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Abstract. Network robustness plays a critical role in the proper func-
tioning of modern society. It is common practice to use spectral metrics,
to quantify the robustness of networks. In this paper we compare eight
different spectral metrics that quantify network robustness. Four of the
metrics are derived from the adjacency matrix, the others follow from
the Laplacian spectrum. We found that the metrics can give inconsis-
tent indications, when comparing the robustness of different synthetic
networks. Then, we calculate and compare the spectral metrics for a
number of real-world networks, where inconsistencies still occur, but to
a lesser extent. Finally, we indicate how the concept of the R∗-value, a
weighted sum of robustness metrics, can be used to resolve the found
inconsistencies.

Keywords: Inconsistency · Graph theory · Network theory ·
Graph spectra · Robustness metrics

1 Introduction

Failures of real-world networks, such as blackouts in power grids, traffic con-
gestion in transportation networks, and economic crisis in economic networks,
can have an enormous impact on society, in terms of costs, safety and disrup-
tion [14]. Therefore, understanding the robustness of networks, which reflects
the extent to which the networks can maintain their functionality under per-
turbations imposed upon them, is crucial for modern critical infrastructures.
Quantifying the robustness of networks enables us to design, optimize and con-
trol the networks.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

T. Q. Duong et al. (Eds.): Qshine 2018, LNICST 272, pp. 119–136, 2019.

https://doi.org/10.1007/978-3-030-14413-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14413-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-14413-5_10


120 X. Wang et al.

Recent advances in the field of network science present a number of robustness
metrics, both from the topological domain and the spectral domain, character-
izing the structural and dynamical properties of networks. Examples are degree
distribution reflecting the connectivity of a network [1], modularity for the com-
munity structure [17], spectral radius [28] characterizing the virus spread in a
network, and the algebraic connectivity [7,27] which relates to the synchroniza-
tion of networks of coupled oscillators [25]. However, there is a lack of study
on the relation between the robustness metrics and the interpretation of each
metric in terms of the network robustness. In [19], it is shown that most metrics
are not mutually independent, indicating redundancy in the characterization of
robustness.

Spectral graph theory is applied in various aspects of complex networks, see
for example surveys by Cvetković [5,6]. Particularly, eigenvalues and eigenvectors
are used for the analysis of the robustness of complex networks [12,28,31,33].
In this paper we focus on the quantification of the robustness of complex net-
works, by means of spectral metrics [27]. Our main contribution is showing the
occurrence of inconsistencies among the spectral metrics that quantify robust-
ness. The inconsistencies mean that for a pair of graphs, say G and H, a pair of
robustness metrics {M1,M2} point in opposite direction, i.e. according to metric
M1 the graph G is more robust, but according to the metric M2 the graph H
is more robust. Because we consider eight different spectral metrics, we need to
construct inconsistencies among 28 pairs of metrics. We will realize this number
of inconsistencies with the help of 10 graphs, all having N = 7 nodes and L = 10
links. Next we show that inconsistencies also occur for arbitrary large pairs of
graphs. Then, we calculate and compare the spectral metrics for a number of
real-world networks, with numbers of nodes and links in the range 21–29 and 22–
37, respectively. Finally, we indicate how the concept of the R∗-value, a weighted
sum of robustness metrics, can be used to resolve the found inconsistencies.

2 Spectral Robustness Metrics

In this section, we present the definitions of the eight robustness metrics and
their relation to the robustness of networks. Let G(N,L) be an undirected graph
with N nodes and L links. The adjacency matrix A of a graph G is an N × N
symmetric matrix with elements aij that are either 1 or 0 depending on whether
or not there is a link between nodes i and j. The eigenvalues of A = AT are real
and can be ordered as λN ≤ λN−1 ≤ . . . ≤ λ1.

Another graph related matrix is the Laplacian matrix Q = Δ − A, where
Δ = diag(di) is the N × N diagonal degree matrix and the degree of node i is
di =

∑N
j=1 aij . The eigenvalues of Q are non-negative and at least one of them

is zero [27]. The eigenvalues of Q can be ordered as 0 = μN ≤ μN−1 ≤ . . . ≤ μ1.
We first present four robustness metrics which are based upon the adjacency

spectrum.
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2.1 Spectral Radius (SR)

The spectral radius [27] refers to the largest eigenvalue λ1 of the adjacency
matrix of a graph

SR = λ1. (1)

A larger spectral radius is associated with higher robustness of the networks
with respect to link/node removals.

2.2 Spectral Gap (SG)

The spectral gap is expressed as

SG = λ1 − λ2. (2)

According to the Perron-Frobenius theorem, λ1 of a graph is always positive.
The largest spectral gap λ1 − λ2 = N occurs in the case of a complete graph.
The spectral gap plays an important role in the dynamic processes on graphs
[27]. The larger the spectral gap is, the higher the robustness of a network. A
network with a large spectral gap is typically onion structured which is more
robust against malicious attacks and random removals [34].

2.3 Natural Connectivity (NC)

Natural connectivity [10,16] is defined as

NC = ln

(
1
N

N∑

k=1

eλk

)

. (3)

where λk is the kth eigenvalue of the adjacency matrix of a graph. The natural
connectivity is proposed as a spectral measure for the robustness of complex
networks in terms of the redundancy of alternative paths [16,33]. The higher the
natural connectivity is, the higher the robustness of a network.

2.4 Minimum-Maximum Eigenvalue Ratio (MM)

The ratio of the maximum eigenvalue λ1 to the minimum eigenvalue λN is defined
as [36]

MM =
∣
∣
∣
∣
λ1

λN

∣
∣
∣
∣ . (4)

The ratio is used in signal detection and the stability of neural networks [22,
36]. The higher the ratio of the maximum to the minimum is, the higher the
robustness of a network.

Next, we introduce four spectral metrics based upon the Laplacian spectrum.
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2.5 Algebraic Connectivity (AC)

The algebraic connectivity, coined by Fiedler [13], refers to the second smallest
eigenvalue of the Laplacian matrix Q

AC = μN−1. (5)

It has been shown [15] that the larger the algebraic connectivity is, the more
difficult it is to cut the network into components, and the higher the robustness
of a network is [2,32].

2.6 Number of Spanning Trees (NST)

The total number of spanning trees [27] can be written in terms of the eigenvalues
of the Laplacian matrix as

NST =
1
N

N−1∏

j=1

μj . (6)

The total number of spanning trees is suggested as an indicator of network
robustness [4,9]. The higher NST is, the higher the robustness of a network is.

2.7 Effective Graph Resistance (EGR)

The effective graph resistance is determined by

EGR = N

N−1∑

k=1

1
μk

, (7)

where μk is the kth eigenvalue of the Laplacian matrix of a graph. The smaller the
effective graph resistance is, the higher the robustness of a network is [8,30,31].

2.8 Eigenvalue Ratio (ER)

The eigenvalue ratio refers to the ratio of the second smallest eigenvalue μN−1

to the largest eigenvalue μ1 of the Laplacian matrix Q of a graph

ER =
μN−1

μ1
. (8)

The eigenvalue ratio is used to characterize the synchronizability of networks.
If the eigenvalue ratio is larger, a network exhibits a better synchronizability
[3,7,20].
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(a) K4 (b) C4 (c) P4

Fig. 1. Three types of graphs with 4 nodes.

Table 1. Spectral robustness metrics for three graphs with 4 nodes: complete graph
K4, cycle graph C4 and path graph P4. All of the metrics indicate that K4 is the most
robust graph.

Graphs SR SG NC MM AC NST EGR ER

K4 3 4 1.667 3 4 16 3 1

C4 2 2 0.868 1 2 4 5 0.5

P4 1.618 1 0.647 1 0.586 1 10 0.172

3 Evaluation of the Spectral Metrics

First we illustrate the use of the robustness metrics, by applying them to three
simple networks on 4 nodes: K4: a complete graph, C4: a cycle graph, P4: a path
graph, see Fig. 1. From Table 1, we see that the 8 different metrics, all rank
the robustness of the three graphs, in the same way. For instance, all metrics
indicate that K4 is the most robust graph among the three graphs, as expected.
This shows that, for the simple graphs here with only four nodes, the robustness
metrics are consistent in their indications.

3.1 Ten Example Graphs

We use 10 different networks G1 − G10, to analyze the consistency of the 8
different metrics. For each of the networks, there are 7 nodes and 10 links,
so that the differences are only in the way the links are constructed. Figure 2
presents the visual representations of the 10 networks. For the 10 networks, we
determine the values of the 8 metrics described in the previous section. The
results are listed in Table 2. It is clear that different metrics may give different
indications as to which graph is the most robust, although each network has
the same number of nodes and links. Such inconsistencies do not occur for the
previous example of the simple graphs on four nodes.

To further illustrate this, we cross-compare each pair of metrics among the
8 metrics, and identify the pairs that give inconsistencies in Table 3. The pair
of graphs in each cell are the graphs that lead to inconsistent indications of
their relative robustness given by the two different metrics. For example, the
cell that cross-compares the metrics Natural Connectivity (NC) and Algebraic
Connectivity (AC), contains the graph pair G1 and G3. Indeed, according to
Table 2, the NC indicates that G1 if more robust than G3(1.51 > 1.44), while
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(a) G1 (b) G2 (c) G3 (d) G4 (e) G5

(f) G6 (g) G7 (h) G8 (i) G9 (j) G10

Fig. 2. The visualization of 10 artificial networks with 7 nodes and 10 links each.

AC indicates that G3 is more robust than G1(0.67 > 0.63). For each pair of
metrics, there is always at least one pair of graphs that are inconsistent, as
seen in the Table 3. This means the inconsistencies are prevalent in the graphs
studied, despite their similarities in terms of number of nodes and links.

3.2 All Connected Graphs with 7 Nodes and 10 Links

There are 132 possible non-isomorphic connected graphs with 7 nodes and 10
links. These graphs are generated from the programs called nauty and Traces
[24]. We evaluate the inconsistency of the 8 spectral robust metrics for all the
possible 132 graphs.

Figure 3 shows the rank of robustness for all the 132 graphs according to the
8 spectral robust metrics. The increase of ranking number means the decrease
of robustness. The most robust graph has a ranking number 1.

The high variability in Fig. 3 suggests the inconsistency of the 8 spectral
robust metrics when identifying the rank order for the 132 graphs. For example,

Table 2. Spectral robustness metrics, R* (P = 3). Every graph has N = 7 nodes and
L = 10 links.

Gr SR SG NC MM AC NST EGR ER R*

G1 3.21 1.74 1.51 1.67 0.63 55 21.67 0.12 0.697

G2 3 1 1.45 1.5 0.59 64 21.50 0.11 0.683

G3 3.12 1.68 1.44 1.43 0.67 64 20.56 0.12 0.681

G4 3.35 2.35 1.58 1.49 0.70 45 22.40 0.12 0.667

G5 3.01 1.92 1.37 1.23 1.38 95 16.32 0.25 0.649

G6 2.96 1.96 1.30 1 1.38 105 15.62 0.23 0.715

G7 2.98 1.98 1.33 1.16 1.33 101 15.88 0.23 0.698

G8 3.30 2.07 1.56 1.51 0.44 45 25.73 0.08 0.708

G9 3.16 2.16 1.44 1.25 0.83 69 18.99 0.14 0.662

G10 3.20 2.07 1.48 1.44 0.69 61 20.49 0.12 0.691
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Fig. 3. Rank for the robustness of 132 graphs with 7 nodes and 10 links.

the most robust graph (rank 1, red line in Fig. 3) varies according to differ-
ent spectral metrics. The spectra radius λ1 and the natural connectivity NC
identify graph 5 as the most robust network. The spectra gap SG and the alge-
braic connectivity AC rank graph 2 as the top robust network. According to the
Minimum-Maximum eigenvalue detection MM , graph 56 is ranked the top. The
number of spanning trees NST suggests that graph 124 is the most robust net-
work. The effective graph resistance EGR identifies graph 95 and the eigenvalue
ratio ER shows graph 129 as the most robust one.

Table 3. The comparison of spectral robustness metrics. For each pair of metrics, there
is at least one pair of graphs that leads to inconsistent indication with respect to their
relative robustness.

SR SG NC MM AC NST EGR ER

SR X G1:G5 G3:G9 G1:G4 G1:G3 G1:G2 G1:G2 G1:G3

SG X X G1:G5 G1:G4 G3:G8 G1:G2 G1:G2 G3:G8

NC X X X G1:G4 G1:G3 G1:G2 G1:G2 G1:G3

MM X X X X G1:G3 G1:G2 G1:G2 G1:G3

AC X X X X X G1:G2 G1:G2 G6:G7

NST X X X X X X G3:G10 G1:G2

EGR X X X X X X X G1:G2

ER X X X X X X X X

For the pairs of graphs, the inconsistency of robust metrics is presented in
Table 4 and Fig. 4. Table 4 shows the percentage of inconsistency among all possi-
ble pairs of graphs. For all the 132 graphs, there are

(
132
2

)
= 8646 possible graph

pairs. For a pair of graphs, one robust metric concludes which graph is more
robust than the other one. Two robust metrics provide either consistent conclu-
sion or inconsistent conclusion for the same pair of graphs. After going through



126 X. Wang et al.

all the 8646 graph pairs, the percentage of inconsistency is computed for each
pair of robust metrics and presented in each table cell. In Table 4, the minimum
percentage is 0.06 resulted from the metric pair of the spectral radius and the
natural connectivity. The non-zero minimum inconsistency percentage indicates
that there is no complete consistency for all the possible pairs of graphs.

The maximum percentage of inconsistency is 91% between metrics of natural
connectivity and number of spanning trees. The second and third top inconsis-
tency percentages, 89% and 88% result from pairs of robust metrics (EGR,
NST ) and (EGR, ER). The top three percentages of inconsistency are fur-
ther presented in Fig. 4. The high percentages (higher than 88%) highlight the
challenges for graph designer to design a completely robust topology.

Table 4. The percentage of inconsistency between pairs of metrics.

SR SG NC MM AC NST EGR ER

SR X 26% 6% 27% 68% 88% 19% 72%

SG X X 32% 46% 49% 64% 4% 53%

NC X X X 23% 72% 91% 15% 75%

MM X X X X 67% 73% 26% 67%

AC X X X X X 20% 86% 8%

NST X X X X X X 89% 16%

EGR X X X X X X X 88%

ER X X X X X X X X
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Fig. 4. The consistency (marked as 1) and inconsistency (marked as −1) results for
metrics pairs of (NC, NST ), (EGR, NST ) and (EGR, ER).

3.3 Arbitrary Large Graphs

The examples given in the previous sections are for small graphs, with only 7
nodes. We will now give an example of an inconsistency occurring for a family
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of pairs of graphs that can be arbitrary large. We first consider a complete
bi-partite graph KN1,N2 , consisting of two disjoint sets S1 and S2, containing,
respectively, N1 and N2 nodes, such that all nodes in S1 are connected to all
nodes in S2, while within each set no connections occur. According to [5], the
spectral radius and algebraic connectivity for KN1,N2 satisfy SR(KN1,N2) =√

N1N2 and AC(KN1,N2) = min{N1, N2}, respectively. Note that KN1,N2 has
N1 + N2 nodes.

The second graph we consider is the windmill graph W (η, k), which consists
of η copies of the complete graph Kk, with every node connected to a common
node, see Fig. 5. Note that W (η, k) has ηk + 1 nodes.

Fig. 5. Illustration of some windmill graphs W (η, k)

Estrada [11] has shown that the algebraic connectivity of W (η, k) satisfies
AC(W (η, k)) = 1, while the spectral radius SR(W (η, k)) is given by the largest
zero of

f(λ) = λ2 − (k − 1)λ − ηk = 0. (9)

We now construct an inconsistency by choosing N1 = 2 and η = 2.
Assuming that the number of nodes for both graphs are equal, it follows that
N2 = 2k − 1. So we consider the family of pairs of graphs H1 = K2,2k−1 and
H2 = W (2, k), with k > 1. It follows from the properties mentioned above that
AC(H1) = 2 > 1 = AC(H2). Substitution of λ = k and η = 2 into Eq. (9) gives
f(k) = −k < 0. Therefore the spectral radius of H2 is larger than k. On the
other hand, SR(H1) =

√
2(2k − 1) which is smaller than k for k ≥ 4. Hence,

SR(H1) < SR(H2), implying an inconsistency for the graphs {H1,H2} for the
pair of metrics {SR,AC}, for every k ≥ 4.

For the inconsistency constructed above, the two graphs H1 and H2 have
the same number of nodes, but not the same number of links. However, it is
possible to construct inconsistencies for pairs of graphs with the same number
of nodes and links. One could use a windmill graph W (η, k) and an Erdös-
Rényi graph ER(N,L), choosing N and L such that the two graphs have the
same number of nodes and links. For instance, consider H3 = W (10, 10) and
H4 = ER(101, 550). Then both graphs have 101 nodes and 550 links. For one
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realization of ER(101, 550) we obtain AC(H3) = 1 < 3.88 = AC(H4) while
SR(H3) = 15.47 > 11.66 = SR(H4), which implies an inconsistency. It is pos-
sible to generalize this example to families of pairs of graphs of arbitrary size
also.

3.4 Real-World Networks

In addition to artificial graphs, we now compare the different metrics on 6 real-
world networks to analysis their consistencies. These networks are taken from the
so-called Internet Topology Zoo (http://www.topology-zoo.org/), a collection of
data network topologies from around the world, see also [18]. The networks
include AboveNet, AGIS, Atmnet, Bbnplanet, Bizent and BtEurope networks.
Their topologies are presented in Fig. 6. These networks have comparable num-
ber of nodes N and number of links L, but differ significantly in their topological
structures, as shown. Table 5 shows the robustness metrics of the various net-
works, and Table 6 shows the relative rankings of them according to each metric.
In both tables, the results depicted in columns R*5 (for P = 5) and R*10 (for
P = 10) are analyzed in Sect. 5.

Table 5. The spectral robustness, R*5 (P=5) and R*10 (P=10) metrics for real-world
networks.

Gr N L SR SG NC MM AC NST EGR ER R*5 R*10

Abovenet 23 31 3.13 0.35 1.21 1.20 0.17 262K 425 0.027 0.776 0.638

AGIS 25 30 3.17 0.58 1.11 1.13 0.20 6376 579 0.027 0.768 0.668

Atmnet 21 22 2.29 0.28 0.87 1.00 0.09 107 592 0.019 0.742 0.572

Bbnplanet 27 28 2.89 0.42 0.95 1.05 0.12 34 931 0.018 0.762 0.654

Biznet 29 33 2.50 0.09 0.94 1.09 0.04 8856 1391 0.008 0.749 0.667

BtEurope 24 37 5.10 2.56 2.15 1.49 0.44 612K 372 0.031 0.799 0.665

Table 6. The relative rankings of real-world networks according to each spectral
robustness metrics.

Graphs SR SG NC MM AC NST EGR ER R*5 R*10

AboveNet 3 4 2 2 3 2 2 2 2 5

AGIS 2 2 3 3 2 4 3 3 3 1

Atmnet 6 5 6 6 5 5 4 4 6 6

Bbnplanet 4 3 4 5 4 6 5 5 4 4

Biznet 5 6 5 4 6 3 6 6 5 2

BtEurope 1 1 1 1 1 1 1 1 1 3

http://www.topology-zoo.org/
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The same inconsistencies are found in these 6 networks, although the relative
rankings do not differ much. In particular, the BtEurope network has the highest
robustness ranking for every metric. In addition, we see that EGR and ER
metrics give exactly the same rankings for all of the networks. Therefore, it
is interesting to note that, although the various metrics could give different
indications of relative robustness rankings, the most robust structure in real-
world networks can be consistent across different metrics. It shows a certain
level of consistency, with inconsistencies remaining in the less robust network
structures.

(a) AboveNet (b) AGIS (c) Atmnet

(d) Bbnplanet (e) Biznet (f) BtEurope

Fig. 6. The visualization of six real-world networks.

4 R∗-Value as Robustness Metric

One possible approach to deal with the observed inconsistencies, is to make
explicit, for every specific case study, the definition of robustness. For instance,
Wang et al. [29] studied the robustness of 33 metro networks in the world, and
took as an experimental robustness definition, the fraction of nodes that have to
be removed from the metro network, such that the remaining largest connected
component is 90% of the original network size. It is shown in [29] that with this
definition, the effective graph resistance captures very well the robustness of the
metro networks.

Another way to deal with the inconsistencies is to use the information of all
spectral metrics. As an example, based upon Table 2, we might conclude that
graphs G4 and G6 are the most robust, because for both, 3 out of the 8 spectral
metrics indicate them as the most robust. Of course one could construct much
more complicated ways to combine the 8 spectral metrics.
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4.1 R∗-Value: Definition

The idea of expressing the robustness value (or R-value) of a network as
a weighted sum of a number of metrics, was first proposed by Trajanovski
et al. [26]:

R =
K∑

k=1

sk tk, (10)

where K is the number of considered metrics, tk denote graph metrics and sk

their corresponding weights. However, this is a static analysis and the problem
of determining the weights sk is still present. To overcome this issue, the R-value
concept was enhanced by Manzano et al. in [21], leading to the concept of the
R∗-value, see Eq. (11):

R∗ =
K∑

k=1

v̂k tk. (11)

Here, the weights v̂k reflect the relative importance of the metrics tk, when
elements of the network are removed subsequently. The values of the weights
are determined by applying Principal Component Analysis (PCA). In the next
subsection we give more details about the calculation of the R∗-value.

4.2 R∗-Value: Calculation

The algorithm for calculating the R∗-value for a network, depends on two inte-
gers, denoted by P and M . Here P denotes the maximum number of network
elements that are removed from the original network. For every number p of
removed network elements, with 1 ≤ p ≤ P , we conduct M independent experi-
ments, in which each of the K metrics are determined.

The sequence of calculations is shown in Fig. 7 and detailed below. First,
the metrics of the initial network with no attacks (i.e. p = 0) are calculated
providing K metrics measurements. Note that this result is the same for all M
experiments since the topology always remains the same (first row in the metrics
matrix, see Fig. 7).

Once the list of elements to be removed is obtained, the K metrics are cal-
culated for all P × M pairs. This provides a (P × M × K) metrics matrix which
contains all the computed metrics. Then, the correlation matrix (K × K) of all
metric results is obtained. Then PCA is applied to the correlation matrix obtain-
ing the v weights of each metric. PCA provides a K-dimensional eigenvector, the
larger eigenvalue and its corresponding eigenvalue is selected. For comparison
purposes, the initial value of R∗ is normalized to 1 (maximum robustness) and
the weights are modified accordingly.

Finally, by multiplying the v̂k weights for all rows in the (P × M × K)
metrics matrix as indicated in Eq. (11), the normalized robustness value R∗ can
be computed for all P ×M cases. Then the robustness of a network is the average
of all R∗ values.
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Fig. 7. R∗−value calculation overview

In the section we will use the concept of the R∗-value as the “ground truth”
for the robustness of networks, in order to resolve the inconsistencies mentioned
in Sect. 3.

Following the insights obtained in [23], we base the R∗-value on a combina-
tion of 10 relevant metrics. Average Nodal Degree (AND), Efficiency (EFF) and
Spectral Radius (SR) are the representative structural metrics, while Largest
Connected Component (LCC) and Average Two Terminal Reliability (ATTR)
are the representative structural metrics for fragmentation. Algebraic Connectiv-
ity (AC) and Natural Connectivity (NC) for represent connectivity and, finally,
Closeness Centrality (CLC) and Eigenvector Centrality (EC) represent centrality
properties. The R∗-value is evaluated under a random node removal strategy.

5 R∗-Value Versus Spectral Metrics: Results

5.1 Comparison for the 10 Example Graphs G1 − G10

For this set of results, R∗ has been computed by randomly removing up to 3
nodes (P = 3) in 20 independent samples (M = 20). The results are shown in
column R∗ of Table 2.

If we use the obtained R∗-values as ground truth, then we can resolve the
inconsistencies reported in Table 3. For instance, the graph pair G1 : G5 leads
to an inconsistency for the metric pair SR and SG. Because R∗(G1) > R∗(G5)
we resolve the inconsistency by stating that G1 is more robust than G5. In this
way we can resolve Table 3 completely. Note that it is difficult to draw generic
conclusions from this, because Table 3 only contains 8 graph pairs, namely, {(G1 :
G5), (G3 : G9), (G1 : G4), (G1 : G3), (G3 : G8), (G1 : G2), (G3 : G10), (G6 :
G7)}. To obtain generic conclusions one could study all resolved inconsistencies
for the 8646 graph pairs mentioned in Sect. 3.2. This approach is left for further
study.
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Table 7. The relative rankings of artificial networks according to each spectral robust-
ness metrics and R∗ (P = 3).

Graphs SR SG NC MM AC NST EGR ER R*

G1 3 8 3 1 8 8 8 5 4

G2 8 10 5 3 9 5 7 9 6

G3 6 9 6 4 7 5 6 5 7

G4 1 1 1 3 5 9 9 5 8

G5 7 7 8 6 1 3 3 1 10

G6 10 6 10 8 1 1 1 2 1

G7 9 5 9 7 3 2 2 2 3

G8 2 3 2 9 10 9 10 10 2

G9 5 2 6 5 4 4 4 4 9

G10 4 3 4 2 6 7 5 5 5

Table 7 presents the robustness ranking of the ten graphs G1–G10, according
to the spectral metrics and the R∗-value. Here, rank 1 denotes the most robust
network, while rank 10 denotes the least robust network. If we take the R∗-value
as the ground truth for the robustness ranking, a few observations can be made
from Table 7. Firstly, if we are only interested in the most robust network, then
AC, NST and EGR lead to the same network as R∗, namely G6. However, the
second most robust network according to R∗, i.e. G8, is ranked very low by
these three spectral metrics, namely 10th, 9th and 10th, respectively. Secondly,
the least robust network according to R∗, i.e. G5, is never ranked as the least
robust network by any of the 8 spectral metrics. The closest is metric NC, which
gives G5 rank 8. Finally, out of the 10 considered graphs, the rankings of the
spectral metrics re the most consistent with that of R∗, for G10. In contrast G5
is the least consistent with R∗.

5.2 Comparison for the 6 Real-World Networks

In this section we compare the robustness ranking of the six real-world networks
introduced in Sect. 3.3, according to the spectral metrics and the R∗-value. We
will consider two scenarios for the computation of the R∗-value, namely removal
up til 5 nodes (P = 5) and up til 10 nodes (P = 10). The number of independent
samples remains M = 20. We denote the resulting R∗-values by R∗5 and R∗10,
respectively. The two right-most columns Table V give the values of R∗5 and
R∗10. Table 7 gives the corresponding rankings for the real-world networks.

A few observations can be made from these tables. First of all, the two
scenarios P = 5 and P = 10 lead to different rankings. This is not surprising
because P = 10 corresponds to a more severe attack than P = 5. Secondly,
R∗5 states that BtEurope is the most robust network. This is in line with the
ranking of all spectral metrics. The least robust network according to R∗5, i.e.
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Atmnet, is also recognized as a vulnerable network by the other metrics, with
three metrics denoting it is the most vulnerable network.

Table 8. The distances of the rankings of real-world networks to R∗5 rankings.

Graphs SR SG NC MM AC NST EGR ER

AboveNet 1 2 0 0 1 0 0 0

AGIS 1 1 0 0 1 1 0 0

Atmnet 0 1 0 0 1 1 2 2

Bbnplanet 0 1 0 1 0 2 1 1

Biznet 0 1 0 1 1 2 1 1

BtEurope 0 0 0 0 0 0 0 0

Total distance 2 6 0 2 4 6 4 4

Table 9. The distances of the rankings of real-world networks to R∗10 rankings.

Graphs SR SG NC MM AC NST EGR ER

AboveNet 2 1 3 3 2 3 3 3

AGIS 1 1 2 2 1 3 2 2

Atmnet 0 1 0 0 1 1 2 2

Bbnplanet 0 1 0 1 0 2 1 1

Biznet 3 4 3 2 4 1 4 4

BtEurope 2 2 2 2 2 2 2 2

Total distance 8 10 10 10 10 12 14 14

Tables 8 and 9 present the distances between spectral metrics and R∗

obtained by comparing the rankings of real-world networks presented in Table 6.
The smaller the distance, the more similar the ranking is to the ranking of R∗5
and R∗10, respectively. The first conclusion is that, as expected, the rankings of
the spectral metrics are the more similar, when the number of removed elements
P is smaller. This makes sense as spectral metrics analyze the initial network
(i.e. P = 0). For instance, Table 8 shows that NC gives exactly the same ranking
as R∗5, i.e. the sum of distances equals 0. Similarly, SR and MM also present
quite similar rankings (distances = 2). Instead, when comparing this with R∗10,
accumulated distances are always larger (ranging from 8 (SR), best case, to 14
(EGR and ER), worst case).

Considering both tables, NC and RC complement each other, being quite
similar to the R∗ ranking both for small and large removal of nodes. On the
other hand, NST, EGR and ER lead to less similarity in rankings, in most of
the cases.
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From the perspective of the network topologies, it is interesting to note that
for BtEurope all spectral metrics provide very accurate results for small removal
of nodes (P = 5), while Atmnet is the most consistent for P = 10.

6 Conclusion

We have shown that among 8 of frequently used spectral metrics, inconsistencies
occur when using them to capture the robustness of networks. The non-zero
and high percentages of inconsistency, for pair of graphs from the set of 132
graphs with 7 nodes and 10 links, suggest the challenge for the complete robust
quantification of graphs. Such inconsistency is more pronounced in the artificial
networks we generated than in the real-world networks tested.

One possible approach to deal with the inconsistencies, is to make explicit, for
every specific case study, the definition of robustness, as was done by Wang et al.
[29], who studied the robustness of 33 metro networks in the world. Another way
to deal with the inconsistencies would be to use the information of all spectral
metrics. With enough data at hand and with a baseline for explicit experimental
values for the robustness, such as in [29], this line of reasoning, seems worth
pursuing. This merging of network science and machine learning has recently
also been suggested by Zanin et al. [35].

In this paper we resolved the inconsistencies by considering the so-called
R∗-value, see [21], as the ground truth for robustness. In Sect. 5, Table 8 shows
that robustness ranking according to spectral metrics is more similar to ranking
according to R∗, when the number of removed elements (P ) is small. This makes
sense as spectral metrics analyze the initial network (i.e. P = 0). In particular,
Natural Connectivity (NC) gives precisely the same ranking as R∗ for P = 5,
while Spectral Radius (SR) and Minimum-Maximum eigenvalue ratio (MM) are
also good approximations. Comparisons for larger amounts of node removals
(P = 10), show that spectral metrics generally give less similar rankings, see
Table 9. When looking at the network topologies, all spectral metrics provide
similar results for BtEuropa upon removal of small number of nodes and for
Atmnet for larger numbers of removed nodes.
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30. Wang, X., Koç, Y., Kooij, R.E., Van Mieghem, P.: A network approach for power
grid robustness against cascading failures. In: 7th International Workshop on Reli-
able Networks Design and Modeling (RNDM), pp. 208–214. IEEE (2015)

31. Wang, X., Pournaras, E., Kooij, R.E., Van Mieghem, P.: Improving robustness of
complex networks via the effective graph resistance. Eur. Phys. J. B 87(9), 1–12
(2014)

32. Watanabe, T., Masuda, N.: Enhancing the spectral gap of networks by node
removal. Phys. Rev. E 82(4), 046102 (2010)

33. Wu, J., Barahona, M., Tan, Y.J., Deng, H.Z.: Spectral measure of structural robust-
ness in complex networks. IEEE Trans. Syst. Man Cybern.-Part A Syst. Hum.
41(6), 1244–1252 (2011)

34. Wu, Z.X., Holme, P.: Onion structure and network robustness. Phys. Rev. E 84(2),
026106 (2011)

35. Zanin, M., et al.: Combining complex networks and data mining: why and how.
Phys. Rep. 635, 1–44 (2016)

36. Zeng, Y., Liang, Y.C.: Eigenvalue-based spectrum sensing algorithms for cognitive
radio. IEEE Trans. Commun. 57(6), 1784–1793 (2009)


	Inconsistencies Among Spectral Robustness Metrics
	1 Introduction
	2 Spectral Robustness Metrics
	2.1 Spectral Radius (SR)
	2.2 Spectral Gap (SG)
	2.3 Natural Connectivity (NC)
	2.4 Minimum-Maximum Eigenvalue Ratio (MM)
	2.5 Algebraic Connectivity (AC)
	2.6 Number of Spanning Trees (NST)
	2.7 Effective Graph Resistance (EGR)
	2.8 Eigenvalue Ratio (ER)

	3 Evaluation of the Spectral Metrics
	3.1 Ten Example Graphs
	3.2 All Connected Graphs with  7  Nodes and  10  Links
	3.3 Arbitrary Large Graphs
	3.4 Real-World Networks

	4 R*-Value as Robustness Metric
	4.1 R*-Value: Definition
	4.2 R*-Value: Calculation

	5 R*-Value Versus Spectral Metrics: Results
	5.1 Comparison for the 10 Example Graphs G1-G10
	5.2 Comparison for the 6 Real-World Networks

	6 Conclusion
	References




