q

Check for
updates

Using Hybrid Model for Android Malicious
Application Detection Based on Population
(Short Paper)

Zhijie Xiao', Tao Li'>® and Yugiao Wang'

! College of Computer Science and Technology, Wuhan University of Science
and Technology, Wuhan 430065, Hubei, China
544247884@qq. com, litaowust@l63. com, leowon@vip.qq. com
2 Hubei Province Key Laboratory of Intelligent Information Processing
and Real-Time Industrial System, Wuhan 430065, Hubei, China

Abstract. In the Android system security issue, the maliciousness of the
applications is closely related to the permissions they applied. In this paper, a
population-based model is proposed for detecting Android malicious applica-
tion. Which is in the view of the current disadvantages of missing report, long
detection period caused by features redundancy, and the instability of detection
rate lead by unbalanced data of benign and malicious samples. Drawing on the
idea of population in biology, each app was labeled by preprocessing. And
adaptive feature vectors were automatically selected through the feature engi-
neering. Thus the malicious application detection is carried out in the form of
hybrid model voting. The experimental results show that feature engineering can
remove a large amount of redundancy before classification. And the hybrid
voting model can provide adaptive detection service for different populations.

Keywords: Android security + Population - Feature engineering *
Security detection

1 Introduction

The various applications running on smartphones are changing people’s life and
communication mode. At the same time, there are some illegal elements who use
malicious programs to carry out malicious charges, remote control, privacy theft and
other improper acts, which seriously affect the lives of users [1-4]. Google Bouncer in
Google Play can detect malicious programs, but it is not real-time, so malicious
applications have been downloaded in large quantities before being detected [5]. Part of
the third party application market did not carry out any form of security check before
releasing the application [6]. The increasingly severe security situation of Android
operating system makes it important to improve the detection efficiency of malware.
The traditional research methods are mainly divided into two categories: static
analysis [7] and dynamic detection [8]. Document [9] uses static analysis to extract the
function call list of executable linked format files by using the readelf. The classifi-
cation algorithm is used to classify the extracted samples, so as to achieve the purpose
of detecting malware. Literature [10] implements a behavior monitoring system on the

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved

H. Gao et al. (Eds.): CollaborateCom 2018, LNICST 268, pp. 755-766, 2019.
https://doi.org/10.1007/978-3-030-12981-1_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12981-1_52&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12981-1_52&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12981-1_52&domain=pdf
https://doi.org/10.1007/978-3-030-12981-1_52

756 Z. Xiao et al.

Android platform, dynamically monitoring the various features and events of the
Android system, and classifies it by means of decision tree and regression analysis.
However, due to the limited resources and power consumption of the mobile phone
system, the implementation of the scheme is rather complicated. Although the tradi-
tional dynamic detection methods have their own advantages, they cannot meet the
needs of timely detection of a large number of applications.

After analyzing 1100 Android application privileges using the neural network
algorithm, it is found that the Android privileges often used by these programs are only
a small part [11]. Literature [12] compares the use of permissions to normal software
and malware, and finds that access network, reading mobile status, access to network
status, and write SD cards are widely used in malicious programs and benign programs.
However, malicious programs tend to use SMS related permissions, automatic startup
permissions when user starting up, and changes to WIFI status permissions, while
benign programs rarely use these permissions.

The above study shows that there are obvious differences in the frequency of use of
different Android permissions. Moreover, the combination of normal software and
malware in the combination of permissions and the tendency of categories are also
quite different. Permission mechanism is the core of Android security mechanism, and
the permissions of application are corresponding to the API provided by the system.
Therefore, many researchers regard permissions as important detection objects.

Document [13] proposes a multilevel integrated malware detection model which
extract Dalvik instructions, permissions and API as features. A three level ensemble
classifier based on J48 decision tree is constructed, which has better detection. How-
ever, the technology implementation is more complex and is not suitable for detecting
large-scale data. Literature [14] extracts the rights of the APK file as the feature, and
uses the information gain algorithm to filter the features to implement a Android
malware detection model based on the improved random forest algorithm. It achieves
better detection results for feature dimensionality reduction, but there is a deficiency in
solving the data imbalance, and the detection rate of Android malware is low.

AndroidProtect [15] uses static analysis to mine mass application feature values and
uses dynamic target program behavior monitoring to adjust the accuracy of evaluation.
Dynamic monitoring can correct deviations, but it is inefficient in dealing with large-
scale applications. The author [16] proposed the similarity calculation method com-
bined with the Euclidean distance to evaluate the dangerous trend of the Android
application. By using the minimum set of privileges as the security threshold, the
distance of the application to the threshold is calculated to represent the dangerous
trend of the application. However, the minimum privilege set does not exist in every
type of application, and the detection rate based on Euclidean distance is not good
enough. To sum up, aiming at the problems existing in the current Android malware
detection technology, such as the lack of detection of unknown malware, the imbalance
of data in the detection process, and the low detection efficiency, this paper proposes an
integrated model based on population for Android malware detection.

Using Hybrid Model for Android Malicious Application Detection Based on Population 757

2 System Framework
We propose a method of Android application security detection based on the applied

population, using feature engineering and mixed model voting. The model consists of 3
main modules: Feature extraction, feature engineering and safety inspection (Fig. 1).

Feature Extraction

Malicious&Benign AndroidManifest file) Population label original feature
Feature Engineering
+— —

remove redundancy Improved Apriori chi-square test

feature set

Classifier_1

Safety Inspection
Benign sample

Training set

| Testing set

Fig. 1. The picture shows the framework of the entire hybrid detection model.

== | Ensemble Classifier

Malicious sample

In the data preprocessing module, we optimize the code for the Scrapy frame
crawler used in the article [16]. Using the application category label provided by the
web site, the application is crawled by category and stored in the cloud database.

In the issue of Android system security, the permission to be applied is an important
object for security analysis and evaluation. Because the same type of application
implements similar functions, the required system privileges are similar. In the data
preprocessing module, we annotate the collected malicious and benign samples,
compare the same type of application into a population and give them a population
label. Then, according to the population as a unit, the APK file is reverse processed to
get the list file AndroidManifest.xml. According to the population as a unit, the APK
file is reverse processed to get the list file AndroidManifest.xml. The permission
information of the application is stored in the AndroidManifest.xml file. In order to
improve the efficiency of application rights acquisition and carry on the batch
extraction of permission, this paper uses the python program and combines the AAPT
(Android Asset Packging Tool) to write the AndroidManifest.xml file parsing code.
The experiment obtains the application permissions of each population according to the
population, thus forming the original feature data set and storing it in the cloud data-
base in the form of 0—1 matrix.

Chi-Square Test. The correlation of two features can be quickly calculated by chi
square test. In the detection, we only need to know whether the sample features are
available or not, and do not consider the number of occurrence. Therefore, it is very
suitable for the processing of Android privilege characteristics. We give the definition
of the population label and the specific information for each population:

758 Z. Xiao et al.

Definition 1. Class = {C1,C2,C3...Cx}Cx are category labels for each population,
such as flashlights, cameras, readers, players, social chat and so on.

Definition 2. Population = (Cx, Permissionl, Permission2, Permission3. . .Permiss-
ionm). Permissionm represents the m permissions feature of the population.

We suppose two classified variables X and Y, their ranges are {Malicious sample,
Benign sample} and {Contain Permissioni, Not Contain Permissioni}, For each pop-
ulation, we count five frequency characteristics: MP, MN, BP and BN (Table 1).

Table 1. The table describes the meaning of each item in the chi square test.

Contain Permissioni | Not Contain Permissioni | Sum
Malicious | MP MN
Benign BP BN
Sum N

So we calculate the formula:

- (MP % BN)* * N)
“ 7 (MP+MN) « (BP +BN) % (MP + BP) % (MN + BN)

The m permissions of each population are calculated in turn to get the chi-square
value y2. The greater the value of y2, the greater the possibility that the relationship
between X and Y will be established. According to the check level a, find the chi
square value table, get the critical value and compare it. If the lookup table value is less
than the chi square value, then the permissions are redundant and need to be removed.
After chi square test, a new population feature vector set D is obtained.

InG Algorithm. After the initial dimension reduction by chi square test, the infor-
mation gain algorithm is applied to feature selection to further remove redundancy. In
information gain, the criterion is how much information the feature can bring to the
classification system. The more information it brings, the more important the feature is.
For a feature, whether a system has a characteristic information quantity will change,
and the difference between the front and rear information is the information quantity
brought by this feature to the system. The amount of information is entropy. Infor-
mation gain describes the ability of attribute X to discriminate sample Y.

We use Y to represent the random variable of the application category, Y=
{Malicious, Benign}. For each permission Permissioni in a population, its information
entropy H (x) is:

H(X) = - ZiP(Xi)IbP(Xi) (2)

The conditional information entropy H (X|Y) of X after the known variable Y is:

Using Hybrid Model for Android Malicious Application Detection Based on Population 759

HX]Y) = - ZjP(yi) > Plly)ibP(xily;) (3)

Mutual information between variables X and Y is:

MI(X,Y) = H(X) = H(X]Y) = > P(x,y)ib % a

The greater the information gain of the privilege feature Permissioni, the greater the
correlation between the feature and the category. After calculating the information gain
of each privilege feature, the features are arranged in descending order according to
information gain. The feature set of each population is selected adaptively through
experiments to train and test the classifier. At this point, we get the data set S for each
population.

3 Security Detection Algorithm

3.1 SVM Algorithm Based on Bagging

Android malicious sample is difficult to collect compared to the benign sample, so it is
easy to appear the imbalance between the benign sample and the malignant sample,
which makes the classifier more biased in the benign sample, and eventually leads to
the low detection rate. At the same time, the SVM algorithm is sensitive to the samples
at the boundary. If there are misplaced samples on the boundary, the stability of the
classifier will be greatly affected.

Using Bagging to construct balanced data sets for benign and malicious samples
can reduce the impact of imbalanced data on experimental results. In order to improve
the detection efficiency, this paper adopts the Linear Support Vector Machine to design
the SVM algorithm based on Bagging. The concrete steps are as follows:

1. Randomly divide 70% data from S as training set S_train and 30% data as test
machine S_test, and the range of data set S is {Maliouse, Benign}.

2. Using Bagging to extract m benign samples and M malicious samples to form a new
training data set D; = (X;,Y;), the digital m is generated by a random number
generator, in which X; = (X;;X;»X;3. . .Xi), that is, the information of an application
sample. Y; = {0,1}, of which O represents benign samples, and 1 indicates
malignant samples.

3. The SVM classifier is represented as:

{ min; 5 Y7, Ayl X — iy A (5)
>

P vidi=0,0<4;<o,i=1,2,...n

A is a penalty term. The two step programming method is used to solve the model
and get the Lagrange multiplier. Then the LSVM parameter is solved as follows:

760 Z. Xiao et al.

o= Zi ZiyiXi ()
i (Yi Zi Ajyix; X+ ¢ — 1) =0 (7)

C(x) = sign (ZZ; diyix! + c) (8)

4. Repeat 3 times steps 2 and 3, get three LSVM base classifiers, and combine 3 base
classifiers into SVM ensemble classifier CC. The test sample X in S_test is put into
the integrated classifier CC, and the result is cast. The voting formula is:

CC(x) = voting(Cy(x), C2(x), G3(x), . Culx)) = 3(D, singn(Ci(x) = ¥)) (9)

If Ci(x) =y, in that way sign(r) = 1, conversely, sign(r) = —1.
If > singn(Ci(x) =y) >0, 6(q) = 1, samples is malware, otherwise d(q) =0,
indicating benign.

3.2 A Classifier Based on Improved Naive Bayes

The idea of naive Bayes is to obtain a priori probability by training samples, and the
posterior probability of events is obtained according to the prior probabilities and
sample data information. Finally, the event is attributed to the maximum of the pos-
terior probability. The Bias classifier is derived from the formula, so it has a stable
classification efficiency, low sensitivity to real data and high algorithm efficiency.

In a population, an application of information X = (X1, X5, X3...Xy), C; represents
whether the application is benign or malignant. So we can get the posteriori hypothesis.

P(X|C))P(Cy)

(10)

Naive Bayes assumes that the influence of a feature on classification is independent
of other attributes, so we can known that:

n

Px|C) = [, Pxilc) (11)

However, in practical applications, permissions are independent of each other,
which is not valid in Android malware detection. After multiple removal of redundancy
after the feature engineering module, we get the data set S, which is very representative
of the classification, so the naive Bayes can be applied to the detection scene.

P(C) [Ti—; P(Xk|Ci) ;%Z?:l %
P(X)

P(CX) = (12)

Using Hybrid Model for Android Malicious Application Detection Based on Population 761

At the same time, in the detection scene, the extent of the influence of different
permissions on malicious detection is different. The simple Bias cannot show the
difference of the feature [17]. Therefore, we introduce the weight influence factor
%ﬁzzl: | 72 to the posterior probability of the Bias classification, and the influence factor

represents the proportion of the influence that the authority brings to the classification.

4 Experimental Results and Analysis

4.1 Experimental Data

At present, we have climbed 62 categories and totaling 325371 Android benign
applications from AnZhi [18]. Malicious samples from VirusShare [19]. For the fol-
lowing reasons, we chose two groups of cameras and flashlights as experimental
objects. First, the two types of applications, such as cameras and flashlights, have clear
functional boundaries. For a app, it is easier to distinguish whether it belongs to a
flashlight or camera category from its main permission statement and the application
description that is filled in when it is uploaded. Second, flashlights and cameras are
widely used by users, while mobile devices are produced with flashlights and cameras,
but almost every user will install another flashlight or camera app because of the
individual needs.

4.2 Experimental Results

Taking Android permission meaning as background knowledge, chi square test and
InG algorithm are used to perform two times of feature de redundancy. In the module of
the feature engineering, we take all the rights characteristics of the population as the
experimental set, and get 128 feature vectors of the flashlight, and 134 camera popu-
lation characteristics. After screening, each authority is scored. The higher the score,
the greater the information gain and the better the privilege of the categorization result.
List 10 rights information with the highest score in two populations.

In the table, the top 10 features of the population and flashlight population infor-
mation gain are listed. From the table, we can see that there are differences in the
distribution of permission characteristics among the two populations, and the infor-
mation gain of the same permissions in different populations is also different. It can be
seen that different populations have different requirements and distributions in terms of
authority, which shows that the characteristics of populations are different (Table 2).

762 Z. Xiao et al.

Table 2. The topl0 information gain of the flashlight and camera population.

Rank | Flashlight InG

1 CAMERA 0.538
2 FLASHLIGHT 0.511

3 INTERNET 0.384
4 ACCESS_NETWORK_STATE | 0.347
5 ACCESS_COARSE_LOCATION | 0.315
6 ACCESS_WIFI_STATE 0.280
7 ACCESS_FINE_LOCATION 0.279
8 GET_TASKS 0.247

9 WAKE_LOCK 0.231

10 WRITE_SETTINGS 0.206
Rank | Camera InG

1 WRITE_EXTERNAL_STORAGE | 0.442
2 INTERNET 0.418
3 CAMERA 0.397
4 ACCESS_NETWORK_STATE 0.385
5 READ_PHONE_STATE 0.379
6 ACCESS_WIFI_STATE 0.341
7 WAKE_LOCK 0.326
8 ACCESS_COARSE_LOCATION | 0.303
9 VIBRATE 0.285
10 GET_TASKS 0.247

In order to find optimal subset, we count the Accuracy and Fl-score under the
number of different privileges, as shown in the following figure (Fig. 2).

0.85

F-score

0.80

—O camera 98.0 o camera
075 *— flashlight *— flashlight

w 2 a 2
0795 R) P . P s 2 a R & R g @
o A o © = Number of Permissions
Number of Permissions

Accuracy(%)
©
&
s

s =

(a) (b)

Fig. 2. (a) and (b) respectively represent the Accuracy and F1-score of two different populations
when increasing the number of permissions.

Using Hybrid Model for Android Malicious Application Detection Based on Population 763

From the graph, it is found that in the flashlight population, the set of the top 30
permissions is the optimal set. In the camera population, the set of the top 40 per-
missions is the optimal set, because at this time the two populations have reached a
higher and more stable accuracy. Considering that we normally tend to select the
smallest subset of permissions. Adding more permissions does not help on improving
but may introduce redundant, noisy and irrelevant information (Table 3).

Table 3. The F1 score of the four classification algorithms on two populations. Top20
represents the first 20 features of the information gain rankings.

NB |SVM |RF | Mixture
Flashlight | Top 20 | 82.3 | 88.0 |88.4|88.7
Top 30 |84.2|89.2 |89.7/92.0
Top 50 | 88.4|93.7 |90.6|91.8
Top 90/92.3/91.5 191.0(91.2
Data S 190.7[92.1 |90.9|91.0
Camera |Top 20|81.4(86.5 |85.1|83.0
Top 40 | 83.6|88.1 |87.6|91.5
Top 60 | 88.9|90.2 |89.7|91.5
Top 90 90.5|90.9 |91.1|91.3
Data S 1 90.891.3 |89.9/90.8

The table shows two groups of flashlights and cameras. The purpose is to evaluate
the effect of feature engineering. The classification algorithms are naive Bayes, LSVM,
RF and the hybrid voting algorithm in this paper(Mixture), in which LSVM and RF use
the default parameters in the Weka tool.

The 10 cross validation method is used to train the classifier and get the result.

It can be seen from the table that the classification results of RF and mixture are
better. In the flash population, when the number of permissions reaches the first 30, the
F1 value gradually stabilizes in the 92.0%. In the camera population, when the number
of permissions reaches 40, the F1 value is gradually stabilized at the 91.5%.

According to Occam’s Razor, Entities should not be multiplied unnecessarily, for
these two populations, we respectively take the top 30 and the top 40 of the rights for
classification. This shows that the feature engineering screening method proposed in
this paper can eliminate a large number of redundant features and improve the effi-
ciency of detection.

For non-equilibrium data, 3 sets of data sets are designed to test the effectiveness of
the proposed method. After the characteristic engineering module was processed, the
flashlight population data set SF and the camera population data set SC were obtained.
SF contains 300 malicious applications, 1200 benign applications. And 280 malicious
applications and 1250 benign applications in SC. Three data sets of two populations, A,
B, and C, are extracted randomly by no return (Table 4).

764 Z. Xiao et al.

Table 4. Data distribution of data sets A, B, C in two populations. 280(M)+625(B) represents
280 malicious samples and 625 benign samples.

Population | A B C

Camera 280(M)+280(B) | 280(M)+625(B) | 280(M)+1250(B)

Flashlight | 300(M)+300(B) | 300(M)+600(B) | 300(M)+1200(B)

Three samples of A, B and C in two populations were sampled without return. Each
dataset was divided into 10 averages, of which 8 were used as training sets and 2 as test
sets. Then, our algorithm and the method of Wang [16], Zhang [15] are used to classify
these data sets simultaneously. For the results obtained, the classification indexes
Precision, Recall, and Accuracy are calculated. Repeat the 10 cross validation to get the
average value. The results are shown in the following table (Table 5).

Table 5. The results of different methods are compared to the A, B, C data sets. F represents the
flashlight population, and C represents the camera population.

Data | Method | Precision | Recall Accuracy
F |C |F c |F |C

A | Mixture | 96.7 | 96.2|98.9 | 98.8 | 97.8 | 98.1
Wang | 95.4|94.8/97.4|96.3|96.0|97.5
Zhang |96.5|/97.3/98.5(97.4/97.1/97.9
B Mixture | 96.8 | 96.597.9|98.5|97.6 |97.7
Wang | 94.3/93.3/94.6/97.1|95.3|96.3
Zhang |95.9/98.0/92.2|92.5(96.5|96.7
C Mixture | 96.3 | 93.1 |98.7 | 98.4|97.6 | 97.6
Wang [93.3/92.9/95.6/95.7|95.1|95.5
Zhang |94.6|96.4/95.7|92.3|96.1 |96.7

For the two unbalanced data sets of B and C, the detection rate of the three methods
decreased when the imbalances increased, but the variation of Mixture in the detection
rate was smaller and stable at a better level. For a detection method, the negative impact
of malware to be detected as a benign software is far greater than that of the benign
software being misrepresented as malware, so the Recall is a very important index.
A slight reduction in accuracy and improvement in Recall are of great importance in the
detection of Android applications.

5 Conclusion

This article is based on the idea of biological population. The static feature of Android
is removed by feature engineering, so that the feature is pruned, the model training time
is shortened, and the detection efficiency is improved. Then we use mixed model voting
to detect malicious applications. Experiments on two commonly used flashlight and

Using Hybrid Model for Android Malicious Application Detection Based on Population 765

camera populations show that malware detection rates reach 98.7% and 98.4%
respectively on unbalanced datasets. It is limited to detect only the permissions for
malicious application detection, but the method is simple and easy to implement. It can
detect a large number of applications at the same time. In the case of good detection
rate, it also has a high detection efficiency.

Acknowledgement. Authors are partially supported by Major projects of the Hubei Provincial
Education Department (No. 17ZD014), Hubei college students’ Innovation and Entrepreneurship
Training Program project (No. 201610488020), National defense pre research fund of Wuhan
University of Science and Technology (No. GF201712) and Colleges and Universities in Hubei
Provincial College Students’ Innovation Entrepreneurial Training Program (No. 201710488027).

References

1. The development of the China Mobile Internet and its security report (2017). [EB/OL].
http://www.isc.org.cn/zxzx/xhdt/listinfo-35398.html. Accessed 17 May 2017/08 Mar 2018

2. Yi, L., Zhang, N., Liu, D.: Study on mobile malware situation and trends. Inf. Commun.
Technol. 7(2), 75-79 (2013)

3. Jiang, X., Zhou, Y.: A survey of Android malware. In: Jiang, X., Zhou, Y. (eds.) Android
Malware, pp. 3-20. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7394-
72

4. Chu, J., Zheng, L.: The security analysis of Android OS. Microcomput. Appl. 20(7), 1-3
(2013)

5. Peng, H., Gates, C., Sarma, B., et al.: Using probabilistic generative models for ranking risks
of Android apps. In: ACM Conference on Computer and Communications Security,
pp. 241-252. ACM (2012)

6. Zhou, Y., Jiang, X.: Dissecting Android malware: characterization and evolution. In: IEEE
Symposium on Security and Privacy, pp. 95-109. IEEE (2012)

7. Feng, Y., Anand, S., Dillig, I, et al.: Apposcopy: semantics-based detection of Android
malware through static analysis. In: ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 576-587. ACM (2014)

8. Petsas, T., Voyatzis, G., Athanasopoulos, E., et al.: Rage against the virtual machine:
hindering dynamic analysis of Android malware. ACM (2014)

9. Schmidt, A.D., Bye, R., Schmidt, H.G., et al.: Static analysis of executables for collaborative
malware detection on Android. In: IEEE International Conference on Communications,
pp- 1-5. IEEE (2009)

10. Shabtai, A., Elovici, Y.: Applying behavioral detection on Android-based devices. In: Cai, Y.,
Magedanz, T., Li, M., Xia, J., Giannelli, C. (eds.) MOBILWARE 2010. LNICST, vol. 48,
pp- 235-249. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17758-3_17

11. Barrera, D., Oorschot, P.C.V., Somayaji, A.: A methodology for empirical analysis of
permission-based security models and its application to Android. In: ACM Conference on
Computer & Communications Security, pp. 73-84. ACM (2010)

12. Zhou, Y.: Dissecting Android malware: characterization and evolution. 4(3), 95-109 (2012)

13. Zhang, W., Ben, H., Zhang, K., et al.: Malware detection techniques by mining massive
behavioral data of mobile Apps. J. Integr. Technol. 5(2), 29-40 (2016)

14. Yang, H., Xu, J.: Android malware detection based on improved random forest algorithm.
J. Commun. 38(4), 8-16 (2017)

http://www.isc.org.cn/zxzx/xhdt/listinfo-35398.html
http://dx.doi.org/10.1007/978-1-4614-7394-7_2
http://dx.doi.org/10.1007/978-1-4614-7394-7_2
http://dx.doi.org/10.1007/978-3-642-17758-3_17

766 Z. Xiao et al.

15. Zhang, T., Li, T., Wang, H., Xiao, Z.: AndroidProtect: Android apps security analysis
system. In: Wang, S., Zhou, A. (eds.) CollaborateCom 2016. LNICST, vol. 201, pp. 583-
594. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59288-6_58

16. Wang, H., Li, T., Zhang, T., Wang, J.: Android apps security evaluation system in the cloud.
In: Guo, S., Liao, X., Liu, F., Zhu, Y. (eds.) CollaborateCom 2015. LNICST, vol. 163,
pp. 151-160. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28910-6_14

17. Peng, H.: Discussion on the selective weighted Bias classification method. Zhongshan
University (2010)

18. Anzhi[EB/OL]. http://www.anzhi.com/

19. VirusShare [EB/OL]. https://virusshare.com/

http://dx.doi.org/10.1007/978-3-319-59288-6_58
http://dx.doi.org/10.1007/978-3-319-28910-6_14
http://www.anzhi.com/
https://virusshare.com/

	Using Hybrid Model for Android Malicious Application Detection Based on Population (Short Paper)
	Abstract
	1 Introduction
	2 System Framework
	3 Security Detection Algorithm
	3.1 SVM Algorithm Based on Bagging
	3.2 A Classifier Based on Improved Naive Bayes

	4 Experimental Results and Analysis
	4.1 Experimental Data
	4.2 Experimental Results

	5 Conclusion
	Acknowledgement
	References

