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Abstract. Online social networks have been one of the most effective
platforms for marketing which is called viral marketing. The main chal-
lenge of viral marketing is to seek a set of k users that can maximize
the expected influence, which is known as Influence Maximization (IM)
problem. In this paper, we incorporate heterogeneous costs and benefits
of users and time constraints, including time delay and time deadline
of influence diffusion, in IM problem and propose Cost-aware Targeted
Viral Marketing with Time constraints (CTVMT) problem to find the
most cost-effective seed users who can influence the most relevant users
within a time deadline. We study the problem under IC-M and LT-M
diffusion model which extends IC and LT model with time constraints.
Since CTVMT is NP-hard under two models, we design a BCT-M algo-
rithm using two new benefit sampling algorithms designed for IC-M and
LT-M respectively to get a solution with an approximation ratio. To
the best of our knowledge, this is the first algorithm that can provide
approximation guarantee for our problem. Our empirical study over sev-
eral real-world networks demonstrates the performances of our proposed
solutions.

Keywords: Social network · Influence maximization ·
Time constraints

1 Introduction

Recently, online social networks rapidly increasing to involve billions of active
users, which makes it play an important role in daily life. For instance, online
social networks such as Facebook, Twitter, have become critical platforms for
marketing and advertising. Information and invention can propagate wildly over
the network with the help of word-of-mouth effect and we call this marketing
Viral Marketing. There is an extensively studied problem named Influence Max-
imization (IM) in viral marketing. It aims to find a seed set of k influential users
in a social network so that the number of people influenced by seed set, named
influence spread, can be maximum.

In their seminal paper, Kempe et al. [1] formulated IM as a combinatorial
optimization problem and proposed two classical diffusion models, namely, Inde-
pendent Cascade (IC) and Linear Threshold (LT) model. However, Chen et al.
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[2] considered that IC and LT do not fully incorporate important temporal fac-
tors that have been well observed in the dynamic of influence diffusion. First, the
propagation of influence from one person to another may incur a certain amount
of time delay and second, the spread of influence may be time-critical in practice,
i.e., beyond a certain time deadline, the spread of influence is meaningless. We
conclude the two temporal factors as time constraints. They proposed Indepen-
dent Cascade with Meeting events (IC-M) and Linear Threshold with Meeting
events (LT-M) model to capture the delay of propagation. They studied the IM
problem with time constraints under IC-M and LT-M models and proposed some
heuristic algorithms.

Unfortunately, except for the time constraints, IM problem still ignores the
different cost when select a user into seed set and the different benefit from
an influenced user. Nguyen et al. [3] extended the IM problem to Cost-aware
Targeted Viral Marketing (CTVM) problem with the addition of arbitrary costs
and benefits above but did not consider the time constraints.

In this paper, we propose Cost-aware Targeted Viral Marketing with Time
constraints (CTVMT) problem connecting CTVM problem and time constraints
together. In our problem settings, every user has his own cost when he is selected
into seed set and also has his own benefit when he gets influenced. We aim to find
a set of influential users within a predefined budget in a social network such that
they can influence the largest number of targeted users when reaching the time
deadline. Formally, given a social network G, a budget B and a time deadline
T , let each node vi in G refer to a user and eij which denotes the edge from
vi to vj refer to the relationship between users. c(vi) denotes the cost of vi and
b(vi) denotes the benefit of vi. m(eij) ∈ (0, 1] denotes the meeting probability
that vi can meet vj at any time round t. The CTVMT problem is to identify
a seed set S = {v1, v2, . . . , vj} in G, such that (1) the total cost of seed set is
within the budget B, i.e., c(S) =

∑
vi∈S c(vi) ≤ B, and (2) the users in seed set

incur influence spread in G and maximize total benefits when reaching the time
deadline T .

CTVMT is more relevant in practice since it considers more realistic fac-
tors including time and value. We show that CTVMT problem is NP-hard and
propose an algorithm named BCT-M to address it. Our algorithm uses the
framework of BCT algorithm [3] which is an efficient approximation algorithm
for CTVM problem. With the help of Benefit Sampling (BS) strategies designed
elaborately for CTVMT under IC-M and LT-M model respectively, we prove
that our algorithm take over guaranteeing a (1−1/

√
e−ε)-approximate solution

for arbitrary costs and a (1 − 1/e − ε)-approximate solution for uniform costs.
In summary, the contributions of this paper are as follows.

– We propose the Cost-aware Targeted Viral Marketing with Time constraints
(CTVMT) problem that consider heterogeneous costs and benefits of users
and time constraints, including time delay and time deadline, of influence
diffusion. Our problem generalizes other viral marketing problems such as
IM, CTVM and time constrained IM.
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– We propose a BCT-M algorithm using benefit sampling strategies elabo-
rately designed for CTVMT under IC-M and LT-M model. Our algorithm is
efficient and has the approximation ratio which is (1−1/

√
e− ε) for arbitrary

costs case and (1 − 1/e − ε) for uniform case.
– We perform extensive experiments on various real-world datasets. The perfor-

mance of our algorithm demonstrate its efficiency and effectiveness in finding
higher quality seed set satisfying our constraints.

The remainder of this paper is organized as follows. The related work is
reviewed in the next section. Section 3 introduces preliminary knowledges and
presents the definition of CTVMT problem. In Sect. 4, we present the BCT-M
algorithm, and in Sect. 5 we analyze the approximation ratio of our algorithm.
Section 6 presents the experimental study. Finally, the last section concludes this
paper. The key notations used in this paper are given in Table 1.

2 Related Work

Influence Maximization and CTVM. Kempe et al. [1] is the first to formulate
Influence Maximization (IM) as a discrete optimization problem. They create two
classical diffusion models, namely, Independent Cascade (IC) model and Linear
Threshold (LT) model. They also prove that IM problem is NP-hard under
these two models. However, because of the monotonicity and submodularity of
σ(S), they propose a greedy algorithm to approximately solve it and prove its
approximation ratio is (1 − 1/e − ε).

The major bottle-neck in IM is calculating the influence spread of any given
set and it has been proved to be #P-hard [4,5]. A number of approaches have
been proposed to estimate the influence spread [6–8]. Kempe et al. [1] use Monte
Carlo (MC) simulation method which is computationally expensive so that it is
not efficient and scalable. Leskovec et al. [9] propose a mechanism named CELF
to accelerate MC method with reducing the number of times required to calculate
influence spread. Chen et al. [10] propose two fast heuristics algorithms, namely
DegreeDiscount and PMIA, to select users at each step of the greedy algorithm.

Recently, Borgs et al. [11] make a theoretical breakthrough and present an
algorithm for IM under IC model. Their algorithm (RIS) returns a (1−1/e− ε)-
approximate solution with probability at least 1 − n−l. In a sequential work,
Tang et al. [12] reduce the running time and show that their algorithm is also
very efficient in billion-scale networks. Nguyen et al. [3] extend the IM problem
with the addition of assumptions that each user has his own cost and benefit.
Hence, they propose Cost-aware Targeted Viral Marketing (CTVM) problem
and design a BCT algorithm with the help of Reverse Influence Sampling (RIS)
framework. The BCT algorithm is scalable and efficient. Specifically, it has an
approximation ratio of (1−1/

√
e−ε). However, these work above do not consider

the temporal factors in reality.
Influence Maximization with Temporal Factors. Chen et al. [2] propose the

time-critical IM problem with two new diffusion models named IC-M and LT-M
model. They incorporate time delay denoted by meeting events and time deadline
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of propagation into IM problem, and prove some properties of these two models.
They propose two heuristic algorithms, namely MIA-M and MIA-C, for IC-M
model and LDAG-M algorithm for LT-M model. Liu et al. [13] independently
propose time-constrained IM problem and LAIC model to simulate the influ-
ence propagation process with latency information. They propose an algorithm
based on influence spreading path. However, these two work do not consider the
heterogeneous costs and benefits of users and their heuristic algorithms can not
provide any approximation guarantee.

Table 1. Table of notations

Notation Definition

n, n′ The number of users and edges in a network G

eij The edge in a network from node vi to vj

b(vi) The benefit of vi when it is influenced

c(vi) The cost of vi when it is selected into seed set

m(eij) The meeting probability of edge eij

w(eij) The propagation probability of edge eij

B The budget of seed set

T The time deadline of influence propagation

Ω The sum of all user benefits, Ω =
∑

v∈V b(v)

σT (S) The expected number of influenced users by seed set S

BT (S) The feedback benefits of seed set S

degH(S) The number of hyperedges incident at some user in S

c c = 2(e − 2) ≈ √
2

kmax kmax = max{k : ∃S ⊂ V, |S| = k, c(S) ≤ B}
Υ u

L Υ u
L = 8c

(
1 − 1

2e

)2 [
ln 1

δ
+ ln

(
n
k

)
+ 2

n

]
1
ε2

Υ c
L Υ c

L = 8c
(
1 − 1

2e

)2 [
ln 1

δ
+ kmax ln n + 2

n

]
1
ε2

ΛL ΛL =
(
1 + eε

2e−1

)
ΥL

3 Preliminaries and Problem Definition

In this section, we will introduce Independent Cascade with Meeting events (IC-
M) and Linear Threshold with Meeting events (LT-M) model [2] briefly as a
start. These two models have some useful properties to help us addressing the
CTVMT problem. Then we present the definition of the CTVMT problem.

3.1 IC-M and LT-M Diffusion Models

Given a social network denoted by a directed graph G = (V,E, b, c,m,w) in
which V is a node set to denote social network users and E is a directed edge
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set to denote the relationship between users. |V | = n, |E| = n′ and each node
vi ∈ V has a cost c(vi) > 0 if vi is selected into seed set and a benefit b(vi) ≥ 0
if vi is influenced. Each directed edge that from vi to vj is denoted as eij ∈ E,
and m(eij) ∈ (0, 1] denotes the meeting probability that vi can meets vj at any
time t. Furthermore, Each directed edge eij ∈ E is associated with an influence
weight w(eij) ∈ (0, 1] which denotes the propagation probability from vi to vj ,
and specifically, keep that ∀vj ∈ V,

∑
vi∈V w(eij) ≤ 1 for the LT-M model.

Given a network G, a seed set S ⊆ V and a time deadline T , the influ-
ence propagation process in G under the IC-M and LT-M model are following
respectively.

Propagation Process Under IC-M Model. The influence propagation
under IC-M model happens in round t = 0, 1, 2, 3, . . . , T .

– (Begining) At round 0, only the nodes in the seed set S are activated. All other
nodes stay inactive. The cost of activating the seed set is c(S) =

∑
vi∈S c(vi)

and that’s all we need to pay.
– (Propagation) At round t ≥ 1, an active node vi can meet its neighbor vj with

the meeting probability m(eij). Only at the first meeting events happened to
its inactive neighbor vj , vi has the only chance to activate vj with propagation
probability w(eij).

– (Stop Condition) Once a node becomes activated, it remains activated in
all subsequent rounds. The influence propagation process stops when time
deadline T is reached or no more nodes can be activated.

Propagation Process Under LT-M Model. Firstly, every node vi ∈ V
choose a threshold θvi

uniformly at random in [0, 1] independently. Next the
influence propagation happens in round t = 0, 1, 2, 3, . . . , T . LT-M model has
the same Begining and Stop Condition as IC-M model, hence we only introduce
the Propagation of LT-M to save space.

– (Propagation) At round t ≥ 1, an active node can meet its neighbor vj with
the meeting probability m(eij), once the meeting events happened to its inac-
tive neighbor vj , it’s an effective active neighbor for vj . An inactive node vj

can be activated if and only if the weighted number of its effective active
neighbors reaches its threshold, i.e.,

∑
effective active neighbor vi

w(eij) ≥ θvj
.

The feedback benefits of S in G under the IC-M and LT-M model, denoted
by BT (S), is defined as the expected benefits sum of nodes activated finally
including seed set S.

Properties of IC-M and LT-M Models. IC-M and LT-M models are shown
in [2] to be equivalent to the reachability in a random graph X. We call it
sample graph with meeting events hereafter. We will introduce the definition of
this random graph of two models respectively.
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For IC-M model, its sample graph with meeting events is defined as follows.
Given a graph G = (V,E,m,w), for every eij ∈ E, we flip a coin once with
bias w(eij), and we declare the edge live with probability w(eij) or blocked with
probability 1 − w(eij). Then, for each meeting event (a directed eij edge and
a time step t ∈ [1, T ]), we flip a coin with bias m(eij) to determine if vi will
meet vj at t. All coin-flips are independent. Therefore, a certain set of outcomes
of all coin flips corresponds to a sample graph with meeting events, denoted by
X = XM · XE , which is a deterministic graph (with all blocked edges removed)
obtained by conditioning on that particular set of outcomes, where XM is a set
of outcomes of all meeting events and XE is a set of outcomes of all live-or-
blocked identities for all edges. Since the coin-flips for meeting events and those
for live-edge selections are orthogonal, and all flips are independent, any XE on
top of a XM leads to a sample graph with meeting events X.

As for LT-M model, for each meeting event, we also flip a coin with bias
m(eij) to determine if vi will meet vj at t. But for every node vj ∈ V , we select
at most one of its incoming edges at a random, such that the edge is selected
with probability w(eij), and no edge is selected with probability 1−∑

vi
w(eij).

The selected edge is called live and all other edges are called blocked. And for
the same reason, there is a sample graph with meeting events X = XM ·XE with
the same definitions of X,XE and XM .

Let EI denote the event that I is the true realization of the corresponding
random process. By Theorems 2 and 4 in [2], the influence spread of a seed set
S equals the expected number of nodes reachable within deadline T from S over
all sample graph with meeting events of IC-M and LT-M respectively, i.e.,

σT (S) =
∑

X�G

Pr[EX ] · |σX
T (S)| (1)

Where � denotes that the sample graph with meeting events X is generated
from G with probability denoted by Pr[EX ] = Pr[EXE

] · Pr[EXM
]. And σX

T (S)
denotes the set of nodes reachable from S in X within a deadline T .

Similarly, the feedback benefits of a seed set S equals the expected benefit
sum of nodes reachable within deadline T from S over all sample graph with
meeting events of IC-M and LT-M respectively, i.e.,

BT (S) =
∑

X�G

Pr[EX ]
∑

v∈σX
T (S)

b(v) (2)

And we can get the following theorem easily with some modifications of Theo-
rems 2 and 4 in [2]. We omit the proof of it due to space constraint.

Theorem 1. The feedback benefits function BT (S) is monotone and submod-
ular for an arbitrary instance of the IC-M and LT-M model, given a deadline
constraint T ≥ 1.

3.2 Problem Definition

We propose the definition of Cost-aware Targeted Viral Marketing with Time
constraints (CTVMT) problem in this subsection. Informally, CTVMT aims to
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find a set of user within a budget B in a social network such that its feedback
benefits is maximum when time deadline T is reached.

Definition 1 (CTVMT). Given a budget B and a time deadline T , the Cost-
aware Targeted Viral Marketing with Time constraints (CTVMT) problem aims
to select a seed set S ⊆ V in a social network G = (V,E, b, c,m,w):

S = arg max
S⊆V,c(S)≤B

BT (S) (3)

where BT (S) is the feedback benefits of S in G, i.e., the benefits sum of users
activated finally including seed set S.

Unfortunately, the CTVMT problem is NP-hard.

Theorem 2. The CTVMT problem is NP-hard.

Proof. The Cost-aware Targeted Viral Marketing (CTVM) problem is NP-hard
[3]. It can be regarded as a special case of the CTVMT problem where the
meeting probability is 1, i.e., ∀eij ∈ E, m(eij) = 1, and the time deadline is ∞.
Hence the CTVMT problem is NP-hard.

4 BCT-M Algorithm

In this section, we present BCT-M algorithm to solve the CTVMT problem.
We will firstly introduce the RIS approach briefly, which is the foundation of our
algorithm. Then we present our BCT-M framework [3] and two new sampling
algorithms for IC-M and LT-M model respectively, namely BS-IC-M and BS-
LT-M algorithm.

4.1 Summary of the RIS Approach

Reverse Influence Sampling (RIS) is a novel approach for IM to estimate
the influence spread of any given nodes set proposed by Borgs et al. [11]. We
extend the RIS framework under IC-M and LT-M models.

Given G = (V,E,m,w), RIS captures the influence landscape of G through
generating a hypergraph H = (V, {ε1, ε2, . . . }). Each hyperedge εj ∈ H is a set
of nodes in V and constructed as follows.

Definition 2. Given G = (V,E,m,w) and a time deadline T , a random
hyperedge εj is generated from G by (1) selecting a random node v ∈ V , (2)
generating a sample graph with meeting events X � G and (3) returning εj as
the set of nodes that can reach v in X within the time deadline T .

Node v in the above definition is called the source of εj and denoted by
src(εj). Observe that εj contains the nodes that can influence its source v within
time deadline T . If we generate multiple random hyperedges, influential nodes
will likely appear more often in the hyperedges. Thus a seed set S that covers
most of the hyperedges will likely maximize the influence spread σT (S). Here a
seed set S covers a hyperedge εj , if S ∩ εj �= ∅. This observation is captured in
the following lemma in [11].
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Lemma 1 ([11]). Given G = (V,E,m,w) and a random hyperedge εj generated
from G. For each seed set S,

σT (S) = n · Pr[S covers εj ] (4)

Time Constrained RIS Framework. Based on the above lemma, the time
constrained IM problem can be solved using the following time constrained RIS
framework.

– Generate multiple random hyperedges from G using sample graph with meet-
ing events model.

– Use the greedy algorithm for the Max-Coverage problem to find a seed set S
that covers the maximum number of hyperedges and return S as the solution.

Nguyen et al. [3] extended RIS to estimate feedback benefits B(S). They
modified the RIS framework to find a seed set S that covers the maximum
weighted number of hyperedges, where the weight of a hyperedge εj is the benefit
of the source src(εj). Given a seed set S ⊂ V , define a random variable xj =
b(src(εj))×1(S covers εj), i.e., xj = b(src(εj)) if S∩εj �= ∅ and xj = 0, otherwise.
They showed similar to Lemma 1, that

B(S) = n · E[xj ] (5)

We can also use the same method to extend time constrained RIS framework
to estimate feedback benefits BT (S), i.e.,

BT (S) = n · E[xj ] (6)

4.2 BCT-M Framework and Two New Sampling Algorithms

We present BCT-M framework which is proposed in [3] and two new sampling
algorithms designed for IC-M and LT-M model respectively in this subsection.
We note that our algorithm with new sampling algorithms takes over the approx-
imation ratio of BCT algorithm. To the best of our knowledge, our algorithm
is the first one addressing the CTVMT problem with an approximation ratio.

BCT-M algorithm [3] for the CTVMT problem is presented in Algorithm1.
The algorithm uses BS algorithm, either BS-IC-M (Algorithm 3) under IC-M
model or BS-LT-M (Algorithm 4) under LT-M model, to generate hyperedges
and Weighted-Max-Coverage (Algorithm 2) [3] to find a candidate seed set
S following the time constrained RIS framework. The algorithm runs in rounds
and after each round, Weighted-Max-Coverage algorithm is called to select a
seed set Ŝ within the budget B and stop the algorithm if the degree of Ŝ exceeds
ΛL. Otherwise, it continues to generate more hyperedges.

The Weighted-Max-Coverage algorithm [3] can find a maximum cover
within the budget B. It considers two candidates: one is taken from greedy
strategy and the other is just a node having highest coverage within the budget,
then it return the one with higher coverage. Khuller et al. [14] proved that
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Algorithm 1. BCT-M
Input: G = (V, E, b, c, m, w), B, T, ε, δ ∈ (0, 1).
Output: Seed set S.

1 ΥL = Υ u
L for uniform cost and ΥL = Υ c

L otherwise ;
2 ΛL = (1 + eε

2e−1
)ΥL ;

3 Nt = ΛL, Ŝ ← ∅ ;
4 H ← (V, ε = ∅) ;

5 while degH(Ŝ) < ΛL do
6 for j = 1 to Nt − |ε| do
7 Generate εj ← BS(G, T ) ;
8 Add εj to ε.

9 Nt = 2Nt ;

10 Ŝ = Weighted-Max-Coverage(H, B) ;

11 Return Ŝ.

Algorithm 2. Weighted-Max-Coverage
Input: Hypergraph H and Budget B.
Output: Seed set S.

1 S ← ∅ ;
2 while P = {v ∈ V \ S|c(v) ≤ B − c(S)} 
= ∅ do

3 v∗ ← arg maxv∈P
degH (S∪{v})−degH (S)

c(v)

4 S ← S ∪ {v∗} ;

5 u ← arg max{v∈V |c(v)≤B} degH({v}) ;
6 if degH(S) < degH({u}) then
7 S ← {u} ;

8 Return S.

this procedure returns a (1 − 1/
√

e − ε)-approximate cover with arbitrary cost.
However, if the node cost is uniform, this algorithm only considers the candidate
obtained from greedy strategy and has the approximation factor of (1−1/e− ε).

We design two new benefit sampling strategies for IC-M and LT-M model
respectively to estimate feedback benefit BT (S), and we present these as BS-
IC-M (Algorithm 3) and BS-LT-M (Algorithm 4) algorithm.

BS-IC-M algorithm is designed for generating a random hyperedge εj ⊆ V
under IC-M model. We use Breadth First Search (BFS) to find all the nodes
can reach source node within time constraints, so we structure two queues to
help out. We do some initialization and structure two empty queues firstly (line
1–2). Then we choose the source node with the probability of choosing node
vj is P (vj) = b(vj)/Ω where Ω =

∑
v∈V b(v) (line 3). This is the great deal

of difference designed for the heterogeneous benefits situation, and we will
prove that it is the foundation of the accuracy of the estimation of the feedback
benefits. Insert source node vj into candidate queue Q and insert tq = 0 into
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Algorithm 3. BS-IC-M
Input: G = (V, E, m, w), T .
Output: A random hyperedge εj ∈ V .

1 εj ← ∅, tq ← 0, Δt ← 0 ;
2 Two queues Q ← ∅ and Qt ← ∅ ;

3 Pick a node vj with probability
b(vj)

Ω
;

4 Insert vj into Q and tq = 0 into Qt ;
5 while Q 
= ∅ do
6 vq ← extract the first node in Q ;
7 tq ← extract the first time stamp in Qt;
8 Add vq to εj ;
9 Attempt to select all live-edges eiq with probability w(eiq) ;

10 foreach edge eiq is selected do
11 if vi /∈ Q then
12 Flip a coin with bias m(eiq) until vi meet vq and record the number

of coin-flips with Δt ;
13 if tq + Δt ≤ T then
14 Insert vi into Q and tq + Δt into Qt ;

15 Return εj .

time stamp queue Qt (line 4), then we repeat a loop until Q is empty. In each
iteration, we extract the first node in Q as vq and the corresponding time stamp
tq in Qt, then add vq to εj (line 6–8). Next, for every edge eiq that can reach
vq, we flip a coin with bias w(eiq) to determine if it’s live (line 9). And for every
live-edge eiq, if it hasn’t been selected before, we flip a coin with bias m(eiq)
until vi meets vq and we record the number of coin-flips with Δt. If tq + Δt ≤ T
which means not reach the time deadline, we insert vi and tq + Δt into Q and
Qt respectively (line 10–14). Finally, when Q is empty, we can get a hyperedge
εj (line 15).

As for BS-LT-M algorithm, it’s designed for LT-M model to generate a ran-
dom hyperedge εj ⊂ V . We also do some initialization and pick the source node
with probability P (vj) = b(vj)/Ω (line 1–2). According to the sampling graph
with meeting events for LT-M model, we iteratively select node to structure εj .
Firstly we add source node vj into εj . Then we select at most one of its incoming
edges at a random, such that the edge is selected with probability w(eij), and no
edge is selected with probability 1 − ∑

vi
w(eij) (line 5). If edge eij is selected,

then we flip a coin with bias m(eij) until vi meets vj and also record the number
of coin-flips using Δt and refresh vj and t (line 6–9). The iteration breaks until
vj has been selected already or t > T (line 3), as well as we choose no edge (line
10–11). Finally, we get a hyperedge εj under LT-M model (line 12).
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Algorithm 4. BS-LT-M
Input: G = (V, E, m, w), T .
Output: A random hyperedge εj ∈ V .

1 εj ← ∅, t ← 0, Δt ← 0 ;

2 Pick a node vj with probability
b(vj)

Ω
;

3 while vj /∈ εj ∧ t ≤ T do
4 Add vj to εj ;
5 Attempt to select at most one edge eij with probability w(eij) or no edge

with probability 1 − ∑
vi

w(eij) ;

6 if edge eij is selected then
7 Flip a coin with bias m(eij) until vi meet vj and record the number of

coin-flips with Δt ;
8 Set vj ← vi ;
9 t ← t + Δt ;

10 else
11 Break;

12 Return εj .

5 Approximation Analysis

In this section, we prove that BCT-M returns a (1 − 1/e − ε)-approximate
solution for uniform cost version of CTVMT problem and a (1−1/

√
e−ε) solution

for the arbitrary cost version under IC-M and LT-M model using corresponding
benefit sampling algorithm.

Our proof is following the same way of [3]. They prove the approximation
ratio of BCT algorithm which is the framework of our algorithm. But with the
new benefit sampling algorithms, namely, BS-IC-M and BS-LT-M algorithm,
we need to prove that we can following the same way to get the same approx-
imation ratio. The foundation of their proof is that each hyperedge generated
by their sampling algorithm is equivalent to a random sampling using sample
graph model to estimate influence spread. So we need to prove the equivalence
of random hyperedges generated via BS-IC-M or BS-LT-M under IC-M or
LT-M model respectively.

Lemma 2. Any hyperedge εj generated via BS-IC-M or BS-LT-M is equiva-
lent to structure a random hyperedge using sample graph with meeting events X
under IC-M or LT-M model respectively.

Proof. We only prove the situation under LT-M model and the other one can
easily get using the same method. It’s sufficient to prove that for any hyperedge
εj generated via BS-LT-M, there exist at least one sample graph with meeting
events X that can also get the same hyperedge with the same source node. It’s
obviously that we fix the edges in εj live and for every node vj /∈ εj , we select at
most one of its incoming edges at a random, such that the edge is selected with
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probability w(eij), and no edge is selected with probability 1 − ∑
vi

w(eij). And
we also fix the meeting events time stamp in εj and flip coin with bias m(eij)
for others in time range t ∈ [1, T ]. Hence we get a sample graph with meeting
events X in which using the same source node of εj , we can get the same random
hyperedge as εj .

We have proved that generate hyperedges via our algorithms is equivalent
to structure hyperedges using sample graph with meeting events model. The
lemma above clarify that each hyperedge generated by sampling algorithm can
be regarded as a random sampling to estimate BT (S). And now we prove that
selecting source node u with probability P (u) = b(u)/Ω, we can use these hyper-
edges to estimate BT (S) using following equation.

Lemma 3. Given a fixed seed set S ⊆ V , for a random hyperedge εj,

Pr[εj ∩ S �= ∅] =
BT (S)

Ω
(7)

Proof.

BT (S) =
∑

u∈V

Pr
X�G

[u ∈ σX
T (S)]b(u)

=
∑

u∈V

Pr
X�G

[∃v ∈ S such that v ∈ εj(u)]b(u)

= Ω
∑

u∈V

Pr
X�G

[∃v ∈ S such that v ∈ εj(u)]
b(u)
Ω

= Ω Pr
X�G,u∈V

[∃v ∈ S such that v ∈ εj(u)]

= Ω Pr
X�G,u∈V

[εj ∩ S �= ∅] (8)

Lemmas 2 and 3 clarify that our benefit sampling algorithms under IC-M and
LT-M model have the properties: (1) equivalent to random sampling graph with
meeting events model and (2) can estimate BT (S) effectively. These properties
are the same as BSA algorithm in [3]. Based on Lemmas 2 and 3 above, we can
following the same way of the proof of approximation ratio in [3] directly to get
the approximation guarantee of BCT-M under two diffusion models. One can
get the details by reviewing [3].

Theorem 3 ([3]). Given a budget B, 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1. BCT-M for
uniform cost CTVMT problem under IC-M or LT-M model using corresponding
benefit sampling algorithm returns a solution Ŝ,

BT (Ŝ) ≥ (1 − 1/e − ε)OPTT (9)

with probability at least (1 − δ).
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Theorem 4 ([3]). Given a budget B, 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1. BCT-M for
arbitrary cost CTVMT problem under IC-M or LT-M model using correspond-
ing benefit sampling algorithm returns a solution Ŝ,

BT (Ŝ) ≥ (1 − 1/
√

e − ε)OPTT (10)

with probability at least (1 − δ).

6 Performance Study

6.1 Experimental Setup

Datasets. We use 4 datasets downloaded from [15] in our experiments and
we show their properties in Table 2. Epinions was generated from a who-trust-
whom online social network site Epinions.com. There is an edge from vi to vj if vj

trust vi. Email was generated using email data from a large European research
institution. There is an edge eij in the network if person vi sent person vj at
least one email. DBLP construct a co-authorship network where two authors
are connected if they publish at least one paper together. In the YouTube social
network, users form friendship each other and there is an edge between friends.
DBLP and YouTube are undirected, so we do some preprocess to divide one
undirected edge into two directed edges with opposite directions. Hence, the
total number of edges of these two datasets is twice the initial value.

Table 2. Dataset properties

Property Epinions Email DBLP YouTube

Type Directed Directed Undirected Undirected

# of nodes 75,888 265,214 425,877 1,157,806

# of edges initially 508,837 420,045 1,049,866 2,987,624

# of edges finally 508,837 420,045 2,099,732 5,975,248

Graph Parameters. we remark that our solutions are orthogonal to the
techniques for generating influence probability [16]. Hence, we consider generat-
ing propagation probability in case where the probability on edge eij is set to be

1
Nin(vj)

, where Nin(vj) is the in-degree of vj . We generate each user’s cost and
benefit randomly in [1, 2] with two decimal places. As for meeting probability,
we consider two methods of genetating it. (a) Degree. The meeting probability
on edge eij is set to be Nout(vi)

Nout(vi)+Nmax
out (v) + 0.1, where Nout(vi) is the out-degree

of vi and Nmax
out (v) is the maximum out-degree value. The meeting probability

is ranging from (0.1, 0.6]. (b) Random. The meeting probability on edge eij is
chosen uniformly from the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. In all experiments, we
set δ = 0.01 and ε = 0.1.

https://epinions.com
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Performance Measures. We evaluate BCT-M algorithm with BS-IC-
M and BS-LT-M sampling algorithm under IC-M and LT-M diffusion model
respectively. For each dataset, we conduct experiments under two models respec-
tively with the same graph parameters. We consider two performance measures,
(a) Feedback Benefits. The benefits sum of all activated users finally. (b)
Runtime. The runtime of algorithm. All experiments are run on Mac OS X EI
Capitan system with Intel Core i5 2.6 GHz DUO core CPU and 8 GB memory.
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Fig. 1. Feedback benefits and runtime vs. time deadline and budget with Degree
meeting probability (FB: Feedback Benefits; RT: Runtime)

6.2 Experimental Results

We set budget to 5,10,15 and for each budget, we range the time deadline from
5 to 25 rounds, denoted by r, to see the value of feedback benefits and run-
time under two diffusion models with degree and random meeting probability
respectively. We run 50 times for each budget and time deadline combination.
Figures 1 and 2 show the average feedback benefits and runtime of the BCT-M
algorithm under two diffusion models with degree and random meeting proba-
bility respectively.

Feedback Benefits. From Figs. 1 and 2, We can see that feedback benefits
with more budget is larger than those with less budget, and it always getting
bigger with bigger time deadline under all budget settings for all datasets. This
phenomenon prove that given more budget to select seed set and given more
time to spread influence, we can get more feedback benefits finally. Besides, We
can see that feedback benefits under random meeting probability is a little larger
than its corresponding instance under degree meeting probability. We think it is
because that degree meeting probability is usually small than random meeting
probability in those datasets which has so many nodes and edges.
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Fig. 2. Feedback benefits and runtime vs. time deadline and budget with Random
meeting probability (FB: Feedback Benefits; RT: Runtime)

Runtime. From Figs. 1 and 2, we can see that runtime of all settings is reason-
able. However, there is an interesting phenomenon that when the combination
of budget and time deadline gets bigger, the runtime gets smaller. We consider
the reason lies in the BCT-M algorithm which iteratively generate hyperedges
to ensure the approximate accuracy. When budget and time deadline get big-
ger, the number of iteration gets smaller but also can reach the approximate
accuracy, hence the total runtime is smaller than before.

Scalability. The runtime of BCT-M algorithm is reasonable even with 106

nodes and edges in DBLP and YouTube datasets. We also study the scalable
of this algorithm and it scale well with the graph size. We omit detailed results
due to space constraint.

7 Conclusion

In this paper, we incorporate the time delay and time deadline of influence
diffusion which is concluded as time constraints as well as heterogeneous costs
and benefits of users in a social network in IM problem to propose Cost-aware
Targeted Viral Marketing with Time constraints (CTVMT) problem. We prove
that it’s NP-hard and we propose a BCT-M algorithm to get a solution with
approximation guarantee under IC-M and LT-M model using the corresponding
benefit sampling algorithm. Our empirical study over several real-world datasets
demonstrates the efficiency and effectiveness of our algorithm.
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