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Abstract. The applications of instance-intensive workflow are widely used in
e-commerce, advanced manufacturing, etc. However, existing studies normally
do not consider the problem of reducing energy consumption by utilizing the
characters of instance-intensive workflow applications. This paper presents a
resource usage Prediction-based Energy-Aware scheduling algorithm, named
PEA. Technically, this method improves the energy efficiency of instance-
intensive cloud workflow by predicting resources utilization and the strategies of
batch processing and load balancing. The efficiency and effectiveness of the
proposed algorithm are validated by extensive experiments.
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1 Introduction

With the development of cloud computing and software technology, workflow appli-
cations in the field of science and engineering have grown steadily in variety and scale.
As a typical application type in cloud computing environment, instance intensive cloud
workflow usually exists in electronic commerce, advanced manufacturing and other
fields. Unlike complex scientific workflow, instance intensive workflow has a large
number of potential and relatively simple concurrent instances, in which instance is a
single execution event of workflow at a particular time. For example, while processing
bank cheques, millions of cheques are processed simultaneously every day, and each
check transaction is a fairly simple workflow that takes only a few steps to complete.

Workflow scheduling is the key to managing workflow execution efficiency. In
order to achieve high execution efficiency, the performance of instance intensive cloud
workflow needs to achieve high throughput, high load balance and high resource
utilization. High throughput allows a large number of workflow events to start and
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complete in a set of time periods. Load balancing allows for balancing requests from
users and providing users with better quality of service. Resource utilization can
effectively manage resources. Up to now, several instance-intensive cloud workflow
scheduling algorithms have been proposed. Unfortunately, most studies do not take
energy into account, as energy has become one of the main problems of clouds and has
received increasing attention due to environmental and financial considerations [17].

On the other hand, several researches have shown that predicting the future of
users’ demands and cloud resource usage can be applied to handle the energy problem
[3]. Besides, it takes considerable time for configuring the virtual machines
(VMs) according to the requirements of the application in cloud computing platforms
[24]. If the future requirements of resources can be predicted beforehand, a large
number of instance-intensive clouds workflow instances can be processed by the
already configured VMs, and a high utilization of cloud resources can be maintained to
reduce the energy consumption. That is, extra time to launch and configure new VMs
can be saved, by which higher throughput may be achieved. Extra energy consumption
caused by low utilization of cloud resources can also be reduced.

In addition, the combination of scheduling and batch decision can improve the
efficiency of batch jobs instead of dealing with them alone [18]. Methods and prototype
systems that support automatic batch execution in workflows have been proposed in [5,
6, 19]. However, there are few researches on workflow scheduling considering batch
execution of several workflow instances to reduce energy consumption. For instance-
intensive workflows, it does not have a dedicated energy-aware scheduling algorithm.
Therefore, the resource prediction-based energy-aware scheduling method for devel-
oping instance-intensive cloud workflows has practical significance.

With these observations, this paper presents a resource usage Prediction-based
Energy-Aware scheduling algorithm for instance-intensive cloud workflows, named
PEA. It uses the technology of predicting resources utilization and the strategies of
batch processing and load balancing to reduce energy consumption. Our contributions
are three folds. Firstly, a formal concept of combining scheduling with batch pro-
cessing and resource utilization prediction is proposed. Secondly, a scheduling method
based on resource utilization prediction is designed for instance-intensive cloud
workflow. Finally, comprehensive experiments and simulations are conducted to
demonstrate the validity of the proposed method.

2 System Models and Architecture

Our problem consists in scheduling the instance-intensive workflow meeting the
specified makespan in such a way that the energy consumption are minimized. In this
section, we describe the energy model and system architecture underneath our
approach. For ease of understanding, we summarize the major notations and their
meanings used throughout of this paper in Table 1.
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Table 1. Key notations and descriptions

Notation | Description

w; The i-th instance-intensive workflow

1 The j-th workflow activity of wi;

Lijk The k-th instance of the workflow activity #;
Dm The m-th physical machine

Cm The calculate ability of p,,

vm,, The n-th type of virtual machine (VM)

Ve, The calculate ability of vm,,

Fon The number of VMs on p,, at time t

U,.(1) The CPU utilization of p,, at time t

O The basic energy consumption rate of p,,

2.1 Concepts and Definitions

For better introducing PEA and related concepts, we first give some definitions which
will be used later.

Definition 1 (Instance-Intensive Workflow). Instance-Intensive Workflow can be
defined as W = {wy,wy,...,w;}, where I is the number of Instance-Intensive work-
flow, and w; could be expressed as w; = <T;, E;, OD; >, where

(1) T;is a set of workflow activities, and a workflow activity could be expressed as
t; = <IDjy, Type;, Wi, SD;;, GC;; > , where ID;; is the activity number, which is
unique, Type;; is the execution type of the activity, which can be divided into two
types: normal activity and batch-processing activity, W;; is calculation workload,
SD;; is the deadline for this activity and GCj; stands for the grouping character-
istics values of t;. t;; € T;, T; = {t;1, 1, .. ., ti}, where J is the number of work-
flow activities.

(2) E; is the set of directed edges between the workflow activities to represent
dependency, which can be expressed as E; = {<tiy, tp > | <ti, tp >
e T x T}.

(3) OD; is the time constrained (i.e. overall deadline).

Definition 2 (Activity Instance). #;; is the k-th instance of the workflow activity #;,
1 <k <K, where K is the number of instances of j-th activity of i-th workflow.

Definition 3 (Cloud Resource). P = {py,ps,...,py} is a set of physical machines
(PMs), where M is the number of PMs. The PMs provide the hardware infrastructure
for creating virtualized resources to meet service demands. VM = {vm;,vmy, ...,viny}
is the set of N types of virtual machine (VM). A VM type vm, is specified by the
characteristic of computing performance vc, in million instructions per second.
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2.2 Energy Model

The energy consumption for PMs is composed of CPU, memory, disk, power supply,
etc. Various research results in the literature show that CPU utilization significantly
affects energy consumption [1, 2, 4]. Therefore, this study focuses on the influence of
CPU utilization on the overall energy consumption of the system and ignores the
influence of other components.

Hsu et al. [4] proposed a simplified energy consumption model of PM. The energy
consumption rate at time instant ¢ for the p,,, denoted as PE,,, which can be calculated
by Eq. 1.

Where ¢, is the basic energy consumption rate of p,,, U,,(¢) is CPU utilization rate
of p,, at time instant t and a,, is a constant, which could be calculated as «,, = ¢,,/7.

P if Uu,(r)=0
O+ if 0<U,(r)<0.2
Qn+30, if 02<U,(1)<0.5
PE, ={ @, +5u, if 05<U,(t)<0.7 (1)
@, +8ax, if 0.7<U,()<0.8
Qo+ 1oy, if 0.8<U,(r) <09
QO+ 120, if 09<U,(r)<1

We assume that CPU utilization is the ratio of resources required by the VMs to the
PM (Mainly for computing resources). Therefor, U,,(t) could be calculated by Eq. 2.

Zn lzrn[ VC,LI/Cm (2)

Where c,, is the computing performance of p,, r,; represents the number of VMs of
type vm,, running on the p,, at time ¢ and vc,,; is the computing performance of vm,,.

Integral to PE,, can be obtained the total energy consumption of p,,, denoted as E,,,
could be calculated by Eq. 3.

E. = /tev PEm(Um< ))dt (3)

Where w,, is the total operating time of p,,.

2.3 System Architecture

The scheduling architecture of PEA is shown in Fig. 1. It consists of three layers: user
layer, scheduling layer and resource layer. The scheduler consists of batch processing,
resource monitor, resource predictor and energy-aware resource allocator. Batch pro-
cessing is used to merge some activity instances to generate an activity execution
instance. Resource monitor detects the resource usage of PMs and updates the CPU
utilization information of each PM. Resource predictor predicts subsequent resource
usage by using resource usage information obtained from the resource monitor and
controls the opening and closing of the resource to avoid the invalid waste of the
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energy. Energy-aware resource allocator allocates appropriate resources to execute the
instance through the strategy of load balancing.
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Fig. 1. The scheduling architecture of PEA

The overview of the scheduling process for this architecture is as follows. When
new active instances arrive, they first enter the batch processing module, and some of
instances are merged into new instances. On the other hand, the resource predictor
prepares the resources needed by the instance in advance. Finally, energy-aware
resource allocator put these instances into the resources prepared in advance.

The main characteristics of PEA include three points: batch strategy, resource
prediction and load balancing. The benefits of this algorithm are summarized below.

e The strategy of batch processing could reduce the energy waste caused by com-
putation processing and repeated transmission of data.

e The technology of resource prediction can adapt to the rapid increase of instance-
intensive workflow. Reduce energy consumption caused by the untimely resource
allocation and closure.

e The strategy of load balancing allows open PMs to operate at lower energy rates,
which reduces the overall energy consumption.
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3 Algorithm Implementation

The proposed PEA algorithm is capable of reducing energy consumption while
meeting the makespan. It consists of four parts, such as batch processing, resource
monitor, resource predictor and energy-aware resource allocator. The implementation
of batch processing and resource monitor have been mentioned in our previous work.
Detailed introductions of the mechanism of these are referred to [27]. In this section,
we will focus on the implementation of resource predictor and energy-aware resource
allocator.

3.1 Resource Predictor

Instance-intensive workflow has the characteristics of short-term rapid growth. A large
number of task instances require a large allocation of resources in a short period of
time. These tasks are often time - constrained, and exceeding them can have a huge
impact. In the stock market, for example, failure to deal with it in time can lead to huge
economic consequences. Therefore, more idle PMs are usually opened in the process of
traditional resource allocation. However, if we keep the resources in the idle state for a
long time, this will be extremely energy consuming. We use the method of resource
usage prediction to allocation and recovery the PM in advance, so as to achieve the
purpose of energy saving.

The model of resource predictor involves a number of steps as shown in Fig. 2. In
preprocessing step, first, preprocess the historical data, which consists of three steps:
feature selection, construction sequence and data partitioning. Then we use the pro-
cessed historical data to train the DBN to get the model. Finally, we input the current
data into the model to get the forecast information of the future resource utilization to
guide the allocation or recovery of the resources.

Feature
Extraction :

Construction

Historical i Sequence : DBN Prediction Resource
Data E ; Allocation/Recovery

Data
Partitioning

Preprocessing

Fig. 2. The structure of resource predictor

Algorithm 1 specifies the process of resource utilization prediction and pre-opened
on the physical machine according to the conditions.
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Algorithm 1. Resource Prediction Algorithm RPA

Input: The set of cloud Resource history D.
Output: the information of Pre-opened PM.
01: Initialize Weight;; of the predictive model
02: set W < Weight

03: select feature F in D

04: for i < length(F)

05: At time serialize (Fi)

06: foreach training model do

07:  Update AW;;

08:  Wj=W; +AW;

09: Py, ,=prediction model (W;;)

10: if P, exceeds the set threshold

11:  Pre-open PM

12: return the information of Pre-opened PM

As shown in Algorithm 1, it describes process of forecasting in resource predictor.
The input of model is a historical dataset of the data center in the cloud computing
environment and the output is resource utilization value in the future. Firstly, model
initializes and sets weights (lines 1-2). Then, feature selection has been done (line 3).
Time serialization of feature data at At time granularity (lines 4-6). Training the pre-
diction model and updating the weight of the model (lines 7-9). Finally, Pre-open the
physical machine according to conditions (lines 10-11).

Preprocessing of Resource Predictor. Because the original data in the historical data
set is huge and has many features, the direct use of the model will cause the problems
such as large error and poor interpretability. Therefore, a series of data processing
processes are carried out to improve the accuracy of prediction results. The main steps
of data preprocessing include feature extraction, reconstruction sequence and data
partition.

Feature Extraction. The resources in cloud computing environment mainly include
CPU utilization, content utilization, disk and bandwidth. According to different cloud
resource forecast requirements, the selected characteristics are different. In the stage of
data analysis, the early analysis of feature selection is done. This paper mainly focuses
on the prediction of CPU utilization ratio, so the historical CPU utilization factor is
used as input feature in feature selection process.

Construction Sequence. Owing to the high correlation of host load data in the adjacent
time interval, [24] proposes to use host load monitoring tool to record workload data
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into one-dimensional time series for predictive network training and good prediction
results can be achieved. So this paper synthetically considers the practical significance
of model input and prediction effect, and formats it according to the present time
interval from the selection feature (in this paper, the granularity is per hour, the time
interval is set length according to the specific problem). The time series of cloud
resources are constructed and the time series data are taken as the input parameters of
the depth confidence network in order to improve the prediction accuracy.

Data Partitioning. The prediction model is a model that describes the mapping rela-
tionship between the historical data feature F; and the first period prediction value Yy, ,
which can be expressed as F; — Y, ;. The purpose of data partition is to select the
appropriate t value so as to predict cloud resources better.

DBN Prediction. In [20], they used an unsupervised learning model, the deep belief
network (DBN). The structure of DBN can be described as two layers. The lower layer
is composed of multiple restricted Boltzmann machines (RBM). The upper layer is a
BP neural network. The training process of the deep belief network is divided into two
parts, the unsupervised learning part corresponding to the RBM network in the lower
layer and the supervised learning part corresponding to the fine-tuning of the BP neural
network in the upper layer. We use this method to predict the utilization rate of cloud
resources. The specific process is shown in the Fig. 3.
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Fig. 3. The structure of DBN

3.2 Energy-Aware Resource Allocator

The main idea of energy-aware resource allocation is to balance the resource usage of
open physical machines and limit the resource utilization of each host to a specified
threshold. The specific steps can be described as follows:
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Specify a suitable VM type for all instances. This VM type should be the mini-
mum VM type that guarantees that the instance can be completed within the
deadline.

The current CPU utilization of the PMs obtained in the resource monitor is sorted
in ascending order.

The VM type obtained from (1) is mapped to the sorted PM one by one until the
CPU utilization of PM after VM loading is lower than or equal to the threshold
value.

If no PM meets the requirements, then assign the instance to a new PM that has
been pre-opened.

Return (2) until all instances are assigned resources.

Algorithm 2 Resource Allocation Based on CPU Utilization
RA

Input: The current resource usage CRU
the pending instances PI
Output: The final resource allocation policies
01: for each PI [i] is not empty
02: Assign a suitable vimy to a PI [i]
03: DPM«sort(PMs) by the CPU utilization in CRU
04: for cach PI [i] is not empty
05: fori=1toM

06: if DPM([i] allocate to PI [i],it does not exceed the thresh-
old

07: PI [i] «DPMTi]
08: if PIQJi] did not get resources
09: PI [i] «Pre-opened PM

Algorithm 2 specifies the process of physical machine resource allocation. It is to

show the steps mentioned above in the form of pseudo-code. The appropriate virtual
machine types is arranged for each instance (lines 1-2). Sort current resources based on
CRU (line 3). These sorted resources are in turn attempted to map virtual machine type.
If the CPU threshold is met, schedule the current resource to calculate the instance
(lines 4-7). If no resource satisfies the condition, this instance is calculated from the
pre-opened resource (lines 8-9).
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4 Experimental Evaluation

In this section, we conducted a series of comprehensive experiments to evaluate the
performance of our proposed PEA. For comparative analysis, we performed compar-
ison experiments with other methods to verify the effectiveness of our proposed PEA
method.

4.1 Experimental Context

In this experiment, VM scheduling in the cloud environment will be simulated and
tested by cloud simulator CloudSim [26]. The hardware environment used in the
experiment is Intel(R) Core(TM) i15-6500 CPU @3.2 GHz, 8 GB memory. The soft-
ware environment is Eclipse3.5 for Windows7, and cloudsim-3.0.3 is configured to
complete the experiment.

In the process of verifying the proposed method, three types of physical machines
of different specifications were mainly used to construct the cloud simulation envi-
ronment. The specific configuration of the physical machine and related energy con-
sumption settings are shown in Table 2. Set the basic power consumptions of the HP
ProLiant ML110 G4 and HP ProLiant ML110 G5 to 86 W and 93.7 W based on the
energy consumption values of them. Then based on the operating energy specifications
for the single-processor HP ProLiant BL460c G6 in the HP white paper, the basic
power consumption is set to 192 W.

Table 2. Parameter settings

Physical machine hardware configuration Basic energy
consumption (W)
HP ProLiant ML110 G4 (Intel Xeon 3040, dual-Processor clocked 86

at 1860 MHz, 4 GB of RAM)
HP ProLiant ML110 G5 (Intel Xeon 3075, dual-Processor clocked |93.7
at 2660 MHz, 4 GB of RAM)
HP ProLiant SL.390s G7 (Intel Xeon 5649, dual-Processor clocked 192
at 3060 MHz, 16 GB of RAM)

4.2 Performance Evaluation

In this section, we have carried out resource utilization prediction comparison exper-
iments and scheduling method comparison experiments to verify our proposed method.

Resource Usage Prediction Comparison Experiment. In order to get closer to the
complexity of the cloud computing environment, this article uses the real data of
Google Cloud Data Center for simulation and verification. In May 2011, Google
publicly released a 29-day historical dataset and documentation from the data center
that detailed the semantics, formats, and patterns. This workload consists of more than
12,000 heterogeneous physical hosts running 4,000 different types of applications and a
large amount of data for approximately 1.2 billion rows of resource usage data. We
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have selected the information of 40 physics machines for 29 days to carry on the
experiment.

In this resource usage prediction experiment, we compared other algorithms such as
back propagation (BP), support vector regression (SVR), radial basic function
(RBF) and multivariable linear regression (MLR). The evaluation indicators selected
are commonly used indicators in the prediction model, including mean absolute error
(MAE), mean squared error (MSE), and mean absolute percentage error (MAPE). The
specific formula for the evaluation index selected is as follows

1 N

MAE = — 1 — i 4
N;Iy il (4)
1 < 5

MSE = NZ Ot = ypi) (5)
i=1
1K |yt — wpi

MAPE = — CAUNEEL <) 6
N; Yii ©

Where N is the total number of test sets, yt; is the actual value, and yp; is the output
value of the network. MAE is the average absolute of the actual value and the predicted
value. Compared with the average error, the average absolute error is absolutized
because of the deviation, and there is no positive and negative offset. Therefore, the
average absolute error can better reflect the actual situation of the predicted value error.
MSE is very sensitive to a set of very large or very small errors in measurement. It can
well reflect the precision of measurement. MAPE uses the same unit dimension to
reflect the extent of the deviation of the measurement result from the true value. They
evaluate the results from different angles, and the smaller the value, the higher the
prediction accuracy (Figs. 4, 5 and 6).

The intraday average of the three evaluation indicators is shown in Table 3. The
experimental results show that the DBN prediction method proposed in this paper is the
best compared with the comparison method, and the DBN prediction ability is more
stable with the increase of the prediction window. The main reason why the DBN
method is significantly better than other prediction methods is that the features
extracted by the RBM network can better reflect the complex characteristics of the
entire data center workload data, and thus can stably improve the prediction effect.

Scheduling Algorithm Comparison Experiment. We conduct Comparison experi-
ments on energy consumption with others. To reveal the advantages of our PEA
algorithm in reducing energy consumption, we compare an energy-aware virtual
machine scheduling [7] method is proposed, which is referred to as EVMS. The main
idea of EVMS is to migrate activities to low-energy physical machines to reduce
energy consumption, and then migrate some activities on low-energy physical
machines to higher-energy virtual machines to speed up activity execution time. In this
experiment, EVMS is used as the benchmark algorithm for comparison.
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Fig. 5. Performance of resource usage prediction experiment in MAPE

Figure 7 plots the energy consumption results of three algorithms and Table 4
shows the ratio of PEA to the energy consumption of EVMS. From the results we can
see that our PEA algorithm has the lower energy consumption. This is because the
resource utilization prediction technology in PEA algorithm and two strategies can
greatly reduce energy consumption. The technology of resource utilization prediction
can effectively reduce energy waste caused by untimely opening and closing of
resources. Batch processing strategy can combine multiple examples to reduce the
energy loss caused by repeated calculation. The energy consumption is related to the
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Table 3. Comparison of forecasting methods

MAE |MSE MAPE
SVR | 0.0111 | 2.2466e—04 | 0.2660
BP | 0.0094 | 2.1655e—04 | 0.1996
RBF | 0.0095 | 2.1744e—04 | 0.1955
MLR | 0.0094 | 2.0469e—-04 | 0.1912
DBN | 0.0089 | 1.9517e—04 | 0.1847

characteristics of activities. The load balancing strategy with CPU utilization threshold
limits ensures that the system works at a low energy rate without affecting the running
time.

5 Related Work

In cloud computing, any reduction in energy consumption can bring huge economic
savings because the data center contains a large number of computer clusters. So there
has been a lot of research on how to reduce energy consumption.

The energy consumption model of computer systems is the first problem that needs
to be solved. Aliza et al. [1] lists the impact of various hardware and software on the
energy consumption of computer systems. They found that the CPU is the component
that has the greatest impact on system energy consumption among all components.
Lien et al. [2] found that physical machine CPU utilization and energy consumption are
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Table 4. Improvements of energy consumption with PEA compared to each comparison
algorithm

Number of task instances
5000 10000 | 15000 | 20000 |25000 |30000 |35000 |40000
EVMS | 45.62% | 39.34% | 39.49% | 46.56% | 45.88% | 39.19% | 38.45% | 42.25%

not linear. They collect data on power and CPU utilization, propose a power con-
sumption model based on CPU utilization, and design a virtual instrument software
module. Real-time measurement of the power consumption of the streaming server.
These observations are used in this paper.

Some researchers use Resource forecasting method, like Kimura et al. [21] pro-
posed a resource allocation model based on regression method, estimating the amount
of resources in the virtual computing infrastructure. It predicts the number of vCPUs
and the capacity of the required RAM with a nonlinear exponential regression model
which allows the better selection of the configuration and the number of virtual
machine and reduces the cost of small cloud providers. Ardagna et al. [22] presented
workload predition model based on moving average. And a distributed solution was
proposed that incorporated workload prediction and distributed non-linear optimization
techniques. Roy et al. [23] proposed a forecasting model using Auto Regressive
Integrated Moving Average model. A discussed the challenges involved in auto scaling
in a cloud environment. Rahmanian et al. [25] proposed a learning automata-based
ensemble resource usage prediction algorithm which combines state of the art pre-
diction models in cloud computing environment. This algortithm determines the
weights of each component model to achieve accurate prediction according to different
situations. Faruk et al. [26] presented iOverbook, which is an autonomous, online and
intelligent framework to calculate overbooking rate. It analyzes historical data of
datacenter host CPU utilization and uses neural network to predict future CPU
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utilization. Specifically, it predicts the average CPU utilization over the specified time
interval of the physical host and then calculates the overbooking rate of the CPU on the
next hour. Finally, perfoming on the data of real Google cloud computing environment,
the experiment shows that iOverbook can help Cloud service providers improve their
resource utilization by an average of 12.5% and save 32% power in the datacenter.

Many efficient workflow scheduling techniques for the purpose of reducing the
energy consumption have been researched [9-12, 15]. Kim et al. [13] discussed an
energy credit scheduler for estimating power consumption in VM based on the number
of workloads performed on VM. Based on the estimation model, the scheduling
algorithm of virtual environment is designed, and the resource computing task based on
minimum energy consumption and minimum budget is realized, and it is implemented
in Xen virtualization system. Yassa et al. [14] described the scheduling strategy of
DVES based particle swarm optimization (PSO) algorithm for practical and scientific
workloads. To reduce power consumption by using different levels of voltage to supply
the workload by sacrificing clock frequency. This multiple voltage involves a tradeoff
between the mass and energy of the schedule. The main disadvantages of evolutionary
algorithms are slow convergence and long computation time, which are not suitable for
instance intensive workflow.

6 Conclusion

In this paper, we present a resource usage Prediction-based Energy-Aware scheduling
algorithm, named PEA. The method is promoted with strategies to merge several
activity instances, predict the resource usage and balance resource utilization of
physical machines to improve energy efficiency in instance-intensive cloud workflows.
For processing instance-intensive workflows, our goal is to reduce the overall energy
consumption of the system as much as possible under the premise of the activity
deadline. Experimental evaluations have been performed to verify the efficiency and
effectiveness of our proposed method.
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