large flows in a shorter
time [8-11]. Multipath TCP uses the available interfaces of a network device
to send application data to the destination through multiple network paths.
MPTCP splits the application data stream amongst subflows whereby, each sub-
flow follows a path based on a 5-tuple: source IP, destination IP, source port,
destination port and layer-4 protocol. These sub-flows can be routed over dif-
ferent paths by using routing protocols such as Equal-Cost Multi-Path (ECMP)
[12]. The subflows can follow the same network path or different paths depending
upon the availability of paths between the two hosts. MPTCP aggregates the
bandwidth of available links to the hosts by applying the concept of Resource
Pooling i.e., the available resources or links appear as a single logical resource or
link to the host [8]. Multipath TCP has been implemented in several operating
systems such as Linux, Apple ios7, Mac and FreeBSD. Furthermore, MPTCP
can be deployed in data centers [13] and better exploits data center topology,
effectively utilizes available bandwidth and provides improved throughput.

The balance of the paper is organised as follows. In Sect.2 we describe the
architecture and design of MPTCP from RFCs. In Sect. 3, we discuss the avail-
able implementations of MPTCP in different ns-3 versions. Furthermore, we
discuss compatibility issues and missing features of these implementations. In
Sect. 4, we briefly discuss why there is a need to implement MPTCP in the lat-
est ns-3 tree and provide an overview about changes in TCP classes and discuss
our implementation procedure. In Sect. 5, we describe simulation experiments to
compare our implementation with Coudron et al. [14]. We finish with conclusions
and directions for future work.

2 MPTCP Details from RFCs

This section provides a brief overview of MPTCP architecture, design and com-
patibility issues.

2.1 MPTCP Architecture and Path Managers

RFC 6182 [15] provides an architectural overview of MPTCP and discusses com-
patibility challenges with the existing network stack and middle boxes. MPTCP
explores possible paths by using all available interfaces (IPs) at source and des-
tination hosts.

In Fig.1, Host A and B have two network interfaces each with unique IP
addresses. MPTCP can thus, exploit four possible paths: A1-B1, A1-B2, A2-
B1 and A2-B2 and moreover, can establish subflows on each path. These paths
are not necessarily disjoint therefore, subflows may traverse the same link or the
same path. The number of available paths depends upon the underlying physical
network between the end hosts. MPTCP conveys protocol specific information
in the header through the TCP options field. Middle boxes such as Network
Address Translators (NATSs), Performance Enhancing Proxies (PEPs), Intrusion

50 K. Nadeem and T. M. Jadoon

Al ; B1
HOST A { HOST B
! B2
A2
Internet

Fig. 1. Simple multipath scenario

Detection Systems (IDs) and Firewalls can potentially rewrite the TCP options
or may drop a connection upon seeing unknown TCP options. RFC 3234 [16]
mentions that a protocol designed without considering middle boxes can fail in
the presence of middle boxes and suggests architectural design goals for new pro-
tocols and middle boxes. MPTCP design enforces the consideration of middle
boxes so that subflows appear as legacy TCP flows to middle boxes. RFC 6897
[17] describes compatibility issues of MPTCP with existing applications and pro-
vides an application interface for MPTCP to work with legacy applications. This
new design is based on the “Transport next-generation” (Tng) model [18]. The
Tng model splits the transport layer into a “Semantic” layer which supports and
implements functionality for the application layer and a “Flow+Endpoint” layer
which manages the network-oriented part of the transport layer. The implemen-
tation of a network-oriented part in the transport layer enables the end hosts
to interact with middle boxes as if they are working with legacy TCP. Figure 2
shows the Tng decomposed model of the internet and MPTCP protocol stack.

Application Application
Semantic MPTCP
Flow+ | Flow+ | | Subflow | Subflow
End-Point | End-Point (TcP) | (TCP)
Network Network IP IP

Fig. 2. Tng model (left) vs MPTCP model (right)

MPTCP implements several functions such as path management, packet
scheduling, subflow interface and congestion control to create and manage sub-
flows among multihomed hosts. Path Management is a core function of MPTCP
which upon initial setup of the MPTCP connection creates subflows between

An ns-3 MPTCP Implementation 51

the two end hosts. The Linux Kernel Implementation [19] provides four path
managers. Users can select any one of them at compile time:

— Default: In default mode, the path management mechanism doesn’t create
new subflows. Hosts neither advertise IP addresses nor create new subflows
however, passive creation of subflows is supported.

— Fullmesh: With this Path manager, multihomed hosts advertise addresses
to peers and create a complete mesh of new subflows across all possible pairs
of IP addresses. Considering the scenario depicted in Fig. 1; a fullmesh path
manager will create four subflows between IP pairs: A1-B1, A1-B2, A2-B1
and A2-B2. Thus, the number of subflows is limited by number of the IP
pairs.

— ndiffPorts: This path manager initiates subflows between the same IP pair
using different source and destination ports. It can hence create any number
of subflows between a pair of IP addresses such as A1-B1 shown in Fig. 1.
The number of subflows created is controlled through a parameter.

— Binder: This path manager [20] uses Loose Source and Record Routing
(LSRR) without modification of the end-user devices. Binder provides a list
of available gateways to MPTCP subflows and ensures that subflows visit
these gateways and explore all available paths in the network. The packets of
subflows are distributed over the network using relays and proxies to explore
available network paths.

2.2 MPTCP Design

RFC 6824 [21] provides a detailed description of MPTCP connection estab-
lishment, subflow initiation and MPTCP options used to carry information
across the internet. Internet Assigned Numbers Authority (IANA) added a new
TCP option for MPTCP with the symbolic name “Kind” with a 4-bit subtype
field providing “MPTCP Option Subtypes”. MPTCP option subtypes include
MP_CAPABLE, MP_JOIN, ADD_ADDR, MP_FAIL, DSS, etc. Here we briefly discuss
connection setup, subflow initiation and data sequence mapping.

— MPTCP connection setup: End hosts use the traditional 3-way TCP
handshake mechanism SYN, SYN/ACK, ACK but each packet contains an
MP_CAPABLE option as shown in Fig. 3. Moreover, the packets include a sender’s
key and a receiver’s key that are used in future for the creation of new sub-
flows. This MPTCP handshake ensures that the receiver and middle boxes
are MPTCP capable. If any received packet doesn’t contain the MP_CAPABLE
option then it means that either the receiver or middle boxes are not MPTCP
capable and the connection falls back to regular TCP.

— Creating new subflows: After the establishment of an MPTCP connection,
hosts can create subflows when the first DATA_ACK is received through the
Data Sequence Signaling (DSS) option. The connection initiation messages
SYN, SYN/ACK and ACK include MP_JOIN. The sender sends a 32-bit token
generated by SHA-1 from the receiver’s key with the SYN packet to asso-
ciate subflows with the MPTCP connection. Senders and receivers exchange

52 K. Nadeem and T. M. Jadoon

Host A Host B
Address A1 Address B1

SYN + MP_CAPABLE (Key A)

_______________________ >
Fig.3. MPTCP 3-way handshake
Host A Host B
Address A2 Address B1

SYN + MP_JOIN (Token-B, R-A)

Fig. 4. Subflow initiation from multi addressed Host A

An ns-3 MPTCP Implementation 53

a nonce and Hashed Message Authentication Code (HMAC) for connection
authentication. Any packet received without a MP_JOIN will result in falling
back to traditional TCP. The subflow initiation process between host A with
address A2 and host B with address B1 is shown in Fig. 4.

3 Existing MPTCP Implementations in ns-3 and Their
Shortcomings

This section briefly describes the available ns-3 implementations of MPTCP and
discusses their shortcomings.

3.1 ns-3 Implementations of MPTCP

At present, three implementations of MPTCP are available in ns-3. MPTCP was
first implemented in ns-3 by Chihani et al. [22] in ns-3.6. The TCP stack was
rewritten in ns-3.8 which makes this implementation incompatible with later ns-
3 versions and is now obsolete. In this implementation, the sender and receiver
do not exchange keys to associate new subflows with the MPTCP connection.
They also didn’t follow an authentication process for subflows through nonces
and HMACs as described in [21].

The second implementation of MPTCP is in ns-3.19 by Kheirkhah et al.
[23] and follows the Linux kernel implementation of MPTCP [24]. The authors
create a MpTcpSocketBase class; which is a subclass of the TcpSocketBase class.
Upon a successful MPTCP connection a MPTCP socket is created that provides
an interface between the application and TCP flows. The MpTcpSocketBase
object controls path management, scheduling, packet reordering and congestion
control algorithms, etc. Another class MpTcpSubflow defines TCP subflows that
communicate with the network layer. These two MPTCP implementations [22,
23] lack several features such as backward compatibility with the TCP stack
and support a subset of MPTCP options as listed in Table 1 in [14]. The ns-3.19
implementation doesn’t implement HMAC based authentication for subflows
as shown in Fig.4 and also lacks support for TCP timestamps, window scale
options, congestion control algorithms such as Scalable, H-TCP, TCP Vegas,
etc. Moreover, ns-3.19 lacks many new TCP features making it less appealing
to the research community. In later ns-3 versions, TCP classes have changed
substantially which makes this implementation incompatible with newer ns-3
versions.

The third implementation of MPTCP is in ns-3.23 by Coudron et al. [14].
This implementation covers several deficiencies of the previous implementations
as shown in Table 1 in [14]. The MPTCP connection starts with a TCP socket and
the client sends a SYN + MP_CAPABLE option with its key. The server receives
SYN packet and then upgrades to a MPTCP socket if it is MPTCP capable
and replies with a SYN/ACK + MP_CAPABLE option along with its server
key. The client upon receiving SYN/ACK upgrades to a MPTCP socket and
replies with an ACK completing the 3-way MPTCP handshake. This MPTCP

54 K. Nadeem and T. M. Jadoon

socket provides an interface between the application and TCP subflows for packet
scheduling, reordering and retransmission, etc. Round robin and fastest RTT
schedulers are implemented and divide the application byte stream into segments
for transmission on established subflows.

3.2 Problems with the ns-3.23 [14] Implementation

Coudron et al. [14] MPTCP implementation faces two kinds of problems:

Missing and Incomplete Features. Although, this implementation covers
several deficiencies of [22,23] as shown in Table1 in [14] yet it still lacks several
basic MPTCP components shown in Table 1. This implementation doesn’t imple-
ment path management discussed in Sect. 2.1 which is a core MPTCP function.
Without path managers MPTCP behaves just like single-path TCP and doesn’t
create subflows even if hosts are multi-homed and multi-addressed. Coudron
et al. [14] implementation creates a master subflow to transmit an application
byte stream but subsequently does not create further subflows. Although there
are three classes for MPTCP congestion control i.e., MpTcpCongestionCoupled,
MpTcpCCOlia and MpTcpCCUncoupled, they are incomplete and not functional.
Furthermore, this implementation also lacks the MP_FAIL option, infinite map-
ping, checksums and MP_PRIO.

Compatibility Issues. ns-3 is a continuously evolving project wherein each
new version potentially introduces new models and classes as well as modi-
fies existing models and classes. ns-3.25 refactored TCP removing, modifying
and appending some TCP classes, functions and variables. Furthermore, ns-3.25
introduced new congestion control classes as well as Active Queue Management
(AQM), policing and packet filtering. Similarly, ns-3.26 introduced new conges-
tion control classes such as TCP Vegas, Veno, H-TCP and Illinois, etc. for legacy
TCP. Several new queueing models such as Linux-like pfifo_fast, FQ_CoDel,
Byte Queue Limits, Adaptive RED have been added in the Traffic Control
Module. Moreover, ns-3.26 implements Fast retransmit and Fast recovery as
described in RFC 5681 [25]. ns-3.27 incorporates SACK and LEDBAT in the
TCP model amongst other models. ns-3.28 added IPV6 support for LTE, TCP

Table 1. A comparison of features in various MPTCP implementations

Features Kheirkha et al. Coudron et al. | ns-3-dev MPTCP

Path managers Default, fullmesh, | None Default, ndiffPorts,
ndiffPorts fullmesh

Subflow creation Yes No Yes

Congestion control | Yes No No

Compatibility® No No Yes

aCompatibility with current ns-3 stack

An ns-3 MPTCP Implementation 55

pacing, FIFO and TBF queue, etc. These changes in TCP classes make Coudron
et al. [14] incompatible with the current ns-3 stack. Thus, older ns-3 versions
lack many networking components and features making them less attractive for
present research work.

4 Our MPTCP Implementation in ns-3-dev

This section discusses our MPTCP implementation. We briefly discuss changes
in TCP classes and describe the upstreaming process.

4.1 Why MPTCP into ns-3-dev?

A common problem with all three previous implementations is that they are
incompatible with the current ns-3 stack. Because of this limitation, these imple-
mentations are unable to use the latest ns-3 models. Our ns-3-dev implementa-
tion is current with the ns-3 tree (ns-3-dev) and is compatible with the latest
version ns-3.29 as well as potentially compatible with the future ns-3 versions.

4.2 Changes in TCP Stack of ns-3

As described earlier, the ns-3 TCP stack is rapidly evolving. The ns-3 TCP stack
was rewritten in ns-3.8 and later refactored in ns-3.25 resulting in major changes
and modifications to several functions and variables in TCP classes. There are
many noticeable enhancements to TCP classes. Several functions have been mod-
ified and although they have the same name as in previous versions of ns-3 they
contain different parameters.The TcpSocketBase class has had major changes
over the evolution of ns-3. The class no longer handles congestion control and
new congestion control classes that are subclasses of the TcpCongestionOps class
have been introduced. The TcpSocketState class keeps track of the congestion
state of a connection. Congestion control related variables such as m_highTxMark,
m_nextTxSequence, etc., have been moved from the TcpSocketBase class into
the TcpSocketState class. Furthermore, new variables for congestion control such
as m_bytesInFlight, m_pacing, m_rcvTimestampValue, m_lastRtt, etc., have been
introduced in the TcpSocketState class. Several variables have been added to the
TcpSocketBase class such as m_highTxAck, m_bytesInFlight, m_dataRetrCount,
m_dataRetries, m_sndScaleFactor, m_rcvScaleFactor, etc. Furthermore,
some functions have been removed from TcpSocketBase such as FirstUnacked-
Seq(), GetRttEstimator(), SendEmptyPacket (TcpHeader& header),
UpdateTxBuffer(), etc. Whereas, several new functions have been added such as
UpdateRttHistory(), UpdateCwndInfl, Limited Transmit (), FastRetransmit (),
etc. Selective Acknowledgments (SACK) and Explicit Congestion Notification
(ECN) have also been incorporated into the TCP stack in ns-3. The TcpTxBuffer
class has been updated in accordance with RFCs and the Linux operating system
to implement mechanisms for SACK and management of bytes in flight.

56 K. Nadeem and T. M. Jadoon

4.3 Upstreaming Process

We used Coudron et al. implementation [14] as base code and upstreamed it into
the current ns-3-dev by making the necessary modifications to relevant classes.
During the process, we have tried to minimize dependencies of MPTCP classes
i.e., MpTcpSocketBase, MpTcpSubflow, TecpOptionMpTep, etc. on TCP classes.
We have also made appropriate changes to the TcpL4Protocol, TecpRxBuffer and
TcpSocketBase classes to make existing MPTCP code compatible with ns-3-dev.
While compiling MPTCP code we faced two types of errors: compiler related
errors and incompatibility related errors with the TCP stack.

4.4 Path Management Implementation

Path management is a critical functionality of MPTCP and was missing in the
previous ns-3.23 implementation. We implement a path management compo-
nent to initiate subflows for three path managers default, ndiffPorts and
fullmesh as described in Sect.2.1. New classes MpTcpNdiffPorts and MpTcp-
FullMesh were created for ndiffports and fullmesh path manager. Figureb
describes the path management component of MPTCP. When a client receives
the first DSS ACK it initiates path managers as described in RFC 6824 [21]. The
user can configure a path manager prior to simulation. By selecting the ndiff-
ports path manager one can control the number of subflows through a socket
API MaxSubflows. Similarly, the fullmesh path manager creates a full-mesh of
subflows amongst all available IP addresses at the sender and receiver.

[MPTCP Connection Establishment]

l

[MPTCP Path Management]

ndiffPorts
MaxSubflows = n

| /1 sfl | /1
<w=(a1) . (& a < q
: -

no subflows
created

Fig. 5. Path managers functional diagram

5 Simulation

In order to evaluate the efficacy of our implementation, we compare simulation
results with Coudron et al. [14]. We simulate a scenario where a multihomed

An ns-3 MPTCP Implementation 57

client is connected to a Wide Area Network (WAN) with two network inter-
faces i.e. Ethernet and wi-fi. The client connects to routers with links having a
bandwidth of 2 Mbps each while, all other links have a bandwidth of 2.4 Gbps
as shown in Fig.6. We enable per packet ECMP to route packets through the
network.

2Mbps/1ms . 2.4Gbps/10ms 2.4Gbps/10ms
¥ b4 4

2.4Gbps/10ms >

> client ! Server NN
4 <
—— P
2Mbps/1ms 2.4Gbps/10ms
2.4Gbps/10ms

Fig. 6. Simulation topology

N

Goodput (Mbps)

A R R R

T Y

Y

Y
T Y

Nm\\v
2R R R R R R R R R R R R R AR RRRRRR R |

N)
w
IS
[
)
~
©

Number of subflows

ns-3.23 Ens-3.26

Fig. 7. Goodput for long flows

The client sends a large file to the server and we record the bytes received by
the server for different number of MPTCP subflows. We then plot the goodput
achieved by the MPTCP connection with different number of subflows as shown
in Fig. 7. It is evident that with an increase in the number of MPTCP subflows
the achieved goodput increases both with ns-3-dev and Coudron et al. [14] imple-
mentations. However, the ns-3-dev MPTCP achieves better goodput for less than
8 subflows and this can be attributed to TCP’s fast retransmit and fast recovery
as well as other enhancements made in ns-3. Notice that, the goodput saturates

58 K. Nadeem and T. M. Jadoon

to approximately to 4 Mbps. Plain TCP performs poorly whereas, increasing the
number of subflows allows better utilization of the available capacity. The results
are in the same vein as [13]. Furthermore, we perform simulations for short and
long flows for the same topology shown in Fig.6. We create 4 subflows with
ndiffports path manager for each MPTCP connection to complete these flows.
We plot the flow completion times (FCTs) for the short flows in Fig.8 and for
the long flows in Fig. 9. The graphs show ns-3-dev MPTCP completes short and
long flows earlier than Coudron et al.’s implementation [14]. From the simulation
results, it is evident that our ns-3-dev MPTCP implementation performs better

than Coudron et al. [14] as a consequence of new features and enhancements in
the TCP stack of ns-3.

e—5-3,26 emm——ns-3.23
45

3.5
25
15

0.5

Flow Completion Time (seconds)

100KB 200KB 300KB 400KB 500KB 600KB 700KB 800KB 900KB 1MB

Flow Sizes

Fig. 8. Flow completion time for short flows

Ens-3.23 Mns-3.26
140
120
100
80
60
40

2
O_----.....II

P X R R YRR R ®
\,‘X\WQ%@@%@@“'\Q%@&@@

Flow Completion TiIme(seconds)
o

Flow sizes

Fig. 9. Flow completion time for long flows

An ns-3 MPTCP Implementation 59

6 Conclusions and Future Work

Simulation tools such as ns-3 are of great help to researchers and network engi-
neers because of the limited access to live network resources and/or testbeds.
Presently, ns-3 provides an excellent simulation platform for network engineers
and researchers. MPTCP has not been incorporated in the main ns-3 tree by
ns-3 community thus far. Efforts have been made in the past to build MPTCP in
ns-3 [22,23] and [14]. We build on these implementations, expanding their scope
and developing an implementation compatible with the latest ns-3 TCP stack.
We implement MPTCP in ns-3-dev and introduce path managers to initiate sub-
flows. We create an MPTCP patch [3] for integration into the main ns-3 tree. Our
implementation will help the research community to test new MPTCP propos-
als and improve upon its functionality and performance. We aim to incorporate
our implementation in the ns-3 main tree and additionally develop support for
MPTCP congestion control algorithms.

Acknowledgements. We would like to thank Matthieu Coudron for valuable discus-
sions and assistance in navigating through the ns-3 development effort.

References

1. ns-3 website. https://www.nsnam.org/. Accessed 05 Nov 2018

2. ns-3 mptep patch. https://codereview.appspot.com/369810043/. Accessed 31 Aug
2018

3. ns-3-dev mptcp. https://github.com/Kashif-Nadeem /ns-3-dev-git. Accessed 31
Aug 2018

4. Postel, J.: Transmission Control Protocol. Internet Requests for Comments (1981).
https://www.rfc-editor.org/rfc/rfc793.txt

5. Alizadeh, M., et al.: Data center TCP (DCTCP). In: SIGCOMM (2010)

6. Vamanan, B., Hasan, J., Vijaykumar, T.. Deadline aware data center TCP
(D2TCP). In: SIGCOMM (2012)

7. Bai, W., et al.: PIAS: practical information-agnostic flow scheduling for datacenter
network. In: HotNets (2014)

8. Wischik, D., Handley, M., Bagnulo, M.: The resource pooling principle. ACM SIG-
COMM CCR 38(5), 47-52 (2008)

9. Ong, L., Yoakum, J.: An introduction to the stream control transmission proto-
col (SCTP). Internet Requests for Comments (2002). https://www.ietf.org/rfc/
rfc3286.txt

10. Hasegawa, Y., Yamaguchi, 1., Hama, T., Shimonishi, H., Murase., T.: Improved
data distribution for multipath TCP communication. In: IEEE Globecom (2005)

11. Zhang, M., Lai, J., Krishnamurthy, A., Peterson, L., Wang, R.: A transport layer
approach for improving end-to-end performance and robustness using redundant
paths. In: USENIX (ATEC 2004) (2004)

12. Hopps, C.: Analysis of an Equal-Cost Multi-Path Algorithm. Internet Requests for
Comments (2000). https://www.rfc-editor.org/rfc/rfc2992.txt

13. Raiciu, C., Barre, S., Pluntke, C., Greenhalgh, A., Wischik, D., Handley, M.:
Improving datacenter performance and robustness with multipath TCP. In: ACM
SIGCOMM (2011)

https://www.nsnam.org/
https://codereview.appspot.com/369810043/
https://github.com/Kashif-Nadeem/ns-3-dev-git
https://www.rfc-editor.org/rfc/rfc793.txt
https://www.ietf.org/rfc/rfc3286.txt
https://www.ietf.org/rfc/rfc3286.txt
https://www.rfc-editor.org/rfc/rfc2992.txt

60

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

K. Nadeem and T. M. Jadoon

Coudron, M., Secci, S.: An implementation of multipath TCP in ns3. Comput.
Netw. 116, 1-11 (2017). https://doi.org/10.1016/j.comnet.2017.02.002

Ford, A., Raiciu, C., Handley, M., Barre, S., Iyengar, J.: Architectural guidelines
for multipath TCP development. Internet Requests for Comments (2011). https://
tools.ietf.org/html/rfc6182

Carpenter, B., Brim, S.: Middleboxes: taxonomy and issues. Internet Requests for
Comments (2001). https://www.rfc-editor.org/rfc/rfc3234.txt

Scharf, M., Ford, A.: MPTCP application interface considerations. Internet
Requests for Comments (2013). https://tools.ietf.org/html/rfc6897

Ford, B., Iyengar, J.: Breaking up the transport logjam. In: ACM HotNets (2008)
Multipath Tcp Linux Kernel Implementation. http://multipath-tcp.org/pmwiki.
php/Users/ConfigureMPTCP. Accessed 31 Aug 2018

Boccassi, L., Fayed, M., Marina, M.: Binder: a system to aggregate multiple inter-
net gateways in community networks. In: LCDNet 2013 (2013)

Ford, A., Raiciu, C., Handley, M., Bonaventure, O.: TCP extensions for multi-
path operation with multiple addresses. Internet Requests for Comments (2013).
https://tools.ietf.org/html/rfc6824

Chihani, B., Collange, D.: Towards monolingual programming environments. In:
WNS3 (2011)

Kheirkhah, M., Wakeman, 1., Parisis, G.: Multipath-TCP in ns-3 (2015). https://
arxiv.org/abs/1510.07721v1

Barré, S., Paasch, C., Bonaventure, O.: MultiPath TCP: from theory to practice.
In: Domingo-Pascual, J., Manzoni, P., Palazzo, S., Pont, A., Scoglio, C. (eds.)
NETWORKING 2011. LNCS, vol. 6640, pp. 444-457. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20757-0_35

Allman, M., Paxson, V., Blanton, E.: TCP congestion control. Internet Requests
for Comments (2009). https://www.rfc-editor.org/rfc/rfc5681.txt

https://doi.org/10.1016/j.comnet.2017.02.002
https://tools.ietf.org/html/rfc6182
https://tools.ietf.org/html/rfc6182
https://www.rfc-editor.org/rfc/rfc3234.txt
https://tools.ietf.org/html/rfc6897
http://multipath-tcp.org/pmwiki.php/Users/ConfigureMPTCP
http://multipath-tcp.org/pmwiki.php/Users/ConfigureMPTCP
https://tools.ietf.org/html/rfc6824
https://arxiv.org/abs/1510.07721v1
https://arxiv.org/abs/1510.07721v1
https://doi.org/10.1007/978-3-642-20757-0_35
https://www.rfc-editor.org/rfc/rfc5681.txt

	An ns-3 MPTCP Implementation
	1 Introduction
	2 MPTCP Details from RFCs
	2.1 MPTCP Architecture and Path Managers
	2.2 MPTCP Design

	3 Existing MPTCP Implementations in ns-3 and Their Shortcomings
	3.1 ns-3 Implementations of MPTCP
	3.2 Problems with the ns-3.23 Coudron17 Implementation

	4 Our MPTCP Implementation in ns-3-dev
	4.1 Why MPTCP into ns-3-dev?
	4.2 Changes in TCP Stack of ns-3
	4.3 Upstreaming Process
	4.4 Path Management Implementation

	5 Simulation
	6 Conclusions and Future Work
	References

