
The Cuckoo Search and Integer Linear
Programming Based Approach to Time-Aware
Test Case Prioritization Considering Execution

Environment

Yu Wong1,2, Hongwei Zeng1, Huaikou Miao1,2, Honghao Gao1,3,
and Xiaoxian Yang4(&)

1 School of Computer Engineering and Science,
Shanghai University, Shanghai 200444, China

{joye_wong,zenghongwei,hkmiao,gaohonghao}@shu.edu.cn
2 Shanghai Key Laboratory of Computer Software Evaluating and Testing,

Shanghai 200444, China
3 Computing Center, Shanghai University, Shanghai 200444, China

4 School of Computer and Information Engineering,
Shanghai Polytechnic University, Shanghai, China

xxyang@sspu.edu.cn

Abstract. Regression testing plays an important role in software development
process. The more mature software system development is, the greater the
proportion of regression testing during software life cycle takes. To this point,
test case prioritization techniques are proposed to detect more faults as early as
possible and improve the effectiveness of regression testing. However, it is often
performed in a time constrained execution environment. This paper introduces a
new method of time-aware test case prioritization. First of all, it takes advantage
of the cuckoo search algorithm to reorder test suite. Then, integer linear pro-
gramming model is employed to test selection in light of time budget. At last, a
novel fitness function is designed focusing on code coverage that from method-
call information perspective. Experimental results show that our method
improves the effectiveness of fault detection compared with traditional fault
detection techniques especially time is constrained.

Keywords: Test case prioritization � Time-aware � Cuckoo search

1 Introduction

Regression testing takes up a large proportion of workload during the software testing
process, which should be completely executed in all stages of software development. It
is expensive in most circumstances. As we known, researcher had stated that a test suite
of software having 20,000 lines of code requires 7 weeks to run and check [1]. As a
solution, test case prioritization (TCP) is an effective solution that aims to make test
suite detect more faults as early as possible. Therefore, kinds of TCP strategies have
been published, such as greedy algorithm, meta-heuristic algorithm. However, effective

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
H. Gao et al. (Eds.): CollaborateCom 2018, LNICST 268, pp. 734–754, 2019.
https://doi.org/10.1007/978-3-030-12981-1_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12981-1_51&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12981-1_51&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12981-1_51&domain=pdf
https://doi.org/10.1007/978-3-030-12981-1_51

meta-heuristic methods are not always applicable to TCP, requiring making related
adjustment according to different test scenario.

Most of the existing approaches to prioritization did not incorporate a testing time
budget. Li et al. [2] firstly applied hill climbing and genetic algorithm (GA) to the
TCP. Though their meta-heuristic searches algorithms have no difference with the
additional greedy algorithm in performance, time constraint is still not incorporated in
their proposed algorithms. Walcott et al. [3] used the GA to reorder test suites in light
of testing time constraints. But the effectiveness of their methods has yet to be verified.
Cuckoo Search (CS) is a relatively new meta-heuristic algorithm proposed in 2009 [4,
5]. It aims to effectively solve the optimization problem by simulating parasitic
brooding behavior of cuckoo. Many experimental studies [4, 5] have proved that CS is
more effective than other optimization algorithms such as particle swarm optimization
(PSO) algorithm. However, there is no valuable literature to demonstrate the superiority
of the CS algorithm in TCP. Some existing CS approaches in testing [6, 7] have been
applied for TCP, but the effectiveness of their approaches was not proved by
experiments.

In response to the above issues, the TCP problem is transformed into finding an
optimal solution of the test case prioritization in our method, and the performance of the
method is verified by multi-level comparison experiments. Thus, this paper presents a
test case prioritization technique that combine CS algorithm and the integer linear
programming (ILP). The ILP is applied to selecting test cases when time is limited.
A new fitness function based on code coverage and method-call information is designed
to solve the multi-object problem. Through empirical evaluation, the parameter com-
bination of CS algorithm is optimized. Then our approach is evaluated and compared
with previous TCP techniques. The experimental results demonstrate that our proposed
TCP algorithm detect faults more and earlier than traditional techniques and other
heuristic-based prioritization algorithms especially time is constrained.

The rest of the paper is organized as follows. Section 2 discusses related work for
test case prioritization techniques. Section 3 describes how to combine the integer
linear programming with cuckoo search algorithm to solve the time-aware test case
prioritization problem and introduces a new fitness function. Section 4 describes the
design, results, and analysis of experiments. Section 5 comes conclusion and future
work.

2 Related Work

Techniques for test case prioritization aim to improve the rate of fault detection through
reordering test cases for execution. Many TCP strategies have been raised, the existing
TCP techniques are classified into three categories: source code, requirement, and
model. The TCP technologies based on source code are also divided into greedy
algorithm, machine learning method, fusion expert method and others. This section
describes other exiting relevant contributions in TCP strategies.

Rothermel et al. [8] firstly proposed the complete definition of the TCP problem.
They empirically evaluated several test case prioritization techniques such as statement
coverage prioritization, function coverage prioritization and so on. These researches

The Cuckoo Search and Integer Linear Programming 735

focused on code-coverage TCP methods,and had been relatively mature [8, 9]. In 2001,
Elbaum [10] conducted specific research for TCP metrics, including APFD and
APFDc. APFD metric proclaims that all faults have the same severity and all test cases
have equal costs. APFDc considers test case costs and fault severities. Their study
primarily focused on white-box testing but not black-box testing.

In addition, the multi-objective is also gradually used in the TCP problem. Islam
et al. [11] proposed a multi-objective test case prioritization approach based on latent
semantic indexing, that is the method of information retrieval (IR). Saini and Tyagi
[12] proposed a multi-objective test case prioritization algorithm (MTCPA) which is
based on two objective functions. The objective functions include test case execution
time used in the GA and statement coverage. The proposed method has been compared
with different prioritization techniques to find the optimal solution. Experimental
results showed that the proposed algorithm returns a test case suite with maximum fault
coverage and minimum execution time with maximum APFD criteria as the solution.

There are many other meta-heuristic search algorithms applied to solve multi-
objective TCP problem. Schultz and Radloff [13] were committed to combining PSO
algorithm with multi-target TCP problems. However, they compared their own
approaches with just Random by experiments. The credibility of the effectiveness of
their approaches seemed not strong enough. Cuckoo Search (CS) is proposed by Yang
and Deb [4, 5] in 2009. Many researches of various fields have proved that CS
algorithm shows greater effectiveness than other heuristics. For example, CS was
extended to solve multi-objective problems in [5]. In specific, the proposed MOCS
(multi-objective cuckoo search) was tested on a subset of well-chosen test functions.
And it performs better for almost all these test problems in comparison with the PSO
algorithm and the GA. A few researchers have attempted to use the cuckoo algorithm in
test field. Nagar et al. [6] proclaimed that they use the CS algorithm in TCP. But
actually they applied the CS algorithm to test case selection, instead of the test case
prioritization. Prior to them, Srivastava et al. [7] also applied CS algorithm to TCP, but
the algorithm converged slowly and the effectiveness of their approach was not proved
by experiments. Thus, the CS algorithm is applied to solve the time-constrained TCP
problem, and its effectiveness in fault detection is verified by experiments in this paper.

In recent years, test Case Prioritization has also made progress in other aspects.
During 2016, Alves and Machado et al. [14] proposed another novel refactoring-based
approach, which reordered an existing test sequence utilizing a set of refactoring fault
models. This approach promoted early detection of refactoring faults. Eghbali and
Tahvildari [15] proposed a new heuristic for breaking ties in coverage based techniques
using the notion of lexicographical ordering. This technology is a positive solution to
the problem of how to choose a better one once the test cases cover the same number of
statement. In 2017, Lachmann et al. [16] introduced a technique for test case priori-
tization of manual system-level regression testing based on supervised machine
learning, and used SVM Rank to evaluate their approach by means of two subject
systems. Kim et al. [17] proposed a test case prioritization method based on failure
history data.

736 Y. Wong et al.

3 Time-Aware Test Case Prioritization

Test suite usually could not be run in a limited time, so the test cases that detect more
faults should be run as much as possible. Although faults could not be predicted, test
cases that cover more code usually have more potential to detect more faults from the
perspective of code coverage. Therefore, these test cases that cover more code need to
be selected to run when time is constrained. Among them, the test case that covers
more code should be executed earlier. The test case prioritization problem is incor-
porated with time budget, and it is called time-aware test case prioritization problem.
According to Walcott et al. [3], this problem is defined as follows.

Definition 1 (Time-aware Test Case Prioritization):
Given: A test suite T, the set of permutations of T’s powerset PT, the time budget

Timemax, and two functions from PT to the real numbers fit() and Time().

Problem 1: Find the test tuple rmax 2 PT such that Time(rmax) � Timemax and
8r 2 PT where rmax 6¼ r, Time(r) � Timemax and fit(r) � fit(rmax).

In Definition 1, PT represents the collection of all possible tuples and subtuples of T.
The time budget Timemax is expected limited test case execution time in actual test
scenario. The execution time of each test case is obtained in our experiments in Sect. 4.
Timemax is simulated by the percentage of total execution time of all test cases. The test
tuple r contains several test cases, Time(r) is total execution time of them. The function
fit() is usually designed according to fault-related code information, requirement
information and so on. It measures the potential fault detection capabilities of test tuples.

Table 1. Test suite and faults exposed.

Test cases (execution time) Faults
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

T1 (9 min) X X X X X X X
T2 (1 min) X
T3 (3 min) X X
T4 (4 min) X X X
T5 (4 min) X X X

T1
7 faults
9 min

T4
3 faults
4 min

T5
3 faults
4 min

T3
2 faults
3 min

T2
1 fault
1 min

T2
1 fault
1 min

T3
2 faults
3 min

T4
3 faults
4 min

T5
3 faults
4 min

T1
7 faults
9 min

T2

1 fault
1 min

T1

7 faults
9 min

T5

3 faults
4 min

T4

3 faults
4 min

T3

2 fault
3 min

T4
3 faults
4 min

T5
3 faults
4 min

T3
2 faults
3 min

T1
7 faults
9 min

T2
1 fault
1 min

(c) Average-based prioritization

(a) Fault-based prioritization (b) Time-based prioritization

(d) Time-aware prioritization

Fig. 1. Prioritizations based on different principles.

The Cuckoo Search and Integer Linear Programming 737

Consider an example program with 10 faults and a test suite of 5 test cases, with the
faults detecting abilities as shown in Table 1. Meanwhile, the time budget is 12 min.
As illustrated in Fig. 1, if test cases are prioritized based on faults, the execution order
of them is <T1> and 7 faults are detected within 9 min. If test cases are prioritized
based on time, the execution order of them is <T2, T3, T4, T5> and 8 faults are detected
within 12 min. If test cases are prioritized based on average time, the execution order of
them is <T2, T1> and 7 faults are detected within 10 min. Time-aware test case pri-
oritization problem aims to design an intelligent method to find a great execution order
that detect more faults in less time. For example, in Fig. 1(d), executing test cases in
<T4, T5, T3> detect 8 faults within 11 min.

Moreover, definition 1 is separated into the following two definitions to design an
intelligent technique in this paper.

Definition 2 (Test Case Selection in Time Budget):
Given: A test suite T, the time budget Timemax, and two functions from T to the real

numbers fit1() and Time().

Problem 2: Find the subset T0
max � T such that Time(T0

max) � Timemax and 8T′ � T
where T0

max 6¼ T′, Time(T′) � Timemax and fit1(T′) � fit1(T0
max).

The function fit1() in Problem 2 also be designed by known fault-related code
information, requirement information, or others. In experiments, method coverage
information is considered in fit1(). More specifically, the integer linear programming
(ILP) is used for test case selection in time budgets and it will be elaborated in
Sect. 3.1.

Definition 3 (Test Case Prioritization of Test Subset):
Given: A subset obtained by solving Problem 2 T0

max, the collection of T0
max ’s all

possible tuples and sub tuples PT, and a function from PT to the real numbers fit2().

Problem 3: Find the test tuple rmax 2 PT such that 8r 2 PT where rmax 6¼ r and
fit2(r) � fit2(rmax).

In Definition 3, the fitness function fit2() is designed by code information and
execution time. It helps us to find the test tuple that detect more faults as soon as
possible and is referred to in Sect. 3.3.

3.1 ILP-Based Test Case Selection Introduction

For the time-aware test case prioritization problem, test case selection in time budget
should be first solved to obtain an optimal test case subset that run in limit time. In our
software test environment, execution time of test cases and the specific methods
covered by each test case are available. The test case set, execution time, and covered
method meet a corresponding linear relationship. In order to select a test subset cov-
ering more methods under certain linear constraints (Eqs. 5 and 6), a linear program-
ming model is undoubtedly suitable. In this section, test case selection in time budget is
viewed as a 0/1 integer linear programming (ILP) problem to solve as follows [18].

738 Y. Wong et al.

Suppose that test suite T contains n test cases {T1, T2,…, Tn}, the execution time of
each test case is time(Ti). The code unit set of the program is denoted as C = {c1, c2,
…, cm}. A code unit may be a method, a class, or a statement block. The problem is to
select a subset T0

max that not only covers the biggest code unit subset of C but also the
sum execution time of it does not exceed the time budget.

Let Boolean variable xi (1 � i � n) indicates if test case Ti is selected or not, and
Boolean variable sij is defined as whether a test case Ti covers cj. So, for the set of code
units, m Boolean variables yi (1 � i � m) are used to represent whether code unit cj
is covered by at least one test case. The problem is reduced to the 0/1 ILP described as
follows:

0/1 variables:

xi ¼ 1; if Tið1� i� nÞ is selected
0; otherwise

�
ð1Þ

Sij ¼ 1; if Ti covers cj
0; otherwise

�
ð2Þ

yj ¼ 1; if one or more selected test cases cover cj
0; otherwise

�
ð3Þ

A linear function to be maximized:

max
Xm
j¼1

yj ð4Þ

Problem constraints:

Xn
i¼1

timeðTiÞ � xi � Timemax ð5Þ

Xn
i¼1

sij � xi � yj ði\j\mÞ ð6Þ

In Eq. 4, the linear function
Pm

j¼1 yj amounts to the function fit1() in Problem 2,
and it aims to pick out a subset of test cases that cover the most code in finite time
Timemax. The time(Ti) is the execution time of the test case Ti. Although this test subset
has reached the maximum code coverage, there may still have spare time to run
unselected test cases after executing the selected ones. In order to detect more faults,
the remaining unchosen test cases need to be further selected according to the
remaining time. For further selection, the total number of methods that are covered by

The Cuckoo Search and Integer Linear Programming 739

each test case is calculated, then select the maximum coverage test case that run in the
remaining time. The optimal subset of test suite T is obtained by the ILP and further
selection.

3.2 Test Case Prioritization Using CS

The suitable test case subset that could be executed in a limited time has been selected,
but many faults detected by the test cases are duplicated. If the test case set is not
prioritized, a lot of time will still be wasted. Thus, the test case subset that have
potential to detect more faults should be run first. This TCP problem is absolutely
considered as the global optimized problem that solved by Cuckoo Search (CS) algo-
rithm. CS is a meta-heuristic algorithm that effectively solve optimization problem by
simulating the parasitic brooding behavior of certain species of cuckoo. Based on the
fitness value of each iteration, a fraction of worse nests will be abandoned, and each
generation infinitely close to an optimized solution by replacing the solutions to the
better ones [4, 5]. The optimal solution is based on the fitness function which measures
the potential fault detect ability of the test sequence.

For simplicity in describing the CS, CS usually uses the following three idealized
rules: (a) Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;
(b) The high-quality eggs will be carried over to the next generations; (c) The number
of available host nests is fixed, and the egg laid by a cuckoo is discovered by the host
bird with a probability pa. In this case, the host bird either get rid of the egg, or simply
abandon the nest and build a completely new nest [4, 5].

According to Yang [4], based on above three rules, the basic steps of the cuckoo
search algorithm for TCP are described as Algorithm 1.

Algorithm 1 CS Algorithm for TCP [4]

1: Begin
2: Generate initial test tuple population (n host nests xi (i 1,2, ..., n))
3: while (t MaxGeneration)
4: Get a test tuple(cuckoo) xi randomly by Lévy flights and evaluate it;
5: Choose a test tuple (nest) among n (say, j) randomly;
6: if (f(xi) f(xj))
7: replace xj by the new solution xi;
8: end if
9: Rank the solutions and find the current best;
10: A fraction (pa) of worse nests are abandoned and new ones are built to replace them;
11: Keep the best solutions (or nests with quality solutions);
12: end while
13: Obtain the best solution.
14: End

740 Y. Wong et al.

In CS algorithm for TCP, the initial population is generated randomly from the
permutation of the test subset obtained by ILP. Each d-dimensional vector xi called test
tuple represents one of the ordering results of d test cases. The parameter t represents
the t-th generation of nest transformation and MaxGeneration is set to terminated the
algorithm. The objective function f(xi) is just fit2() in Problem 3 and will be defined in
Sect. 3.

In the loop, Lévy flights is the core of the CS, and it is performed to generate new

solutions. For a nest xðtÞi , a Lévy flight is described as follows:

x tþ 1ð Þ
i ¼ xðtÞi þ a� L�evyðkÞ ð7Þ

In (7), a is the step size, in this paper a = 1 is setted here. The product ⊕ means
entrywise multiplication. In test case prioritization, a test tuple is a sequence of test
cases (non-numerical values), so the location numbers of test cases in a test tuple are
used to form a nest. Suppose vector I marks the initial locations of test cases in test
tuple xi, a Lévy flight of xi is defined as

I tþ 1ð Þ ¼ HashðIðtÞ þ a� L�evyðkÞÞ ð8Þ

In (8), a ⊕ Lévy(k) creates a new d-dimensional vector which elements are
d random integers based on Lévy distribution. To get these d random numbers, Levy
Random Number Generator (LRNG) is designed. The final results of I(t+1) are a set of
integers between 0 to d got by modulo operation. These d integers represent locations,
and they are highly likely to cause hash conflicts. Hash function is applied to solve this
hash conflict. It computes new sequence numbers of test cases in xi, and quadratic
probing method to solve conflict. At last, a new vector I(t+1) is obtained and a new test
tuple xi

(t+1) generates according to I(t+1).
To better elaborate, an example is given to explain the specific process of Lévy

flight. In Fig. 2(a), the original test tuple xðtÞi ¼ x0; x1; x2; x3; x4ð ÞT¼ ðT3; T4; T1;
T5; T2ÞT, so I tð Þ ¼ 2; 4; 0; 1; 3ð Þ, elements in I are the location of test cases in the tuple.
Then update the I(t) with the Lévy vector generated by LRNG in Fig. 2(b), but there are
conflicts in the new I(t) like “3” and “1”. Then quadratic probing method is used to
solve hash conflicts in Fig. 2(c). In addition, the element “ni” in Fig. 2(c) means the i-th
repetition of value “n”. At last, a new subscripts vector I(t+1) is got without conflict and
the new test tuple vector T5; T4; T3; T1; T2½ � is obtained according to I(t+1) as shown in
Fig. 2(d).

The Cuckoo Search and Integer Linear Programming 741

3.3 Fitness Function Design

In meta-heuristic algorithm, fitness function play an important role. To use the cuckoo
search algorithm to search the best test tuple, a new fitness function of the CS is
designed for TCP algorithm.

Fitnessðr; tc;x1;x2Þ ¼ x1Fcoverðr; tcÞþx2FmcðrÞ ð9Þ

The fitness of a test tuple r is evaluated by code coverage information and method-
call information, and x1;x2 2 0; 1½ � are weights that satisfy x1 þx2 ¼ 1. In which, the
code coverage information is obtained on a given test coverage adequacy criteria tc.

Fig. 2. Create new test tuple by the Lévy flight.

742 Y. Wong et al.

Fcoverðr; tcÞ is related to code coverage, giving precedence to test tuples which
cover more code earlier. Fcover is calculated in two parts: Fc-actual, Fc-max. First, Fc-actual

is computed by summing the products of execution time time(Ti) and the code coverage
of the sub tuple r{1,i}. In which, the sub tuple r 1;if g ¼ \T1; T2; . . .; Ti [for each test
case Ti 2 r. Formally, for each r,

Fc-actualðr; tcÞ ¼
X rj j

i¼1
timeð Tih iÞ � ccoverðrf1;ig; tcÞ

� � ð10Þ

Fc-max represents the maximum code coverage of the test tuple r at maximum time
limit (i.e. the maximum value that Fc-actual takes). For each r,

Fc-maxðr; tcÞ ¼ ccoverðr; tcÞ �
Xn

i¼1
timeð Tih iÞ ð11Þ

Then,

Fcoverðr; tcÞ ¼ Fc-actualðr; tcÞ
Fc	maxðr; tcÞ ð12Þ

The Fcover evaluates the code coverage of the test tuple r, but larger code coverage
may have smaller number of method calls. Fmc(r) is associated with method call
number. More method calls covered by the test tuple make fault detection more
effective. Similarly, Fmc(r) is also calculated in two parts. Meanwhile, for each r,

Fm-actualðrÞ ¼
X rj j

k¼1

Xk

i¼1
timeðhTiiÞ � mcðr 1;kf gÞ

n o
ð13Þ

Fm-maxðrÞ ¼ mcðrÞ �
X rj j

i¼1
timeðhTiiÞ ð14Þ

where mc(r{1,i}) means the method call number of the sub tuple r 1;if g ¼
\T1; T2; . . .; Ti [for each test case Ti 2 r.

Then, Fmc(r) is obtained by these two parameters. Specifically, for each r,

FmcðrÞ ¼ Fm-actualðrÞ
Fm-maxðrÞ � 2

rj j ð15Þ

where 2/|r| is to neutralize the gap between numerator and denominator.

3.4 Algorithm Implementation About TCP Using CS

Our approach combines the CS with ILP for the test case prioritization problem under
time constraint. To conclude above all, this section further describes the specific
implementation process of our approach in Algorithm 2.

The Cuckoo Search and Integer Linear Programming 743

In Algorithm 2, the inputs of the CS for TCP algorithm are the program P, each
Ti 2 T1; T2; . . .; Tnf g, and the following user specified parameters: (1) s, maximum
number of candidate test tuples generated during each iteration, (2) gmax, maximum
number of iterations, (3) pa, the fraction (pa) of worse nests will be abandoned, (iv) pt,
percent of the execution time of T allowed by the time budget, (4) tc, test coverage
adequacy criteria, like class, method, block and so on, (5) x1, the program coverage
weight, (6) x2, the program method calls weight, which pt;x1;x2 2 ½0; 1�, and
x1 þx2 ¼ 1.

The cuckoo search algorithm uses heuristic search to identify the test tuple
rmax 2 PermuteðT0

maxÞ, which T0
max is the subset of T and it may have the highest rate

of fault detection in provided limit time. The subset T0
max get by the ILP. The initial test

tuples get from PermuteðT0
maxÞ. Finally, after the iterative process of the algorithm, the

output is the best test tuple, that is, the test tuple with the greatest value. In general, any
rj 2 PermuteðT0

maxÞ has the form rj ¼ \T1; . . .; Tn [where u� n.
The first two lines of the algorithm are the key to our time-aware processing and

aim to solve the Problem 2. Line 1 is the time acquisition and time constraint
step. Next, the ILP is used to filter out the optimal set T0

max of test cases which are
executed in restricted time. The next two lines are the process to generate the initial
population of test case prioritization using CS. Before the algorithm run for the loop on
line 6, the algorithm creates a set R0 containing s random test tuples r from
PermuteðT0

maxÞ. R0 is the first generation of s potential “best” test tuple.
Then a test tuple is randomly chosen by SelectOne(Rg) and Lévy flights is per-

formed by ApplyLevy(ri) to obtain a new solution. After that, the fitness value of them

744 Y. Wong et al.

are compared and the better one is selected to stay in Rg. Once a set of test tuples is
created, the Fitness(rj, tc, x1, x2) method on line 9 will use coverage information and
method-call information to calculate the fitness value of rj 2 Rg. On line 14, the test
tuples in Rg are reordered according to their fitness value. pa of worse nests will be
abandoned, and should be rebuilt by Lévy flights as well. After iterating over
MaxGeneration times, the test tuple with the highest fitness value in the last test tuple
set Rg is the global optimal solution obtained by the algorithm.

4 Empirical Evaluation and Discussion

Test case prioritization aims to detect more faults as early as possible. The APFD
metrics is commonly used as a standard to evaluate this performance, and the specific
meaning of it is described later in this section. Experiments are designed to compare the
calculated APFD value and the number of detected faults, which proves that our
method has better fault detection capability than the traditional methods.

In this section, the part one describes experiment environment, design and evalu-
ation metrics. In the next part, it presents the parameters of our method in the next
comparative experiments. Then, the first experiment compares the performance of CS
with traditional techniques and the genetic algorithm. The second one compares them
under time constraints.

4.1 Experiment Configuration

Test cases run on the Linux virtual machine. The execution time of them is obtained by
the tool time.pl [19] in the SIR system and specifically defined as the average value of
its 500 tests. All experiments are conducted on the same computer which is configured
as the 64-bit Windows 7 operating systems, Pentium(R) dual-core CPU and 4 GB
memory. The heuristic algorithm for each different parameter configuration is per-
formed 200 times, and the random TCP experiment is performed 500 times to reduce
the uncertainty of the experimental results. Experiments are conducted many times to
avoid occasional abnormal data posing a threat to the validity of the experimental
results.

Table 2. Case study application.

Apache-xml-security

Classes 115
Methods 505
LOC 16800
Test cases 10
Seeded faults 12

The Cuckoo Search and Integer Linear Programming 745

Case Study. To validate the effectiveness of our approach, a Java program Apache-
xml-security from the SIR infrastructure [20] is used as an analysis object. The dif-
ferences between versions do not need to be considered. Version 0 is just chosen as our
research object.

Table 2 shows the details of our case study. Apache-xml-security is a component
library implementing XML signature and encryption standards, supplied by the XML
subproject of the open source Apache project. It currently provides a mature imple-
mentation of Digital Signatures for XML, with implementation of encryption standards
in progress. There are several sequential, previously-released versions of XML-
security, each provided with a developer supplied JUnit test suite [20]. In each version,
faults are seeded using fault seeding procedure described in Java Fault Seeding Pro-
cess. Moreover, new faults are implanted with the original basis, and some faults that
are not detected by any test cases or are detected by each test case should also be
removed. Eventually, twelve faults are retained after screening. In addition, the number
of test cases described in the table is also obtained by deleting redundancy.

Implementation and Environment. The open source software program Apache-xml-
security run in a Linux system environment. It is built by creating a virtual Ubuntu
system on VMware. In this virtual environment, faults are injected in the source code
and test cases are run on the research object.

There are tools should be used as shown in Table 3. They are related to two
aspects. One is code information and the other is time constraint. In the CS algorithm,
every time when the initialization or iteration executed, the fitness function of each test
tuple should be calculated with test case code coverage information and the number of
method calls. In which, the code coverage information is obtained by a tool called
Emma. Emma instruments classes for class, method and block coverage. Emma is quite
fast: the runtime overhead of added instrumentation is small (5–20%) and the byte-code
instrumentor itself is fast, mostly limited by file I/O speed. Memory overhead is a few
hundred bytes per Java class [21]. However, in addition to the code in the experiment
coverage information, the method-call information of each test case is also indis-
pensable. In this regard, the code metric tool Source Monitor is used to feed us back to
a series of code-related information.

Table 3. Study tools.

Tools

Emma A free Java code coverage tool
Source
monitor

A tool for measuring code written in a variety of languages

time.pl Calculate the time taken by test cases to execute the program, and it is used to
collect timings

Lingo An integrated tool for building and solving linear, nonlinear and integer
optimization models

746 Y. Wong et al.

Meanwhile, the calculation of time cost for the test case use the tool time.pl [19] in
the SIR system. This tool calculates the time taken by test cases to execute the program,
and it is used to collect timings. Code coverage and test case execution time should be
combined to filter out the better and more test cases that run in a limited time. This
operation takes advantage of Lingo because it is easier to understand and handle than
other tools when dealing with integer linear programming problems.

Evaluation Metrics. To calculate the fault detection ability, APFD (Average Per-
centage Fault Detection) metric [10] should be considered to apply to. It evaluates the
optimization degree of test case prioritization set, and measures the effectiveness of
different test case prioritization techniques under different time constrains.

Assume there is a test case set T with n test cases and m defects. Given a test case
prioritization tuple, TFi represents the location of the first test case in which fault i-th
was detected. APFD is calculated as follows:

APFD ¼ 1	 TF1 þ TF2 þ . . .þ TFm

nm
þ 1

2n
ð16Þ

and the larger the value of APFD, the higher the efficiency of the test sorting.
At the same time, not all test cases usually should be run due to time constraints. It

will most likely cause some faults might not be detected by any test case. In this regard,
counting TFi ¼ nþ 1 if there are no test cases detect the i-th fault.

Take the test tuple <T4, T5, T3> in Fig. 1. (d) as an example, its
APFD ¼ 1	 3þ 1þ 1þ 2þ 3þ 2þ 1þ 6þ 2þ 6ð Þ=5 � 10þ 1=2 � 5 ¼ 0:56.

Although the execution time of the test case is important, the other evaluation
criteria APFDc that takes the severity of faults and time cost into account is not used as
our evaluation criteria. Because, this paper puts more emphasis on detecting more
faults in a limited time when comparing the different techniques under different time
constraints.

4.2 Experiments and Results

Optimal Parameters of CS Algorithm. As shown in Table 4, there are many
uncertain parameters in the CS algorithm. So the fault detection effectiveness of our CS

Table 4. Parameters used in CS configurations.

CS parameters

P Apache-xml-security
(gmax, s) (25, 60), (50, 30), (75, 15)
pa 0.8, 0.5, 0.25
(x1, x2) (1, 0), (0, 1), (0.85, 0.15)
tc class, method
pt 0.85, 0.75, 0.5, 0.25

The Cuckoo Search and Integer Linear Programming 747

algorithm are compared under different parameter configurations. It aims to obtain a
greatest parameter configuration for the next comparative experiments. Different
parameter values of the four variable groups need to be combined. Finally, there are
3 � 3 � 3 � 2 � 4 ¼ 216 different parameter configurations.

Among them, the parameter combination (x1, x2) is related to fitness function calcu-
lation and the value (0.85, 0.15) is obtained by trying different weight ratios. The
weight ratio is adjusted gradually by the step size of 0.1 from (0, 1) to (1, 0), then the
relative optimal one is obtained. Experiments performed under each weight ratio and
the results is shown in Fig. 3. According to the trend of the curve in Fig. 3, the fault
detection rate of the CS algorithm get the best results when the ratio of weights is (0.85,

(0,1) (0.1,0.9) (0.2,0.8) (0.3,0.7) (0.4,0.6) (0.5,0.5) (0.6,0.4) (0.7,0.3) (0.75,0.25) (0.8,0.2) (0.85,0.15) (0.9,0.1) (1,0)

APFD Mean 0.796583333 0.796666667 0.802083333 0.807 0.80925 0.812583333 0.817666667 0.820333333 0.825666667 0.825166667 0.826541667 0.816083333 0.744291667

0.74

0.76

0.78

0.8

0.82

A
PF

D

Weight Ratio

Fig. 3. Variation trend of CS prioritization algorithm’s APFD value at different weight ratios.

Fig. 4. Code coverage adequacy criteria comparison: method vs. class.

Table 5. Coverage adequacy criteria comparison t-test.

APFD mean p-value t-value
Class Method

0.790634 0.822273 <0.01 −31.652

748 Y. Wong et al.

0.15). As is shown in Fig. 3, the TCP considers the code coverage without method calls
when (x1, x2) is (0, 1). And its fault detection performance is significantly worse than
the one which took method calls into consideration as well. This shows that adding the
number of method invocations in fitness function gets a more rigorous fitness value,
which indeed to improve the quality of test tuples.

The optimal weight ratio of the fitness function has been determined. Now combine
and compare the experimental results of other uncertain parameters. First, the effect of
different coverage adequacy criteria on experimental results is compared. There are 18
combinations of those 2 code coverage criteria with 9 different generations number,
population size and abandonment fraction. Figure 4 illustrates box diagrams about
experimental results. Table 5 shows the t test result of experiments, and the p-value and
t-value are obtained by 2-tail t test at significant level a = 0.05.

The p-value reveals the degree of difference of two targets. These two targets have
difference when p < 0.1 and the difference is significant when p < 0.05. If p > 0.1,
they have no difference. The t-value shows which is better. If p-value has told us these
two targets have difference and t-value < 0, the latter one is better. According to the p-
values and t-value in Table 5, fine-grained method-level experimental results are sig-
nificantly better than the class-level. Although the experiment might not proceed with
the level of the block, there is a great possibility of believing that the performance of
the experiment might be further enhanced if the code coverage criterion is block.

The method has been chosen to be the code coverage criterion in next experiments.
The white boxes in Fig. 4 are extracted and compared to determine other parameters.
These parameters include the population size, number of generations and abandonment
fraction. Figure 5. Shows those nine boxes and verifies that the abandonment fraction
had better not choose the value of 0.25.

In Table 6, compares to other ones, whatever the s; gmaxð Þ is, the p-value is always
<0.01 when pa ¼ 0:25. Though pa ¼ 0:5 shows no significant difference between pa ¼
0:8 in Fig. 5, Table 6 proves that pa ¼ 0:5 and pa ¼ 0:8 have significant differences
ðp ¼ 0:0366Þ, and pa ¼ 0:8 is better than pa ¼ 0:5 ðt ¼ 	2:467Þ when the s; gmaxð Þ is
(60, 25). The dark shadows in Table 6 show that the t test result has no significant
difference when not partitioning s; gmaxð Þ, and it prove the pa ¼ 0:8 is better as well.

Fig. 5. Population size, generations number and abandonment fraction comparison.

The Cuckoo Search and Integer Linear Programming 749

When focus on the experimental results of different (s, gmax) combinations in
Table 7, differ from the GA, the difference is not reflected on the CS algorithm. Except
(15, 75) shows obvious disadvantage over (30, 50) and (60, 25). The ðs; gmaxÞ ¼
30; 50ð Þ shows there is no significant different from ðs; gmaxÞ ¼ 60; 25ð Þ. Thus, a rel-
atively good combination (50, 30) is chose for the next experiments. Finally, the
optimal parameter is ðs; gmax; pa;x1;x2; tcÞ ¼ 30; 50; 0:8; 0:85; 0:15; methodð Þ.

Alternative Prioritization Comparisons. To verify the effectiveness of our approach
using integer linear programming at different time budgets, time constraint is added on
the last experiments. This section compares our approach with the GA, several tradi-
tional techniques under different time constraints.

Table 6. Abandonment fraction comparison t-test.

(s, gmax) pa (1) APFD mean pa (2) APFD mean p-value t-value

(15, 75) 0.25 0.81092 0.5 0.82175 <0.01 −3.615
0.5 0.82175 0.8 0.82296 0.6378 −0.471
0.25 0.81092 0.8 0.82296 <0.01 −4.074

(30, 50) 0.25 0.81854 0.5 0.8255 <0.01 −2.957
0.5 0.8255 0.8 0.8295 0.0533 −1.938
0.25 0.81854 0.8 0.8295 <0.01 −4.982

(60, 25) 0.25 0.81829 0.5 0.82429 <0.01 −2.805
0.5 0.82429 0.8 0.82856 0.0366 −2.097
0.25 0.81829 0.8 0.82856 <0.01 −4.822

Total 0.25 0.81592 0.5 0.82385 <0.01 −5.422
0.5 0.82385 0.8 0.82706 0.0143 −2.454
0.25 0.81592 0.8 0.82706 <0.01 −7.771

Table 7. Population size, generations number t-test.

pa (s, gmax) (1) APFD mean (s, gmax) (2) APFD mean p-value t-value

0.25 (15, 75) 0.81092 (30, 50) 0.81854 <0.01 −2.596
(30, 50) 0.81854 (60, 25) 0.81829 0.9149 0.107
(15, 75) 0.81092 (60, 25) 0.81829 <0.01 −2.612

0.5 (15, 75) 0.82175 (30, 50) 0.8255 0.1232 −1.545
(30, 50) 0.8255 (60, 25) 0.82429 0.5757 0.5602
(15, 75) 0.82175 (60, 25) 0.82429 0.2828 −1.075

0.8 (15, 75) 0.82296 (30, 50) 0.8295 <0.01 −2.941
(30, 50) 0.8295 (60, 25) 0.82856 0.694 0.3937
(15, 75) 0.82296 (60, 25) 0.82856 0.014 −2.467

Total (15, 75) 0.81854 (30, 50) 0.82451 <0.01 −3.992
(30, 50) 0.82451 (60, 25) 0.82376 0.5573 0.587
(15, 75) 0.81854 (60, 25) 0.82376 <0.01 −3.535

750 Y. Wong et al.

Our CS algorithm combined with the ILP model described in Sect. 3.1. The genetic
algorithm is implemented according to the technique designed by Walcott et al. [3].

Analyzing experimental results in general according to Fig. 6. Compare with the
GA and other traditional techniques, our CS algorithm obviously improves the effi-
ciency of fault detection to a certain extent, except the reverse order algorithm due to
contingency. In addition, by observing the first three boxes of 4 pictures, it may be
found that APFD value of our CS algorithm is not only high but also concentrated. It
shows that the fault detection performance of our approach is more stable than the latter
two techniques.

In Fig. 6, the fault aware is an strategy under ideal conditions, its premise is that the
faults detected by the test case are predicted in advance. This strategy runs the test cases
that detect more faults as early as possible. Although it is no practical meaning, it is
used as a reference to the performance of our approach. By comparing with the data
diagram of this idealized technology, it shows that applying the cuckoo algorithm to
TCP problem does not match the fault aware strategy. But the difference is not obvious,
the CS algorithm shows good fault detection performance.

Analyzing experimental results in detail according to Fig. 6 and Table 8. In Fig. 6,
our CS algorithm is superior in fault detection efficiency to the other four techniques
except fault aware strategy, whether there is no time constraint (100%), loose time
constraint (85%) or compact time constraint (25%). The p-values (all p-values < 0.01)

(a) 85% time budget (b) 75% time budget

(a) 50% time budget (d) 25% time budget

Fig. 6. CS vs other techniques APFDs under different time-constraint.

The Cuckoo Search and Integer Linear Programming 751

and t-values obtained by the t-test in Table 8 prove that this superiority is extremely
significant. When compare with fault-aware strategy, the difference between our
approach and the fault-aware is significant under most of the time constraints, but is not
significant when the time constraint is 85%.

In Table 8, the “Detected number” records the number of faults that are detected by
the current technology under different time constraints. Table 8 presents that our
approach always detect as many faults as the fault aware strategy, and the number of
faults detected by our approach is always not less than other techniques. The more
compact the time constraint, the more obvious the advantage of the CS algorithm that
detects more faults.

In general, the effective of our approach has been proved by the comparison about
the number of fault detections and the evaluation standard APFD in above experiments.
The conclusion is that applying CS Algorithm and integer linear programming to the
time constraint TCP problem not only detects more faults but also detects faults as early
as possible.

Table 8. CS vs other techniques under different time constraints and t-test.

Time
percent

CS APFD
mean

Detected
number

Other
algorithms

APFD
mean

Detected
number

p-
value

t-value

0.85 0.82796 12 GA 0.61428 11(±1) <0.01 33.084
Random 0.50648 11 <0.01 27.562
Order 0.33333 11 <0.01 30.894
Reserve 0.44444 8 <0.01 23.846
Fault aware 0.84259 12 0.1602 −1.4096

0.75 0.77019 11 GA 0.49486 9(+1) <0.01 46.212
Random 0.52204 11 <0.01 18.007
Order 0.33333 11 <0.01 23.676
Reserve 0.33333 8 <0.01 23.676
Fault aware 0.7963 11 0.045 −2.0169

0.5 0.74 11 GA 0.49864 9(±1) <0.01 18.807
Random 0.34517 7(±4) <0.01 23.780
Order 0.26042 7 <0.01 158.26
Reserve 0 6 <0.01 244.2
Fault aware 0.78125 11 <0.01 −13.631

0.25 0.53571 9 GA 0.36057 8(+1) <0.01 11.012
Random 0.11802 5(±4) <0.01 17.623
Order 0.21429 7 <0.01 1.3E

+14
Reserve −∞ 0 <0.01 +∞
Fault aware 0.61905 9 <0.01 −3E+13

752 Y. Wong et al.

5 Conclusion

This paper proposes a time-aware test case prioritization technique, using cuckoo
search algorithm and integer linear programming. The integer linear programming
model is used to generate the best test case subset when the time is limited. A new
fitness function based on code coverage and method-call information is also designed
to improve the effectiveness of fault detection. Experimental analysis demonstrates that
a time-aware test case order is created by our approach. And it significantly outper-
forms ones obtained from other prioritization techniques, even the genetic algorithm.

In the future work, the mature industrial projects will be further selected as
experimental objects to verify the feasibility and effectiveness of the algorithm. Then,
block, even sentence will be considered as our code coverage criterion in the later
experiments. Finally, parallel computing and test case clustering will be studied in the
future because of the consumption of time and space that the test suite should be
permutated dynamically.

Acknowledge. This work is supported by the National Natural Science Foundation of China
under grant No. 61572306 and No. 61502294, the CERNET Innovation Project under Grant
No. NGII20170513, and the Youth Foundation of Shanghai Polytechnic University under Grant
No. EGD18XQD01.

References

1. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Test case prioritization: a family of empirical
studies. IEEE Trans. Softw. Eng. 28(2), 159–182 (2002)

2. Li, Z., Harman, M., Hierons, R.M.: Search algorithms for regression test case prioritization.
Acta Paediatrica 33(4), 225–237 (2007)

3. Walcott, K.R., Soffa, M.L., Kapfhammer, G.M.: Time aware test suite prioritization. In:
ACM/SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2006,
Portland, Maine, USA, July, DBLP, pp. 1–12 (2006)

4. Yang, X.S., Deb, S.: Cuckoo search via levey flights. In: World Congress on Nature &
Biologically Inspired Computing, pp. 210–214. IEEE Xplore (2010)

5. Yang, X.S., Deb, S.: Multi-objective cuckoo search for design optimization. Comput. Oper.
Res. 40(6), 1616–1624 (2013)

6. Nagar, R., Kumar, A., Singh, G.P.: Test case selection and prioritization using cuckoos
search algorithm. In: International Conference on Futuristic Trends on Computational
Analysis and Knowledge Management, pp. 283–288. IEEE (2015)

7. Srivastava, P.R., Reddy, D.V.P.K., Reddy, M.S.: Test case prioritization using cuckoo
search. Adv. Autom. Softw. Test. Framew. Refin. Pract. 28(2), 159–182 (2012)

8. Rothermel, G., Untch, R.H., Chu, C.: Prioritizing test cases for regression testing. IEEE
Trans. Softw. Eng. 27(10), 929–948 (2001)

9. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Prioritizing test cases for regression testing.
In: ACM (2000)

10. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Incorporating varying test costs and fault
severities into test case prioritization. In: ICSE, pp. 329–338. IEEE Computer Society (2001)

The Cuckoo Search and Integer Linear Programming 753

11. Islam, M.M., Marchetto, A., Susi, A.: A multi objective technique to prioritize test cases
based on latent semantic indexing. In: Proceedings 16th European Conference Software
Maintenance and Reengineering, pp. 21–30 (2012)

12. Saini, A., Tyagi, S.: MTCPA: multi-objective test case prioritization algorithm using genetic
algorithm. In: International Journal of Advanced Research in Computer Science and
Software Engineering (2015)

13. Schultz, M., Radloff, M.: Test case prioritization using multi objective particle swarm
optimizer. In: International Conference on Signal Propagation and Computer Technology,
pp. 390–395. IEEE (2014)

14. Alves, E.L., Machado, P.D., Massoni, T., Kim, M.: Prioritizing test cases for early detection
of refactoring faults. Softw. Test. Verif. Reliab. 26, 402–426 (2016)

15. Eghbali, S., Tahvildari, L.: Test case prioritization using lexicographical ordering. IEEE
Trans. Softw. Eng. 42(12), 1178–1195 (2016)

16. Lachmann, R., Schulze, S., Nieke, M.: System-level test case prioritization using machine
learning. In: IEEE International Conference on Machine Learning and Applications,
pp. 361–368. IEEE (2017)

17. Kim, J., Jeong, H., Lee, E.: Failure history data-based test case prioritization for effective
regression test. In: Symposium on Applied Computing, pp. 1409–1415. ACM (2017)

18. Zhang, L., Hou, S.S., Guo, C.: Time-aware test-case prioritization using integer linear
programming. In: Eighteenth International Symposium on Software Testing and Analysis,
ISSTA 2009, Chicago, IL, USA, pp. 213–224 (2009)

19. Time.pl:a tool to collect timings. http://sir.unl.edu/content/tools.php
20. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with testing

techniques: an infrastructure and its potential impact. Empir. Softw. Eng. 10, 405–435
(2005)

21. Roubtsov, V.: EMMA: a free Java code coverage tool. http://emma.sourceforge.net/

754 Y. Wong et al.

http://sir.unl.edu/content/tools.php
http://emma.sourceforge.net/

	The Cuckoo Search and Integer Linear Programming Based Approach to Time-Aware Test Case Prioritization Considering Execution Environment
	Abstract
	1 Introduction
	2 Related Work
	3 Time-Aware Test Case Prioritization
	3.1 ILP-Based Test Case Selection Introduction
	3.2 Test Case Prioritization Using CS
	3.3 Fitness Function Design
	3.4 Algorithm Implementation About TCP Using CS

	4 Empirical Evaluation and Discussion
	4.1 Experiment Configuration
	4.2 Experiments and Results

	5 Conclusion
	Acknowledge
	References

