
CPN Model Based Standard Feature
Verification Method for REST Service

Architecture

Jing Liu(B), Zhen-Tian Liu, and Yu-Qiang Zhao

Inner Mongolia University, Hohhot 010021, China
liujing@imu.edu.cn

Abstract. The representational state transfer (REST) service architec-
ture is widely used in large-scale and scalable distributed web systems.
If the REST service architecture does not comply with its standard fea-
ture constrains, it can result in degraded performance or low scalability
of the REST-based web systems. Therefore, in order to enhance the
quality of system designing, it is necessary to verify whether the system
design meets the standard feature constrains of the REST service archi-
tecture. In this paper, we propose a standard feature constrains verifica-
tion method for REST service architecture based on Colored Petri Nets
(CPN) model. Firstly, five standard feature constrains of the REST ser-
vice architecture are modeled using the CPN. Then a verification method
is proposed based on synchronized matching of the execution paths in
model state space. Lastly, we validate the usability and validity of the
proposed verification method using a practical course management web
system based on the REST service architecture. Experimental results
show that our method can effectively confirm whether the web applica-
tion system design based on REST service architecture conforms to the
standard feature constrains of the REST service architecture. Besides, it
can also provide intuitive and feasible execution data when the standard
feature constraints are not met, which can facilitate the defects location
and correction of the following design of application systems.

Keywords: REST service architecture · colored Petri nets model ·
Verification of standard features

1 Introduction

In 2000, Fielding first proposed the representational state transfer (REST) ser-
vice architecture [1]. It refers to a new style abstracted in combination with
the design principles of the hyper text transfer protocol (HTTP) standard and
the uniform resource identifier (URI) standard, which is resource-oriented and
emphasizes resource-centricity. At present, REST service architecture is widely
used in collaborative web systems. Many web application systems are devel-
oped based on REST service architecture, such as Amazon shopping website

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

H. Gao et al. (Eds.): CollaborateCom 2018, LNICST 268, pp. 688–707, 2019.

https://doi.org/10.1007/978-3-030-12981-1_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12981-1_48&domain=pdf
https://doi.org/10.1007/978-3-030-12981-1_48


CPN Model Based Standard Feature Verification Method 689

and Google search engine [2]. The advantages of the REST service architecture
include the use of a browser as a client to simplify software requirements, the
use of caching mechanisms to increase access speed, the use of stateless commu-
nication to increase server scalability, and reducing the complexity of the web
system development to improve the scalability.

Now, some web application systems applying REST service architecture do
not comply the standard feature constraints of REST service architecture, thus
causing many corresponding problems. For example, failure to meet stateless
constraints will damage the scalability of the system, which will affect system
load balancing. Failure to meet client-server constraints will increase the over-
head of the system server and increase response time. Failure to meet cacheable
constraints will result in more time overhead, because each time you retrieve
a resource, you need to request it from the server [3]. Therefore, in order to
prevent the above problems, when designing a web application system based
on the REST service architecture, it is necessary to verify whether the system
design meets the standard feature constrains of the REST service architecture.
So that, we can improve the quality of R&D of web systems based on REST
service architecture.

There are several formal methods to verify whether REST service architec-
ture complys standard feature constrains, such as finite state machine (FSM)
based method and communicating sequential processes (CSP) based method.
The FSM-based method does not support tiering and cache acknowledgment,
while the CSP-based method uses a higher degree of abstraction and a more
complex description. Therefore, in view of the advantages of the colored Petri
nets (CPN) model in visualization, hierarchical modeling, complex data descrip-
tion, concurrent behavior description and dynamic execution [4–6], we propose
a CPN model based standard feature constrains verification method for REST
service architecture. Firstly, CPN modeling is performed on the standard feature
constraints of the REST service architecture, including client-server constrain,
cacheable constrain, stateless constrain, layered constrain, and uniform interface
constrain, etc. Secondly, the verification of path synchronization matching based
on the model state space is implemented. That is, based on the CPN model of the
application system and the CPN model of the standard feature constraints, the
respective execution paths in the model state space are synchronously matched.
If the path can be executed synchronously, the application system meets the
REST standard feature constraints. Lastly, we use the course management web
system based on REST service architecture as an example to verify the availabil-
ity and effectiveness of the above verification methods. The experimental results
show that the verification method we proposed can effectively confirm whether
the web application system design based on REST service architecture conforms
to the standard feature constraints of REST service architecture. In addition,
this method also can provide intuitive and feasible execution data when the
standard feature constraints are not met, so as to facilitate the defects location
and correction of the following design of application systems.



690 J. Liu et al.

This paper is organized as follows. Section 2 introduces related research.
Section 3 gives the CPN modeling process of five standard feature constraints in
the REST service architecture. Section 4 elaborates the core idea and concrete
algorithm of the verification method based on the model state space execution
path synchronization matching. Section 5 applies verification methods to spe-
cific web systems, so as to verify their availability and effectiveness. Section 6
concludes the paper.

2 Relevant Technology

2.1 REST Service Architecture

The REST architecture is resource-centric, so resources are the most critical
abstraction in the REST architecture, and any unit can be a resource. At the
same time, all resources must have a uniform resource identifier (URI), the oper-
ation of the resource does not change the resource identifier, and all operations
are stateless. RESTful web services mainly use four methods in the HTTP proto-
col, including POST, GET, PUT, and DELET. Among them, the POST method
is to add new data, that is, adding a resource without an ID. The GET method
is to read the data and get an existing resource. The PUT method is to update
the data, update a resource or add a resource without an ID, and replace the
current state of the resource with the given representation information. The
DELETE method is to delete a resource, and the deletion is idempotent which
is an important attribute. Idempotent is that sending multiple requests has the
same impact on resource status as sending one request [7].

The main elements of the REST architecture include data unit, connector,
and component. The data unit is mainly composed of resources, resource identi-
fiers, indicators, presentation metadata, resource metadata and control data. The
connector acts as a unified interface for each component to communicate with
each other and access resources. It is mainly composed of client, server, cache,
parser and channel. The connector encapsulates the underlying implementation
and communication mechanism of the resource. Components primarily include
user agent, origin server, and intermediary, which are divided based on their role
in the application.

2.2 CPN Method

We use CPN technology to model the REST service architecture. The experi-
mental tool is CPN Tools, which can effectively support the verification analysis
of the model. CPN is a formal modeling method that evolved from the traditional
Petri Net, so we can say that CPN is a high-level Petri Net. CPN has strong
mathematical modeling ability, which is closely related to mathematics. Besides,
it is often used for modeling and analysis of complex and concurrent systems.
The CPN modeling language has a mathematical definition that combines both
grammar and semantics. The verification method involves mathematical formula
attributes and computer-aided proofs, which are implemented by the model.



CPN Model Based Standard Feature Verification Method 691

The CPN verification method we used includes the following two methods,
simulation method and state space method. The simulation method verifies the
state transition of each step in the system, and verifies whether the system
model meets the expectations [8]. The state space verification method generates
a corresponding state space after the system simulation is executed. The state
space is the executable path of the system. It shows all the reachable state
and state changes of the CPN model with a directed graph, where the node
represents the state, the arc represents the occurred event. The state space can
be automatically generated. Based on the above characteristics, we use the CPN
method to model the REST service architecture application. By simulating the
resource changes of the application service through state transitions, it can be
effectively verified.

CPN is defined as a nine-tuple, CPN = (P, T, A, Σ, V, C, G, E, I) [9]. The
definition of each element is shown in Table 1. And the CPN method we used is
defined strictly in accordance with the standard.

Table 1. Definition of CPN elements

Name Definition Name Definition

P Set of places T Set of transitions

A Set of arcs Σ Set of colour sets

V Set of variables C Colour set function

G Guard function E Arc expression function

I Initialisation function

2.3 Related Work

Based on the notion of MROP, Sergio et al. present a metamorphic testing app-
roach for the automated detection of faults in RESTful Web APIs [13]. Irum et
al. explore the usage of formal application of Event-B on the REST architectural
style [15]. And they successfully address inconsistency design issue, model check-
ing of service specifications and the state-explosion problem that may arise due
to a large number of resources. Costa et al. proposed a method, tool and guiding
principle for evaluating REST architecture [7]. They evaluated their method in
the architecture trade off analysis method (ATMM) scenario, considering var-
ious attributes and verifying the correctness of the method. Xi et al. mainly
used the CSP method to formally model the REST architecture [10]. Firstly,
they analyzed the calling process of the resource, abstracting four main pro-
cess components, including user agent, intermediary, origin server, and resource.
Then they showed the communication of four processes. Secondly, they analyzed
and validated the standard feature constraints of the REST service architecture
based on the Process Analysis Toolkit (PAT) model verification tool and sequen-
tial logic description. Ting et al. also used CSP methods to model and analyze



692 J. Liu et al.

the RESTful web services [11]. They abstracted the REST architecture model
into three modules, client, server, and resource. Then the process in the REST
architecture and its specific method behavior were described by CSP. Finally, the
first-order logic was used to describe the stateless attributes of the web service
and verified based on the PAT tool. In addition, Adhipta et al. used hierarchical
CPN to simulate the behavior of the web services system model [12]. They per-
formed functional verification based on the generated state space, proving that
the web services extension model can improve the communication transmission
performance of information. From the above research, we known that it is fea-
sible to model, analyze and verify the web application system using the CPN
model.

In summary, the current verification work on the standard features of the
REST service architecture is mainly focused on the CSP-based method, but this
type of verification method has a high degree of abstraction and a complicated
description. Therefore, we make full use of the advantages of CPN modeling
technology, and propose a standard feature verification method for REST ser-
vice architecture based on CPN model. This method can effectively confirm
whether the web application based on the REST service architecture conforms
to the standard feature constraints of the REST service architecture. When the
standard feature constraints are not met, it can also provide intuitive and fea-
sible execution data, which can facilitate the defects location and correction of
the following design of application systems.

3 Standard Feature Constraint Modeling of REST
Service Architecture Based on CPN Model

3.1 Process View of the REST Service Architecture

The REST service architecture emphasizes the resource invocation process.
Everything is resource-centric. Therefore, the process view of the REST service
architecture is used to describe the interaction of REST architecture resources,
showing the interaction between different components. Referring to Jensen et
al., Fig. 1 shows an example of the interaction of the four main components in
the REST service architecture process view.

Fig. 1. Four main parts of the REST service architecture application model

The process view of the REST service architecture mainly includes four
components, user agent, intermediary, origin server and resource. The inter-
action between components is through channels and interfaces, and all have



CPN Model Based Standard Feature Verification Method 693

a unified interface. User agents, intermediary and origin server have an inter-
nal caching mechanism [8]. The channels between each other are described as
CHIOS, CHOSR, and CHUAI, etc., which implement information transmission
and reception.

Specifically, when a user agent (i.e., a client) sends a request message, it first
requests its internal cache to get the resource. If the resource exists in its internal
cache, it is directly returned to the user agent. If the resource does not exist in its
internal cache, then a request message is sent to the external network intermedi-
ary. Here, the internal channel between the two is defined as CHUAI. The request
message can be described as a four-tuple (GET, PUT, POST, DELETE) [14],
and all messages are represented in the same four-tuple form. The specific mean-
ing of the elements in the four-tuple is described in Sect. 2.1. Intermediary is
mainly composed of proxy or gateway and also has caching function. The main
purpose of intermediary is to forward messages and transfer information. The
user agent sends the request information to the intermediary, and the interme-
diary has two ways to query the resources. One is to request resources from its
internal cache, and the other one is to request resources from the origin server,
where it communicates via the internal channel CHIOS. The resources required
by the user agent are stored on the origin server, which is the only component
that can communicate with the resource. The user agent can communicate with
the origin server through the intermediary. After receiving the request resource
information, the origin server checks its cache. If the cache does not have the
resource, the origin server sends the request information to the resource and
returns the requested resource to the intermediary. Communication between the
origin server and the resource takes place via the CHOSR channel.

3.2 CPN-Based Standard Feature Constraint Modeling

Client-Server Constrain. The user agent and origin server act as two sep-
arate components that are separated by a unified interface. The client-server
constraint applies the C/S architecture feature to standardize the REST archi-
tecture. REST is a typical C/S architecture, which guarantees that communi-
cation can only be initiated unilaterally by the client in the form of request
- response. The REST architecture emphasizes the thin server, the server only
handles resource-related operations, and all display work should be on the client.
The user agent sends request resource information to its internal cache or origin
server, ignoring the absence of resources. The information requested by the user
agent must exist in its internal cache or origin server, and all request messages
sent by the user agent will be replied to by its cache or origin server. Figure 2
shows the CPN model of the client-server standard feature constraints in the
REST service architecture. Firstly, the client sends a request for resource infor-
mation msg, which is described as a variable of type Msg 1, Msg 1 is described
as a record type in CPN modeling:

colset Msg1=record m:MSG * f:FORMAT * s:SENDER * r:RECEIVER;
The four elements are all string types, the MSG describes the content of the

request resource, the FORMAT describes the format of the request resource,



694 J. Liu et al.

the SENDER describes the sender of the request message, and the RECEIVER
describes the sender of the response message. Secondly, we should query whether
the resource information exists in the client’s internal cache. If the resource is
in its cache (exemplified by the first element component m = “1” in expression
on the output arc of the RequestUC transition), the response information is
returned by the cache to the user agent. If the request resource does not exist
in the cache (exemplified by the first element component m = “no” in expres-
sion on the output arc of the RequestUC transition), then the resource needs
to be requested again from the origin server. Finally, the resource information
requested by the client is returned to the user agent.

Fig. 2. CPN model with client-server constraints

Cacheable Constrain. User agent, intermediary and origin server all have
a caching mechanism, and request resource information can be stored in the
buffer, which can improve the inefficiency caused by stateless features. Cachable
constraints are used to verify whether the user agent, intermediary and origin
server all have caching capabilities, and response information can be retained
in these three internal caches. Cacheable attributes effectively improve access
performance, reduce system response time, and facilitate user agent. In this
paper we only consider cacheable request information. If the user agent sends
the request information for the first time, there is no information in the cache, so
the resource information should be requested from the origin server. Otherwise,
the user agent gets the resources directly from its internal cache without having
to access the server. If the two request resource information functions are the
same, the second one can directly access the cache to obtain resource information.



CPN Model Based Standard Feature Verification Method 695

Fig. 3. CPN model with cachable constraints

Figure 3 shows the cacheable standard feature constraint model for the REST
service architecture. Firstly, the user agent sends request resource information,
and the request resource information msg is described as above. Secondly, it
should query whether the resource information exists in the cache of the user
agent. If the resource exists in its internal cache (exemplified by the first element
component m = “1” in expression on the output arc of the RequestUC transi-
tion, namely RequestUserAgentCache), the information is returned directly to
the user agent by its internal cache. If the request resource does not exist in the
internal cache of the user agent (exemplified by the first element component m
= “no” in expression on the output arc of the RequestUC transition), then the
request information needs to continue to be sent to the network intermediary. If
the resource information stored in its cache (exemplified by the fourth element
component r = “Ucache” in expression on the output arc of the RequestUIC
transition, namely RequestUserIntermediaryCache.), it is returned to the user
agent. If the request resource information does not exist in the intermediary cache
(exemplified by the fourth element component r = “Icache” in expression on the
output arc of the RequsetUIC transition), the request information needs to be
sent to the origin server. If the resource information exists in the origin server
cache(exemplified by the fourth element component r = “Icache” in expression
on the input arc of the RequestSC transition, namely RequestUserAgentServer-
Cache), it is returned to the user agent. Finally, if the resource information does
not exist in the origin server cache (exemplified by the fourth element compo-



696 J. Liu et al.

nent r = “Scache” in expression on the input arc of the RequestSC transition),
it is necessary to request information from the data resource, and finally return
a response message to the user agent.

Fig. 4. CPN model with stateless constraints

Stateless Constrain. The server in the REST service architecture does not
store any session state information with the client. All status information only
exists in the communication message, that is, the request message sent by the
user agent to the server must contain all information to understand the message.
Stateless means that session state information remains in the user agent and the
server is stateless. If the request information comes from different user agents at
the same time, but the request resource information of the multiple user agents
is the same, the origin server feeds back the same resource information to the
user agents. The state of the REST service architecture refers to the state of the
client. The representation of each resource on the client is a state of the client.
The status information can be described as a triplet (id, data, oper), id is the
id of the resource identifier, data is the content of the information, and oper is
the specific operation, such as GET, PUT, POST, and DELETE.

Figure 4 shows the stateless standard feature constraint model of the REST
architecture. First, the communication content between the two user agents is
included in the request information, and the user agent only saves the com-
munication content of both. Second, the user agent sends the request resource
information to the origin server through the channel Request, and then returns



CPN Model Based Standard Feature Verification Method 697

the requested resource to the user agent. If the resource information requested
by multiple user agents is the same, the response information obtained must also
be consistent (the response information obtained by the two user agents is {m =
“1”, f = “2”, s = “3”, r = “4”}), indicating that the REST architecture server
is stateless.

Layered Constrain. The layered constraint mainly checks whether the REST
service architecture application conforms to the three-tier architecture. Layered
constraints increase the independence between the layers and improve the scal-
ability of the system. In a REST service architecture web application system, a
component can only communicate with its neighboring components. That is, if
the user agent wants to send the request information, it can only send it to its
internal cache or intermediary, and cannot directly send it to the origin server.
Similarly, the origin server cannot directly return a response message to the user
agent. This constraint breaks down the REST architecture into layers of several
levels. The mutual communication between other components is also the same.
In the layered constraint, only the three-tier REST application system is con-
sidered in the REST architecture, namely the user agent layer, the middleware
layer and the server layer.

Figure 5 shows the layered standard feature constraint model of the REST
architecture. Firstly, the REST architecture is a standard three-tier architec-
ture application. Secondly, the user agent can only send the request resource
information to the intermediary (the interaction between the user agent and the
intermediary is performed through the channel CHUAI), and then the intermedi-
ary continues to send the request information to the origin server (the interaction
between the intermediary and the origin server is performed through the channel
CHIOS), and finally returns the requested resource information to the user agent
through the above interface. Among them, the three components are divided into
three layers by the channel CHUAI and the channel CHIOS.

Uniform Interface Constrain. The unified structure constraint guarantees
the consistency of the message format between component communication, that
is, checking whether the interface of the REST architecture application is con-
sistent, and improving the interactivity and reusability of the system. In this
constraint, the request message sent by the user agent and the message for-
mat returned by the origin server must be consistent, that is, the identifiers of
the resources are consistent. The request message is described as a quad repre-
sentation {msg, r format, sender, receiver}, where msg represents the requested
resource, r format represents the format of the resource, sender represents the
request sender of the resource, and receiver represents the request recipient of
the resource.

Figure 6 shows the unified interface standard feature constraint model for
the REST architecture. The request information sent by the user agent to the
origin server is consistent with the format of the response information of the
server (exemplified by the first element component m = “1” in expression on the



698 J. Liu et al.

Fig. 5. CPN model with layered con-
straints

Fig. 6. CPN model with uniform inter-
face constraints

output arc of the Reply transition). The information of the sender and receiver
should focus on the same resource identifier, which reflects the unified interface
standard features of the REST architecture.

4 REST Service Architecture Standard Feature
Verification Method

This section proposes a standard feature verification method for REST service
architecture. Based on the CPN model of the application system and the CPN
model with standard feature constraints, we perform synchronous matching on
the respective execution paths in the model state space. If the path can be exe-
cuted synchronously, the application system meets the REST standard feature
constraint. If the standard feature constraints are not met, the intuitive and
feasible execution data is provided, which can facilitate the defects location and
correction of the following design of application systems.

4.1 Core Idea of the Verification Method

The core idea of the verification method proposed in this paper can be summa-
rized as constructing the CPN model of the application system and the CPN
model of the standard feature constraint, respectively generating their respec-
tive state spaces, and obtaining the corresponding execution path sets of each
model. We perform a synchronous path matching algorithm based on the model



CPN Model Based Standard Feature Verification Method 699

state space, and check whether the state space execution path of the application
system model synchronizes the path containing the standard feature constraint
model. If it is included, the verification is successful, otherwise there is a non-
conformity. By using the state difference set to locate the application system
model and the defect errors in the system design, the non-conformity status and
path are found, and the modification and perfection are made to meet the REST
service architecture standard feature constraints.

Specifically, performing a synchronous path matching algorithm based on a
model state space is the core. First, we give a key concept, the synchronization
node. Assume that a node of the REST service architecture standard feature
constraint model state space is identified by M*, and a node of the application
system model state space is identified by M. If the Marking value of M* is equiv-
alent to the function of M, that is, the key segment data in the two node tags is
the same, and the functions of the subsequent executable transition description
are also the same, then the two nodes can be called a synchronization node. The
synchronization of the state space execution path includes the relationship of
the synchronization node and the transition path. And the execution order of
the synchronization node and the transition path is also consistent and orderly.
The key part of the algorithm is that the state space execution path completes
the synchronous execution matching. Intuitively, from the perspective analysis
of the state space execution path generation, the possible enabled transition is
fired from the initial state of the application system model. After one or more
transition fired, a synchronization node that can be executed simultaneously
with the start node of the standard feature constraint model is obtained. Then,
the synchronization node is fired. After performing one step operation, one or
more transition may be fired, and again get the next synchronization node that
can be executed simultaneously with the starting node of the standard feature
constraint model. Matching such synchronization nodes in turn, and firing corre-
sponding enabled transitions until reaching the termination node of the standard
feature constraint model, the synchronization matching method ends. At this
point, it indicates that the application system meets the feature constraint of
the standard REST service architecture. If the synchronization matching fails in
any intermediate node, it indicates that the application does not meet the feature
constraints of the standard REST architecture. Finding non-compliant features
based on the REST service architecture application system can be achieved by
looking up the difference set of the path set in the state space. By comparing
the path generated by the application system model state space with the path
generated by the corresponding standard feature constraint model state space,
it is judged which path node is terminated. Then the token information reflected
by the node identifier can provide intuitive application system execution data.
That is, when the application system runs to this state, there is an execution
state data that does not meet the constraint, which is used to help the sys-
tem designer complete the positioning and correction of the application system
design defects to meet the standard REST service architecture constraints.



700 J. Liu et al.

Fig. 7. CPN model for the course query subfunction

4.2 Algorithm Description of the Verification Method

Assume: Nodes* ={M0, M1, ..., Mm}, Arcs* ={A0, A1, ..., Am}
Nodes = {N0,N1, ...,Nn},Arcs = {B0,B1, ...,Bn}

Nodes* describes the nodes and path sets of the standard feature constraint
model state space, and the Nodes describes the nodes and path sets of the appli-
cation system model state space. The core of the algorithm can be described as
follows. Firstly, the standard model is matched within the node and path range
of the application system model, and the initial synchronization nodes of the two
models are found(shown in the ①). Then, finding the successor synchronization
nodes of the two models. If found, the transitions of the two models each fired
to start the next search (shown in the ②). If not found, the application sys-
tem model continues to fired the transition, looking for a synchronization node
that matches the standard feature constraint model (shown in the ③). Finally, if
the synchronization node is successfully matched to the terminate synchroniza-
tion node, the verification is successful, otherwise the verification fails (shown
in the ④).



CPN Model Based Standard Feature Verification Method 701

Algorithm 1. SynchronizedPathMatch
function SynchronizedPathMatch

int m,n,i,j,k;

if ((M0⊆Nodes)∧(A0⊆Arcs)) then
Model can be synchronized;

①

while i<n do
if (Ni==M0 and Bi==A0) then

Find the initial synchronization node;
else

i++;
end if

end while

j =i+1;
k =1;

②

while (j≤n and k≤m) do
if (Nj==Mk and Bj==Ak) then

{
Find the next synchronization node;
k++;
j++;

}
else

③

while (j≤n) do
if (Nj==Mk and Bj==Ak) then
Find the synchronization node;

else
j++;

end if
end while

end if
end while
④

if (k==m) then
return true

else
return false

end if
end if

end function



702 J. Liu et al.

5 The Example of the Standard Feature Verification
Method for REST Service Architecture

This section takes the course management web system based on the REST ser-
vice architecture as an example to verify the availability and effectiveness of the
verification method given in the previous section. It is confirmed that the veri-
fication method we proposed can be used to verify whether the web application
system design based on the REST service architecture conforms to the standard
feature constraints of the REST service architecture.

5.1 Web Application System Modeling Based on REST Service
Architecture

This section conducts CPN modeling on the subfunctions of the query course in a
course management web system. The constructed CPN model of the application
system focuses on resource interaction and communication in the process of
querying the course. As shown in Fig. 7, the communication behavior between
the course query client, the course query system gateway, the course query system
server, and the course query system database is modeled and analyzed. Then
we use the verification method based on the model state space to perform path
synchronization matching. So that we can confirm whether the model meets the
five standard feature constraints of the REST service architecture.

In the model, the query request resource information msg is sent by the user
of the course query system, and the data of the request information msg is defined
as: colset Msg1 = record m: MSG * f:FORMAT * s:SENDER * r:RECEIVER,
where MSG, FORMAT, SENDER and RECEIVER are both string types. The
request information is transmitted to the gateway of the course inquiry system
through the channel ReqCHUG, and then the gateway transmits the request
information to the cache of the course query system server (Server) through the
channel ReqCHGSC. If the request resource information is cached in the SCache
of the server (exemplified by the first element component m = “1” in expression
on the output arc of the ReqCHGSC transition). the server directly returns a
message to the user of the course query system through the channel Reply1.
If the course query system server does not have the requested resource in the
cache (exemplified by the first element component m = “0” in expression on the
output arc of the ReqCHGSC transition), the request message is sent through
the channel Search to the database of the course query web system. Then the
request resource information is returned from the database to the system user.
Figure 8 shows the state space corresponding to the CPN model of the course
query subfunction.

5.2 Standard Feature Constraint Verification Example and Analysis

Based on the CPN model of the course query subfunction given in Fig. 7, it
is tested by the five REST service architecture standard feature constraints in



CPN Model Based Standard Feature Verification Method 703

Fig. 8. State space of the course query
subfunction model

Fig. 9. State space of standard client-
server constraints

Sect. 4.2 to verify whether the course query subfunction web application is a
standard REST architecture application.

(1) Checking the standard feature constraint of the client-server and comparing
it with the state space execution path of the standard client-server constraint
in Sect. 3.2. we can find that the REST architecture model does not meet
the client-server constraints. The user function of the course query system is
equivalent to the function of the user agent in the standard REST architec-
ture model. The gateway function of the course query system is equivalent
to the intermediary in the standard REST architecture model. The server
function of the course query system is equivalent to The functionality of the
origin server in the standard REST architecture model, and the database
function of the course query system is equivalent to the functionality of the
resources in the standard REST architecture model. After verification by the
synchronous path matching algorithm, the node 1 in Fig. 8 and the node 1 in
Fig. 9 are initial synchronization nodes. Then through the transition path, we
find that the REST architecture application model lacks the caching capa-
bilities of its client. When obtaining the request information, the system
first checks whether the cache exists. If it does not exist, continue to request
the resource information from the origin server. Therefore, the course query
subfunction web system should add client caching function.

(2) Verifying the cacheable standard feature constraints, and comparing it with
the state space execution path of the standard cacheable constraint model in
Sect. 3.2. we can find that the REST architecture model does not meet the
cacheable constraint. After verification by the synchronous path matching
algorithm, it can be found that the node 1 in Fig. 8 and the node 1 in Fig. 10
are initial synchronization nodes. From the subsequent transition path, we
find that the client and the gateway of the course query system lack the



704 J. Liu et al.

caching function. Therefore, the course query subfunction web system should
add a corresponding caching mechanism.

(3) The layered standard feature constraint is tested. By performing path verifi-
cation on its state space, we can find that the REST architecture model satis-
fies the layered constraint. Through the comparison with the state space exe-
cution path of the standard layered constraint of Sect. 3.2, the course query
system users can only interact through the gateway of the course query sys-
tem, and the database of the course query system can only communicate with
the server. The subfunction web system meets the layered standard feature
constraints. At the same time, the stateless and unified interface standard
feature constraints are tested. By comparing the state space execution path
of the standard stateless constraint in Sect. 3.2, we find that the course query
system of the REST architecture meets the stateless constraint. All infor-
mation about the message can be included in the request and response. The
main content is stored in the server, and the server is stateless. In addition,
we compare the state space execution path of the standard unified interface
constraint of Sect. 3.2, and find that the model meets the unified interface
constraint. The message format of the request and response is the same,
both in the form of msg. When the same request information is sent twice,
the response information is the same, so the uniform interface constraint is
met.

Fig. 10. State space of standard cachable constraints

Through the above analysis, Fig. 11 shows the modified CPN model of the
course query subfunction application system based on REST service architecture.



CPN Model Based Standard Feature Verification Method 705

After using the method we proposed, the application system meets the standard
feature constraints of the REST service architecture. As can be seen from the
comparative analysis of Figs. 7 and 11:

(1) Figure 11 adds the Users Cache function to Fig. 7, which can add a cache
function to the client of the course management web system.

(2) Figure 11 adds the Gateway Cache feature to Fig. 7, which adds a cache
function to the gateway of the course management web system.

Fig. 11. Corrected CPN model of the course query subfunction

Adding the above two buffers can make the system more complete. When
the client of the course management web system sends the request information,
it first checks whether the resource exists in its internal cache. If the resource
exists in its cache (exemplified by the fourth element component r = “4” in the
expression on output arc of the ReqCHUC transition), the response message is
returned directly to the client. If there is no client cache (exemplified by the
fourth element component r = “Ucache” in the expression on output arc of
the ReqCHUC transition), the resource needs to be requested from the gateway
of the course management web system. If the resource is not in the client cache
(exemplified by the fourth element component r = “Ucache” in the expression on



706 J. Liu et al.

output arc of the ReqCHUC transition), the resource needs to be requested from
the gateway of the course management web system. If the resource exists in the
gateway’s cache (exemplified by the fourth element component r = “Ucache” in
the expression on output arc of the ReqCHUG transition), the response message
is directly returned to the client.

6 Conclusion

Before implementing a web system based on the REST service architecture, it
is crucial to verify whether the system design meets the standard features of the
REST service architecture, and effectively improve the quality of the develop-
ment of the web system based on the REST service architecture. We propose
a standard feature verification method for REST service architecture based on
CPN model. Firstly, the CPN model description of five standard feature con-
straints of REST service architecture is given. Next, we propose a verification
method based on model state space to perform path synchronization matching.
Based on the CPN model of the application system and the CPN model with
standard feature constraints, the respective execution paths in the model state
space are synchronously matched. If the paths can be executed synchronously,
the application system meets the REST standard feature constraints. Finally,
taking the course query function system based on REST service architecture
as an example, the availability of the above verification method is confirmed.
Applying the verification method we proposed can effectively confirm whether
the web application system design based on REST service architecture conforms
to the standard feature constraints of REST service architecture. When the stan-
dard feature constraints are not met, we provide intuitive and feasible execution
data to facilitate the defects location and correction of the following design of
application systems. The next step is to strengthen the formal description and
validation of the core process of the verification method, and apply this method
to practical objects with more typical application systems based on REST service
architecture, so that we can refine execution details and improve the availability
of methods.

Acknowledgment. This work was supported in part by the National Natural Science
Foundation of Chain (No. 61662051, No. 61262017).

References

1. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures, p. 303. University of California, Irvine (2000)

2. Paganelli, F., Turchi, S., Giuli, D.: A web of things framework for RESTful appli-
cations and its experimentation in a smart city. IEEE Syst. J. 10(4), 1412–1423
(2017)

3. Song, Y., Xu, K., Liu, K.: Research on web instant messaging using REST web
service. In: IEEE Symposium on Web Society, pp. 497–500 (2010)



CPN Model Based Standard Feature Verification Method 707

4. Liu, J., Ye, X., Zhou, J.: Colored Petri net hierarchical model of complex network
software and model integration verification method. High-Tech Commun. 23(11),
1139–1147 (2013)

5. Benabdelhafid, M.S., Boufaida, M.: Toward a better interoperability of enterprise
information systems: a CPNs and timed CPNs -based web service interoperability
verification in a choreography. Procedia Technol. 16, 269–278 (2014)

6. Sun, L.: Dynamic composition modeling and validation OD web services based on
hierarchical colored Petri nets. China University of Petroleum, Dongying (2011)

7. Costa, B., Pires, P.F., Merson, P.: Evaluating REST architectures-approach, tool-
ing and guidelines. J. Syst. Softw. 112, 156–180 (2016)

8. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri nets and CPN tools for
modeling and validation of concurrent systems. Int. J. Softw. Tools Technol. Transf.
9(3–4), 213–254 (2007)

9. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modeling and Validation of
Concurrent System, pp. 95–188. Springer, Berlin (2009). https://doi.org/10.1007/
b95112

10. Wu, X., Zhu, H.: Formalization and analysis of the REST architecture from the
process algebra perspective. Future Gen. Comput. Syst. 56, 153–168 (2016)

11. Ting, Y.: Formal Modeling and Analysis of RESTful Web Services. East Chain
Normal University, Shanghai (2015)

12. Adhipta, D., Hassan, M.F., Mahmood, A.K.: Web services extension model simu-
lation in hierarchical colored Petri net. In: International Conference on Computer
& Information Science, pp. 741–746. IEEE (2012)

13. Segura, S., Parejo, J.A., Troya, J., et al.: Metamorphic testing of RESTful web
APIs. IEEE Trans. Softw. Eng. PP(99), 1 (2017)

14. Garriga, M., Mateos, C., Flores, A., et al.: RESTful service composition at a glance.
J. Netw. Comput. Appl. 60(C), 32–53 (2016)

15. Rauf, I., Vistbakka, I., Troubitsyna, E.: Formal verification of stateful services with
REST APIs using event-B. In: IEEE International Conference on Web Services,
pp. 131–138. IEEE Computer Society (2018)

https://doi.org/10.1007/b95112
https://doi.org/10.1007/b95112

	CPN Model Based Standard Feature Verification Method for REST Service Architecture
	1 Introduction
	2 Relevant Technology
	2.1 REST Service Architecture
	2.2 CPN Method
	2.3 Related Work

	3 Standard Feature Constraint Modeling of REST Service Architecture Based on CPN Model
	3.1 Process View of the REST Service Architecture
	3.2 CPN-Based Standard Feature Constraint Modeling

	4 REST Service Architecture Standard Feature Verification Method
	4.1 Core Idea of the Verification Method
	4.2 Algorithm Description of the Verification Method

	5 The Example of the Standard Feature Verification Method for REST Service Architecture
	5.1 Web Application System Modeling Based on REST Service Architecture
	5.2 Standard Feature Constraint Verification Example and Analysis

	6 Conclusion
	References




