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Abstract. The term “Microservice Architecture” has sprung up in
recent years as a new style of software design that gains popularity as
cloud computing prospers. In microservice-based applications, different
microservices collaborate with one another via interface calls, but they
may also compete for resources when an increase of users’ need ren-
ders the resources insufficient. This poses new challenges for allocating
resources efficiently during runtime. To tackle the problem, we propose a
novel approach based on Congestion Game in this paper. Firstly, we use
a weighted directed acyclic graph to model the inter-relationship of the
microservices that compose an application. Then we use M/G/1 Queue
in Queue Theory to describe the arrival process of access requests, and
combine it with the above graph to calculate the arrival rate of access
requests to each microservice, which in turn is used to estimate response
time in a newly-designed microservice revenue function. Finally, we define
resources competing problem as a congestion game where each microser-
vice is a player aiming to maximize its revenue, and propose an algorithm
to find Nash equilibrium in polynomial time. Experiment results show
that our approach can effectively improve the overall performance of the
system with limited resources, and outperform Binpack and Spread, two
scheduling strategies used in Docker Swarm.

Keywords: Microservice architecture · Resource management ·
Game theory

1 Introduction

The popularity of cloud computing technology not only promotes the develop-
ment of computer hardware and system software architectures, but also brings
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about changes in the way software is developed and used. The idea of IT resource
servitization is becoming increasingly popular, leading to the trend of “X as a
service.” The service model represented by IaaS, PaaS and SaaS has been widely
adopted. In the open, dynamic and complex cloud computing environment, soft-
ware systems need continuous online evolution [19] to respond quickly to users’
need, therefore the complexity of software is ever growing. Considering the prin-
ciples, methods, and techniques for modeling and controlling complexity in soft-
ware engineering, the basic idea can be summarized as separation of concerns
[14]. Microservice Architecture [7] is a design principle that aims to fight against
the increasing complexity of software in the cloud environment. The core idea
is to separate an application into a series of distinct microservices, such that
each of them addresses a separate business logic and can run in a separate envi-
ronment. It can make the boundaries between services clear and enable them
to adopt lightweight mechanism to communicate. As a result, it forms a highly
cohesive and loosely-coupling architecture.

In a large-scale application system based on microservice architecture, such
properties as large amount of microservices, continuous online evolution and
complex dependencies among microservices pose new challenges for runtime
resource management. On one hand, microservices need to accomplish a spe-
cific business logic by collaboration; on the other hand, they may also compete
for resources in a constrained runtime environment.

Game theory has been successfully applied to many computer resource-
related optimization problems such as online price setting, flow and congestion
control, network routing optimization, etc. [2]. Nash Equilibrium [13] in game
theory is the most common solution: it is a state where for any participant in the
game, he cannot get more benefits by changing his strategy without changing
the strategies of other participants. At this point the strategy combination of all
participants constitutes the Nash equilibrium state.

Considering the collaboration and competition among microservices, we pro-
pose to use game theory to model the runtime resource management problem as
a congestion game, and optimize resource allocation by finding the Nash Equi-
librium state of the Game, where each microservice is considered as a player to
maximize its revenue. More specifically, we make the following contributions in
this paper:

1. We establish a microservice application model in which we quantify call
relationships among microservices based on runtime microservice interaction
information.

2. We design a microservice revenue function based on the compliance level with
quality of service (QoS) requirements specified in Service Level Agreement
(SLA).

3. We define the competition for resources among microservices as a congestion
game model and provide a polynomial-time algorithm for solving resource
management optimization problem.

The rest of the paper is organized as follows. Section 2 summarizes related
works. Section 3 provide some background information regarding resource man-
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agement under microservices scenario. Section 4 presents our proposed conges-
tion game model of resource management for microservices. Section 5 discusses
the algorithm to find the Nash Equilibrium of the congestion game. Section 6
presents the results of experiments done to validate our model, and finally Sect. 7
concludes the paper.

2 Related Works

The methods of resource planning, scheduling and management in cloud com-
puting environment can be divided into three categories: optimization method,
adaptive method and game theory method.

Optimization is a crucial method to solve the scheduling and allocation prob-
lem of computing resources in a cloud environment. [18] solved deployment opti-
mization problem by greedy algorithm under the scenario where a service joins
in and leaves dynamically. [11] tried to minimize the cost of computing resources
during service deployment by studying dynamic backpack problem in which the
goal is to minimize the sum of the cost of all backpacks. [6] studied the sce-
nario of multiple IaaS and targeted at minimizing the overall consumption, and
proposed to solve virtual machine deployment optimization problem by random
integer programming method.

A classic MAPE-K feedback loop can be formed by monitoring and analyzing
the runtime data of an application, planning the resources the application needs
and then executing, combined with a shared knowledge base [9]. A self-adaptive
software using such method usually consists of two parts: the managed element
and the managing element. The former refers to the application logic that can be
dynamically adjusted during runtime; the latter refers to the adaptive logic that
can regulate the application logic through a feedback loop. Considering that the
applications in a cloud environment are usually deployed in a mixed operating
environment of IaaS and Paas, [4] proposed a scheduling method for two kinds
of virtualization resources (virtual machine instance of IaaS layer and container
of PaaS layer) through a cybernetic feedback loop.

Because of the resemblance between the resource competition behavior
among applications in a cloud computing environment and the economic com-
petition behavior in a free market, game theory can be used to describe the
competitive relationship in resource management. In existing literatures, it is
common to consider resource-related roles as players in a game where each player
gets the corresponding resources by adopting a certain strategy to optimize its
own revenue/cost. [3] studied the scenario where multiple SaaS providers run
applications in the same IaaS. After establishing a mathematical model to mea-
sure the benefits and costs of SaaS and defining the decision space of IaaS and
SaaS in the game, the authors found the optimal solution for IaaS/SaaS resource
pricing/acquisition by calculating the Nash equilibrium. [20] described the com-
petitive characteristics of parallel computing tasks on resources at the business
level by game theory and proposed a scheduling algorithm based on the dual con-
straints of completion time and cost, considering both optimization and fairness.
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Most existing game theory-based methods focus on scheduling of infrastructure
(virtual machine) resources, but do not consider more granular scheduling units
and their collaboration at the application level.

3 Background

Different microservices have different requirements for computing resources,
load, and QoS. Take a social application for example. The activity feed service
displays contents such as topics, articles, and videos of interest to users, and is
used to display advertisements. It is the service that has the greatest impact on
user experience and application revenue. In comparison, the user service stores
a huge amount of social relationship data, which is important for data analysis
and recommendation tasks, but is less important than the activity feed service
from the perspective of application revenue. It is conceivable that the application
runtime resource management needs to consider the importance of each service
from the business perspective.

In addition, the satisfaction level of SLA will affect the application revenue
as well. The response time of a user’s access request is the most important factor
to measure the satisfaction level. The shorter the response time, the higher the
SLA satisfaction level, and the higher the revenue (the revenue agreed in the
SLA, the revenue from user experience, etc.). The longer the response time, the
lower the SLA satisfaction level, and the lower the revenue (default penalty, user
loss, etc.).

Therefore, taking both the business importance and response time into
account, we come up with the following revenue function for one access request
to microservice i:

θi = vi + miri (1)

where vi is the revenue when response time is zero, and ri is the actual
response time of the access request. Note that the slope of the function mi < 0,
which means that the shorter the response time, the higher the revenue and
vice versa. For each microservice i, a different vi and mi can be set to reflect
its business importance. For example, an activity feed microservice in a social
application, corresponding to a smaller primary function slope, indicates that
the smaller the response time, the more revenue it will receive than the benefits
of other services.

4 Microservice Oriented Model for Resource
Management Issue

Therefore in this section, we will (1) build a microservice application model based
on the runtime interaction information of microservices; (2) design a microservice
revenue model based on the revenue function defined in Sect. 3 (Eq. (1)); (3)
define a congestion game model for microservice runtime resource management.
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4.1 Microservice Application Model

An Application is a triplet (S,E, T ) where:

– S is the collection of microservice that make up an application. For
any microservice s ∈ S, there is a collection of access endpoints Es =
{e1, e2, . . . , en}.

– E =
⋃

s∈S Es is the collection of access endpoints for all microservices.
– T represents the interaction between endpoints, ∀t ∈ T, t = <eo, eq, p>,

eo, eq ∈ E, p ∈ R
+

Essentially, the definition above can be regarded as a directed acyclic graph
(DAG) composed of an endpoint set and a call request set. For each edge in the
graph, it associates two endpoints to represent a call relationship, and uses a
positive real number to represent the expected number of accesses that a access
to the source endpoint will cascade to the target endpoint. p < 1 means only
some requests will trigger sub-request (e.g. A branch judgement occurs in the
program). p ≥ 1 means a request will trigger more than one sub-requests on
average (e.g. Loops, branches or other situations occur in the program).

4.2 Microservice Revenue Model

The number of microservice requests per unit time has several properties: (1)
the number of requests is large enough; (2) a single request has little impact
on the overall system performance and resource consumption; (3) all requests
arrive independently. Therefore, the number of access requests for microservice
per unit time can be described by Poisson distribution:

P (X = k) =
e−λλk

k!
(2)

Where λ represents the average number of microservice access requests that
arrive per unit time. In order to cope with a large number of access requests,
each logical microservice can physically have multiple instances (containers) run-
ning at the same time, distributed on different virtual machines. Provided that
access requests are balanced to each microservice running instance, we can use a
queuing system to describe how each microservice processes its access requests,
assuming that the following properties hold:

– The request arrival time is in accordance with the Poisson distribution, i.e.
the exponential probability density distribution.

– Process time for each request is the same.
– For requests that arrive at the same time, the microservice processes them

with time-sharing policy.

Therefore, processing access requests by each microservice accords with the
condition of M/G/1 Queue [5]. For microservice i, the expectation of access
request response time γ can be calculated as:

E[γi] =
1

Ciμi − λi
(3)
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– Ci is the maximum computing resource that the corresponding microservice
container can consume.

– μi is the service efficiency of the corresponding microservice container, which
is the number of requests processed per unit time per unit of computing
resource.

– λi is the access request arrival rate at each container, which is equivalent
to the total request arrival rate of microservice i divided by its number of
physical units, i.e. containers.

For the parameter λi required in Eq. (3), we need to make predictions based
on history data. Using Microservice Application Model defined in Sect. 4.1,
∀i ∈ S, the arrival rate collection is defined as ωi = {λie1 , λie2 , . . . , λien

}, where
e1, e2, . . . , en ∈ Ei. The total arrival rate of microservice i can be represented as
λi =

∑
e∈Ei

λie. For any microservice, it is possible to cascade its access requests
to the microservices it depends on. Using the call graph T in Microservice Appli-
cation Model, we can easily derive the T -based arrival rate update algorithm by
traversing the graph.

Assuming that all microservices run on a finite resource collection R =
{1, . . . , r}, and the access request arrival rate of microservice i on resource r
per unit time is λir, the total number of microservices that occupy resource r
is xr, the microservice revenue from resource r per unit time can be written as
follows:

dr(xr) = λirθi (4)

Substitute θi with Eq. (1) from Sect. 3, and we have:

dr(xr) = λir(νi + miE[γi]) (5)

Note that we have used the expected value of γi to approximate γi.
Substitute E[γi] with Eq. (3), and we have:

dr(xr) = λir(νi +
mi

C
xr

μi − λir

) = λirνi +
mi

Cμi

xrλir
− 1

(6)

Here we have substituted Ci in Eq. (3) with C
xr

, where we assume that all
containers on resource r share the computing resource equally, and that each
resource has the same constant computing capacity C.

4.3 Microservice Congestion Game Model

Congestion games are used to describe scenarios where players share resources in
a game, in which every player maximizes its own revenue by strategically select-
ing resources. The revenue generated by the resource is related to the number of
players who choose this resource, which means that the more players that have
chosen this resource, the less revenue each player can earn from this resource.
The formal definition of a congestion game is as follows:

– A finite set of players M = {1, . . . , n}



682 R. Luo et al.

– A finite set of congestible resources R = {1, . . . , r}
– A finite set of strategies Σi for each player, where each strategy P ∈ Σi is a

subset of resource set R. We use Σ =
∏n

i=1 Σi to denote the joint strategy
space and σ = (σ1, . . . , σn) ∈ Σ is a strategy vector in which the player i
chooses the strategy σi

– For each resource r ∈ R and a strategy vector σ = (σ1, . . . , σn) ∈ Σ, the
load (i.e. congestion number, or the number of times this resource is selected)
xr(σ) = #{i : r ∈ σi}, where # means the size of the set.

– For each resource r ∈ R, a revenue function dr : N → R describes the relation-
ship between the number of times this resource is selected xr and the revenue
every player can earn. dr is a monotonically decreasing function on xr.

– For a given strategy vector σ = (σ1, . . . , σn) ∈ Σ, player i’s total revenue
Si =

∑
r∈σi

dr(xr(σ)). For Congestion Game Model, a strategy vector σ∗ =
(σ∗

1 , . . . , σ
∗
n) is a Nash Equilibrium of the congestion game if and only if

∑

r∈σ∗
i

dr(xr(σ∗)) ≥
∑

r∈σi

dr(xr(σ
′
)),∀i ∈ N,∀σi ∈ Σi, σ

′
= (σi, σ

∗
−i) (7)

We further apply Microservice Revenue Model in Sect. 4.2 to the conges-
tion game. For any microservice i and its non-empty decision vector σ =
(σ1, . . . , σn) ∈ Σ, its revenue function is defined as follows:

Si(σ) =
∑

r∈σi

dr(xr(σ)) (8)

dr(xr(σ)) = λirνi +
mi

Cμi

xr(σ)λir
− 1

(9)

We can see that dr(xr) is a monotonically decreasing function on xr (note
that mi < 0), which satisfies the conditions of Congestion Game Model.

5 Nash Equilibrium of the Congestion Game

The existence of Nash equilibrium can be shown by constructing a potential
function [15] that assigns a value to each outcome. Moreover, the construction
will also show that iterated best response finds a Nash equilibrium.

To solve the Nash equilibrium of the congestion game, we propose an algo-
rithm that adopts an incremental optimization scheme. We set up an empty set
as the strategy vector initially. At each iteration, only one player is allowed to
change its current strategy and choose its best response against the strategy
vector. For n microservices, there are n steps to achieve the Nash equilibrium,
where in each step only one other player enters. When no player can change his
strategy solely to gain more utility, the Nash equilibrium in the step is achieved.

In general, we consider the nth step, where former n−1 players have achieved
equilibrium and their strategy vector is σ(n−1) = (σ1, σ2, . . . , σn−1). It is inter-
esting to find out, after the nth player enters, how will the system regain the
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equilibrium. The player n will choose his best response strategy against the for-
mer n − 1 players’ strategies in equilibrium, which must congest some of the
resources and affect the strategy vector σ(n − 1). Each affected player changes
its current strategy and chooses the best response like the nth player. The Nash
equilibrium is achieved at last. Formally, Sn(σn, σ(n− 1)) is denoted as the util-
ity of the player n, where player n chooses the strategy σi and the former n − 1
players choose the strategy tuple σ(n − 1) = (σ1, σ2, . . . , σn−1).

To regain the Nash equilibrium strategy vector of n players, we propose
Algorithm 1:

Algorithm 1. Regain to equilibrium(n)
Require: n-1 players’ strategy vector σ(n) = (σ1, σ2, . . . , σn−1)
Ensure: n players’ strategy vector σ(n) = (σ1, σ2, . . . , σn);
1: calculate the nth player’s best strategy σ∗

n

2: initialize σ(n) = (σ(n − 1), σ∗
n)

3: i = 0
4: while true do
5: if i == n then
6: break;
7: end if
8: if ∀σi ∈ Σi, Si(σ(n)) ≥ Si(σi, σ−i(n)) then
9: i = i + 1;

10: else
11: calculate the ith player’s best strategy σ∗

i

12: replace the ith players strategy: σ(n)[i] = σ∗
i

13: i = 0;
14: end if
15: end while

For every player, the time complexity of calculating best strategy is O(r ∗n),
where r is the number of resources and n is the number of players. To obtain all
players’ Nash equilibrium state, the iteration in Algorithm1 would be executed
at most n ∗ r times. In a word, to obtain the final strategy vector, the time
complexity of the algorithm is O(n2r2).

6 Evaluation

6.1 Experiment Setting

We conducted experiments on an open-source project called Pwitter [1], which is
a social-networking application resembling Twitter. It is a three-layer application
developed in python that runs on Gunicorn and uses Redis and MySQL for data
storage. We modified and extended Pwitter to microservice architectural style.
After conversion, our version of Pwitter has a network of 30 microservices, and
each of them is exposed to between 10 to 20 API endpoints via HTTP. We run
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these microservices on virtual machine instances provided by Aliyun (a cloud
provider in China). The specification of each instance is ecs.c5.x2large with 8
core CPU and 16G memory.

Docker is installed on each virtual machine instance, and each microservice
runs in the form of a Docker Container. We use Swarm to administrate all the
microservices, which is an official cluster management tool of Docker. To deploy
a microservice, we can simply initiate a request to the Manager Node, which will
place its corresponding runtime container on a suitable virtual machine instance
based on the scheduling results of the chosen resource management algorithm to
maximize the microservice revenue.

Docker Swarm has three inherent strategies for cluster scheduling, namely:

– Spread, the default Strategy, which picks the Worker node that currently has
the least resource (CPU, memory etc.) consumption, so as to prioritize on
fair usage of resources.

– Binpack, a strategy contrary to Spread, which chooses to fill up a Work node
as much as possible first, so as to keep more nodes available.

– Random, which picks a Worker node at random.

To verify the effectiveness of our proposed scheduling strategy based on Con-
gestion Game, we used this strategy to deploy the 30 microservices of Pwitter and
compare the performance with that of using Spread and Binpack. After deploy-
ment, we simulated http requests and gradually increased the frequency from
1000 requests per second to 5000 requests per second at 1000 interval. To verify
the effectiveness of different strategies under different resource constraints, we
repeated the above experiment on 5, 10, 15, 20 and 30 virtual machine instances
respectively.

6.2 Experiment Results

We use average request response time, ratio of request failure and microservice
revenue as three metrics to compare the performance of each strategy.

Fig. 1. Average request response time, failure rate and revenues of each strategy using
different number of virtual machine instances

As shown in Fig. 1, all three strategies have relatively large response delay
when only 5 virtual machine instances are used. The average response time
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using Spread or Binpack is close to 4000 ms, while the average response time of
Congestion Game Scheduling Strategy is 3025 ms, about 25% less. As the number
of virtual machine instances increased, our strategy still has an edge compared
to the other two, though the gap narrows gradually. All three strategies have
roughly the same average response time when 30 virtual machine instances are
used.

Congest Game Scheduling strategy also has the lowest request failure ratio
compare to the other two when only 5 virtual machine are used. Its failure ratio
is about 20% while Binpack has the highest failure ratio of 37%, an increase
of 17%. When the number of virtual machine instances increased to 15, our
strategy has no request failure at all while the other two still have about 2%
failure ratio. When more than 15 virtual machine instances are used, none of
the three strategies have request failure, which indicates that the virtual machine
resources have satisfied the need at 5000 requests per second.

In the end, Congestion Game scheduling strategy has far more microservice
revenue than the other two strategies when only 5 virtual machine instances are
used. Similarly, the advantage closed out as more virtual machine instances are
used. When the number reaches 30, the three strategies basically have the same
revenue.

From the above results of experiments, we can see that when the number of
virtual machine instances is limited, the Congestion Game scheduling strategy
can optimize the performance of the system and largely outperform Binpack or
Spread provided by Docker Swarm. Such gap in performance shrinks as the num-
ber of virtual machine instances increases since each instance is less pressured
and more microservice containers can be run to decrease the request response
time.

7 Conclusion

This paper proposes a congestion game-based resource management method
under the scenario of internal resource competition among microservices in a
cloud environment. Firstly, we construct a model for microservice-based appli-
cations that captures the runtime dependency among microservices that com-
pose an application. Secondly, we propose a microservice revenue function, and
then we define the problem of internal resource competition as a congestion game
where each microservice is a player that tries to maximize its revenue. Finally we
propose a polynomial-time algorithm to find the Nash Equilibrium of the game
to solve the problem. We conducted experiments to verify the effectiveness of our
approach, and results show that our proposed congestion game-based schedul-
ing method can effectively increase the overall performance of the microservice-
based application under computing resource constraints, outperforming existing
strategies used by Docker Swarm.
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