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Abstract. For typical Multi-Paxos protocol running on a cloud storage appli-
cation, the failover mechanism is complex in terms of implementation. When
the leader fails within a replica group, a new leader should be elected by
broadcasting prepare requests over the replica group. Moreover, repairing new
leader’s missing log entries requires broadcasting prepare request as well. This
introduces too much network cost and increase the latency to restore normal
storage service at the same time. In view of this challenge, an optimization for
Multi-Paxos protocol with centralized failover mechanism for cloud storage
applications is proposed in this paper. Compared with typical Multi-Paxos
protocol, failover mechanism and normal client requests handling logic are split,
and been handled by two clusters respectively: A coordinator cluster is dedi-
cated to handle failover issues as a central manager; while a data cluster only
takes charge of data replication and storage regarding client commands. With
the centralized failover mechanism in the new design, the centralized coordi-
nator cluster maintains real-time status information of each replica group. And a
replica with largest apply index value is elected as the new leader by coordinator
cluster; while repairing missing log entries can be achieved with limited repli-
ca’s bitmap information maintained by coordinator cluster as well. Comparison
between two protocols is implemented and analyzed to prove the feasibility of
our proposal.

Keywords: Centralized failover mechanism � Multi-Paxos � Replica group �
Leader election � Leader repair

1 Introduction

Nowadays, increasing amount of applications are deployed in cloud, due to the con-
venience of “pay as you go” manner of using IT infrastructure. Among those appli-
cations, cloud storage is one of the most popular one. Cloud storage applications enable
users to store data of their applications on cloud, instead of building their own storage
infrastructures [1, 2]. As a typical distributed computing application, cloud storage
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systems take advantage of replica technique to achieve fault tolerance and high
availability, by storing user’s data on multiple disks over the network, so as to make
sure the data won’t be lost as long as majority disks works probably [3].

As a typical distributed computing application, a cloud storage system can be
treated as a set of distributed servers belong to one cluster. The servers work as a whole
to handle client commands (i.e., write or read operations to store data and read stored
data) [4]. Each sever can be described as a deterministic state machine that performs
client commands in sequence. The state machine has a current state, and it performs a
step by taking as input a client command and producing an output and a new state. The
core implementation of a cloud storage system is to guarantee all servers execute the
same sequence of state machine commands [5]. As a result, every cloud storage system
can be modeled as a replicated state machine as shown in Fig. 1.

Replicated state machines are typically implemented using a replicated log [4, 5].
Each server stores a log containing a series of client commands, which its state machine
executes in sequence. Each log contains the same commands in the same order, so each
state machine processes the same sequence of commands. Since the state machines are
deterministic, each computes the same state and the same sequence of outputs. Keeping
the replicated log consistent is the job of the consensus algorithm [16]. The consensus
module on a server receives commands from clients and adds them to its log. It
communicates with the consensus modules on other servers to ensure that every log
eventually contains the same requests in the same order, even if some servers fail. Once
commands are properly replicated, each server’s state machine processes them in log
order, and the outputs are returned to clients. As a result, the servers appear to form a
single, highly reliable state machine.

There have been numerous researches on the consensus algorithm for replicated
state machines. Among which Paxos is the dominated one over last decades: most
implementations of consensus are based on Paxos or influenced by it. Representative
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Fig. 1. Replicated state machine architecture [5].
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algorithms include Multi-Paxos [4], E-Paxos [6], as well as Raft [5]. The difference
between Paxos and its variants vs. Raft is: Raft is strongly based on leadership
mechanism, all client commands are handled by leader replica and other replicas work
as followers; while for Multi-Paxos, leader is not necessarily required, but it always
employs a distinguished leader to guarantee liveness of the algorithm; Moreover, E-
paxos is totally leaderless to guarantee client latency for handling client commands in
wide area environment. In this paper, we mainly focus on the optimization of Multi-
Paxos regarding its failover mechanism.

For cloud storage systems running typical Multi-Paxos protocol, when the leader
fails within a replica group, prepare requests are broadcast over the replica group to
elect a new leader; and for each missing log entry in the new leader, repairing it
requires broadcasting prepare requests to learn the missing log entry as well. This is
both time consuming and introducing too much network cost. In view of this challenge,
rather than electing a new leader in a distributed manner, we introduce a centralized
failover mechanism to improve system performance of Multi-Paxos protocol in this
paper. Briefly, we split failover mechanism and normal client commands handling logic
in the new design, and each functionality is handled by a cluster respectively: A
coordinator cluster is introduced as a central manager to handle failover issues; A data
cluster only takes charge of data replication and storage regarding client commands.
Moreover, failover mechanism consists of two phases: leader election and leader repair.
The centralized coordinator cluster maintains real-time status information of each
replica group. When the leader replica fails, a replica with largest apply index value is
elected as the new leader by coordinator cluster; while repairing missing log entries can
be achieved with limited replica’s bitmap information maintained by coordinator
cluster as well.

The reminder of this paper is organized as follows: Sect. 2 discusses related work
on consensus algorithm for cloud storage applications. Section 3 highlights the prob-
lem of original failover mechanism with typical Multi-Paxos protocol. The details of
centralized failover mechanism to optimize Multi-Paxos protocol is presented in
Sect. 4. Section 5 compares our proposal and typical Multi-Paxos protocol with respect
to message delay and message cost. Section 6 evaluate the performance of optimized
Multi-Paxos protocol and typical Multi-Paxos protocol in terms of commit throughput.
And Sect. 7 concludes the paper.

2 Related Work

Regarding distributed computing systems such as cloud storage applications [17, 18],
the core of implementation is the consensus algorithm, to make sure each server
belongs to the same cluster executes client commands in the same sequence [11–13].
There have been numerous researches related to consensus algorithms over last decades
[14, 15], from which Paxos is the dominated one. Most implementations of consensus
are based on Paxos or influenced by it. Among those consensus algorithms, they can be
categorized as follows: (1) Lamport’s Paxos [4, 8, 9], and its variants such as Multi-
Paxos, Elaborations paxos (E-paxos) [6]; (2) Raft protocol [5], which is based on
strong leadership mechanism.
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The main difference between those consensus algorithm is the leadership mecha-
nism: (1) Multi-Paxos does not necessarily requires a leader; and when there’s no
leader in a replica group, Multi-Paxos degrades to Basic-Paxos [10]. (2) E-Paxos is
totally leaderless, which is designed to reduce remote client latency. It is a good
candidate for wide-area data storage applications. (3) Moreover, Raft uses a strong
form of leadership than other two consensus algorithms.

When failover happens, Multi-Paxos, E-paxos and Raft will behave differently.
(1) For typical Multi-Paxos, a new leader will be elected by broadcasting prepare
request in a replica group. And the leader is elected randomly, which is the first replica
receives Prepare OK from majority replicas. Then missing log entry repair is conducted
for leader by learning it from Prepare request as well. (2) For E-Paxos, since there’s no
leader in the replica group, when failover happens, a replica may only need to learn the
decision for an paxos instance, since it has to execute commands that depend on that
instance. The data repair process is similar to Multi-Paxos, so missing log entries with a
replica is learnt from Prepare request as well. (3) For Raft, a leader must be elected
before the system can handle more client request, that’s because the leader handles all
client requests (if a client contacts a follower, the follower redirects it to the leader).
Raft uses randomized times to elect leaders, which adds a small amount of mechanism
to heartbeats. The implementation simplifies the management of replicated log, and
makes Raft easier to understand when comparing with other 2 protocols.

Our work is to optimize Multi-Paxos protocol in terms of system performance when
replica failure happens. Compared with typical Multi-Paxos protocol, in this paper, we
split the original distributed cluster to coordinator cluster and data cluster. The coor-
dinator cluster is a central manager, which only takes charge of failover issues; while
data cluster is only for handling client requests of data storage. This simplifies the
implementation of Multi-Paxos protocol. Also, to avoid single point of failure, we
made coordinator as a replica group as well, where existing consensus component is
applied, so as to reduce complexity.

3 Preliminary Knowledge

3.1 How Multi-Paxos Protocol Works

Multi-Paxos is an optimization of basic Paxos protocol, which is similar to 2-phase
commit protocol (i.e., the protocol consists of prepare phase and accept phase). When a
replica Ri within a replica group receives a client command Ck, the two phases of basic
Paxos protocol work as follows:

Prepare Phase: Ri first record Ck as the k-th client command in its local log, then
broadcast prepare_Ck requests with proposal number Ri-k within the replica group. On
receiving the prepare_Ck request for each replica Rj, it will send back prepare_Ck_OK
response to Ri after checking it’s ok to log Ck as the k-th log entry locally. If Ri receives
prepare_Ck_OK response from majority replicas, it will enter Accept phase to make Ck

as the k-th log entry in majority replicas.
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Accept Phase: Ri initiates Accept_Ck requests and broadcast it within the replica
group. On receiving Accept_Ck requests for each replica Rj, it will record Ck as the k-th
log entry, and send back Accept_Ck_OK response after it checks there’s no proposal
number larger than Ri-k for the k-th log entry. Similarly, when Ri receives
Accept_Ck_OK responses from majority replicas, it will mark Ck as committed; and
broadcast Commit_Ck requests. Once Rj receives Commit_Ck request, it will mark Ck as
committed if it has recorded Ck as the k-th log entry as well.

After a command get committed, it can be applied to state machine as long as it has
no dependency on other commands, or all its dependency are resolved probably.
Therefore, a response will be send back to client to indicate the success of executing Ck

by the cloud storage application.
Compared with basic-Paxos protocol, a distinguished replica is elected as leader for

Multi-Paxos protocol to improve system’s performance by reducing 2-phase commit
protocol to 1-phase commit protocol. As shown in Fig. 2, compared with basic Paxos
protocol, “Prepare phase” is omitted in Multi-Paxos protocol, since only the leader
replica makes proposal in the system. And there’s only one phase(i.e., “Accept phase”)
during the execution of consensus algorithm.

Multi-Paxos protocol could be treated as an optimization for basic Paxos protocol
to address the live lock issue with basic Paxos protocol [4]. The live lock issue means
for a same log entry (e.g., the k-th log entry), more than one replica issues Prepare_Ck

requests within the replica group. In this scenario, according to the basic Paxos design,
it’s with great possibility that no command will be chosen as the k-th log entry.

Let’s take the scenario in Fig. 3 to describe how Multi-Paxos protocol works.
A client sends 3 commands C1, C2 and C3 at the same time to the leader replica R1, i.e.,
{C1: “x = v1”, C2: “y = v2”, C3 = “x* = v3”}. C1 and C3 are updating the same key x;
while C2 is updating key y. Then R1 will log C1, C2, and C3 in sequence at its local log
firstly, then broadcast Accept_C1 messages regarding each command to each follower
in the replica group. On receiving the Accept_C1 request from R1, R2 and R3 will record
the C1 in its local log; then send back Accept_C1_OK message to R1. Once R1 receives
Accept OK messages from at least follower replica, it will mark C1 as committed, and
broadcast Commit_C1 request to all followers. And on receiving a Commit_C1 mes-
sage, a follower replica will mark C1 as committed if it has already record C1 in its local
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Fig. 2. The difference between basic-Paxos and Multi-Paxos
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log. Once C1 is committed, it can be applied to the state machine and sends back to
client that C1 has already been recorded correctly. For C2 and C3, the workflow is
similar to C1.

As depicted in Fig. 3, the 3 commands (i.e., C1, C2 and C3) are committed in out-
of-order manner (i.e., the committing sequence is {C2, C3, C1}), since the network
delay may results the “Accept_C2_OK” and “Accept_C3_OK” messages arrives R1

before “Accept_C1_OK” message. And according to the protocol design, the applying
sequence of three commands will be: {C2, C1, C3}, since C3 has dependency on C1.

3.2 Problem Statement

Regarding the typical Multi-Paxos protocol design, when the leader replica fails, fail-
over mechanism will be triggered to elect a new leader. And before new leader is
elected, Multi-Paxos protocol degrades to basic Paxos: client requests should go through
both prepare and accept phases to get committed and applied in the system. The new
leader is elected during processing new client requests Ck: On receiving a client request
Ck, a replica Rj will first checks whether itself is the leader, if yes it will skip prepare
phase, and enter Accept phase directly. Otherwise, Rj will execute prepare phase and
accept phase in sequence: it will first broadcast a Prepare_Ck request to check whether
there’s any other proposal regarding the k-th log entry. Once it receives “Pre-
pare_Ck_OK” responses from majority replicas within the replica group, it will initiate
“Accept_Ck” request among the replica group. Once Rj receives “Accept_Ck_OK”
response from majority replicas, Rj will promote itself to leader. Otherwise, it will learn
which replica is the new leader when it receives Commit_Ck request later.

The problem with failover mechanism in typical Multi-Paxos includes 3 parts:
(1) Huge network cost: electing a new leader requires broadcasting prepare request over
the replica group; (2) Reduced system performance:Multi-Paxos degrades to basic Paxos
during the failover period, and it is with great possibility that no leader will be elected,
when each replica tries to issue a prepare request regarding the same log entry due to the
live lock issue [4]. (3) Data syncing on leader would increase client latency if the new
leader has large missing items: after a new leader is elected, the number of missing items

C1:update x=v1 C2: update y=v2 C3: update x*=v3

Commit C2
Accept C2

Accept C3

OK C3

CommitC3 CommitC1

OKC2

Accept C1

OKC1

Fig. 3. A Multi-Paxos workflow example
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on the new leader would be very large compared with other follower nodes, since the
leader is elected randomly. As a result, data syncing on leader node would be quite time
consuming, so the client latency of writing operations would be increased.

In view of those challenges, we propose a centralized failover mechanism for
Multi-Paxos protocol in this paper. Instead of electing new leader by broadcasting
Prepare requests over the cluster, we introduce a designated coordinator taking charge
of failover when there’s node fails happens in the cluster. With the central coordinator,
the 3 problems we analyzed above could be solved accordingly: (1) communication
cost is saved since the new leader is elected by coordinator; (2) a new leader will
always be elected as long as the majority nodes are not failed; (3) the coordinator will
try to elect a follower node with most items as new leader as possible. As a result, the
cost of data syncing is saved, so as to reduce client latency on writing operations.

4 A Centralized Failover Mechanism for Multi-Paxos
Protocol in Cloud Storage Applications

Motivated by the problem discussed in Sect. 3, the optimized Multi-Paxos protocol is
discussed in details in this section. In our proposal, instead of electing the new leader
by broadcasting Prepare requests in the distributed cluster, we apply a centralized
failover mechanism to optimize the system performance for Multi-Paxos protocol.

4.1 The Architecture of Centralized Failover Mechanism for Multi-Paxos
Protocol

The architecture of our optimized Multi-Paxos protocol is depicted in Fig. 4. The
implementation of cloud storage are split into two parts: Data Cluster and Coordinator
Cluster respectively. Data Cluster is for handling normal data storage logic (i.e., log
replication and data storage); while Coordinator Cluster is for failover issues handling.

Definition 1 (Coordinator cluster). Coordinator Cluster works as a centralized
manager to handle failover issues. By collecting status report from each replica group,
it maintains the status of each replica group, thus it an detect the running status of each
replica, and trigger failover mechanism when leader replica fails.

The design of the centralized coordinator is inspired with 2-Phase Commit protocol
as discussed in [7]. However, original 2 Phase Commit protocol faces the challenge of
typical single point of failure. To achieve high availability, we make the coordinator as
a cluster consisting of 2F′ + 1 nodes. Moreover, each node is running consensus
algorithm to achieve fault tolerance as well.

Definition 2 (Data cluster). Data cluster is a collection of physical hosts for handling
data storage requests, where replicated state machine is implemented, to make sure
client requests are handled in the same sequence over several replicas.

As shown in Fig. 4, a data cluster consists of x physical machines, and for each
machine pi, there’re a set of multiple processes running consensus algorithm for data
storage. A piece of data is stored on 2F + 1 physical machines as replicas to achieve
fault tolerance. Moreover, each 2F + 1 processes consists of a replica group as shown
in Definition 3.
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Definition 3 (Replica group). A replica group consists of 2F + 1 processes from
2F + 1 physical hosts. A process is a backup for each other within the same replica
group, which is running Multi-Paxos protocol. At one moment, there’s one leader
elected by coordinator in the group, and other replica works as followers.

The replicas of each group is deployed on different physical machines, so as to
make sure exception of one physical host has least impact on the cloud storage system.
Also, each replica sends its running status periodically to the coordinator for leader
election.

4.2 A Centralized Failover Mechanism for Multi-Paxos Protocol

In this section, the centralized failover mechanism for Multi-Paxos protocol is intro-
duced in details. Table 1 lists some key terms and the definition.

coordinator cluster

...

P1 P2 Pj Pn

... ... ......

Group-1

Group-2

Group-i

Group-m

status report

Leader Follower

data cluster

Fig. 4. The architecture of optimized Multi-Paxos with centralized failover mechanism

Table 1. Key terms and notification for optimized Multi-Paxos protocol.

Term Definition

Gi The i-th replica group
Gi-Rj The j-th replica of the i-th replica group
Ck The k-th client request
Gi-Ri-AppIndex The apply index of replica Gi-Rj

Gi-StatusSet The status report collection of the i-th replica group
Gi-Rj-Bitmap The bitmap of log entries existence for Gi-Rj

t Timeouts for replica group status probing
F The maximum number of failed replicas within a replica group
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Definition 4 (Apply index Gi-Ri-AppIndex). Ri-AppIndex is the index of a replica Ri

evolves in a Multi-Paxos protocol. It indicates that commands C1, C2, … CRi-AppIndex

are already applied from local log to the state machine.

Definition 5 (Status report Gi-Rj.Status). Gi-Rj.status is the status report of replica Rj

from Gi, it can be formulated as Gi-Rj.status = <i, j, role, Gi-Ri-AppIndex, health
status>. i is the replica group number, j is the replica number, role indicates whether the
replica is a leader or follower, Gi-Ri-AppIndex is the apply index of Gi-Rj, and health
status indicates whether the replica running properly.

The state diagram of the coordinator is shown in Fig. 5. When the system starts,
coordinator will enter probing state to collect each replica’s status report from each
replica group. If it detects there’s no leader in current replica group, it will trigger
failover mechanism, which consists of two phases: leader election and leader repair.

4.2.1 New Leader Election
There’re three cases when new leader election happens: (1) When the system starts: all
replicas within a same group are default to be follower at the beginning. Leader
election is triggered to elect a leader for each replica group. Since at this moment, all
replicas are the same, the coordinator will randomly assign a replica as the leader. (2) a
leader replica report unhealthy status during system running, such as shortage of
memory, to indicate it can’t perform properly as a leader anymore. (3) a leader does not
send status report to leader within timeout t. For case (2) and case (3) the coordinator
need to elect a new replica with largest apply index as the new leader. This is to make
sure the new leader has as much log entries as possible. This is to save time cost to
learn all possible missing log entries. As a result, the replica group will take least time
to recovery data storage service to clients.

Please be noted that if a follower reports unhealthy status report or lose connection
to the coordinator, new leader election won’t triggered. The distributed cloud storage
system works fine as long as there’s quorum replica works fine within a replica
group. Otherwise, the system will break if over F replicas are failed.

Algorithm 1 summarizes the new leader election algorithm. Take the case in Fig. 6
for example. A replica group Gi has 3 replicas R1, R2 and R3, where R1 is the leader. If
R1 reports unhealthy status report or lose connection during the system running, new
leader election is triggered. Since R2’s apply index R2-AppIndex = 5, while R3’s apply

Init
Replica
Group

Probing

Leader
election

Repair
leader

timeout

leader fails new leader born

Fig. 5. The state machine of centralized coordinator
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index = 3, R2 will be elected as the new leader. Since both R2 and R3 are working
properly, the storage service will be restored once R2 get repaired with all missing log
entries.

Algorithm 1. New leader election

1. foreach t timeouts:
2. foreach replica group Gi:
3. check whether Gi-StatusSet is collected from each replica
4. if yes:
5. foreach status report in Gi-StatusSet:
6. check the health status of each replica Gi-Rj:
7. case 1: Gi-Rj is running OK
8. keep probing
9. case 2: Gi-Rj has health problem
10. if Gi-Rj is leader:
11. elect replica with largest Rj-AppIndex as the new leader
12. endforeach
13. if no:
14. check which replica loses the status report
15. if the leader status is missing and majority replicas are healthy:
16. elect the replica with largest Rj-AppIndex as the new leader
17. end foreach
18. endforeach

4.2.2 Repair New Leader with Missing Log Entries
When a new leader is elected, we need to repair the new leader to fill all missing log
entries before restoring client request handling service.

1 2 3 4 5 6 7 8

x 3 y 1 y 9 x 2 x 0 y 7 x 5 x 4

x 3 y 1 y 9 x 2 x 0

x 3 y 1 y 9 * x 0 y 7 * x 4

log index

leader

R1-AppIndex

R2

R3

R1

R3-AppIndex

followers R2-AppIndex

Fig. 6. Example for log entries when failover is triggered
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Definition 6 (Bitmap of a replica’s log entries Gi-Rj-Bitmap): Gi-Rj-Bitmap is the
bitmap of replica’s log entries. For i-th bit in Gi-Rj-Bitmap, the Boolean indicates
whether Rj has the i-th log entry or not.

Definition 7 (logEntry summary Gi-logEntry): For a replica group Gi, Gi-logEntry is
the log entry summary in Gi. It is an array consisting of 2F + 1 entries, and Gi-logEntry
[i] means for the i-th log index, which replica has the log record.

When a new leader is elected, some log entries may be missing due to network
delay or missing sync messages from former leader. Before restoring cloud storage
service, we need to make sure all committed client commands should be ready in the
new leader. As a result, the coordinator should calculate which replica to find the
missing log entries. We introduce a bitmap for each replica Rj, where i-th bit indicates
whether Rj has the i-th client command. With bitmap from majority replicas, the
coordinator can calculate the global Gi-logEntry as a summary for log storage within
Gi. Moreover, here only majority replicas’ bitmap is required due to the design of
Multi-Paxos: a command can only be committed after it is accepted by majority
replicas in the group. Therefore, the new leader can always obtain the missing log entry
once it get committed by former leader.

Algorithm 2. repair new leader with missing log entries in replica group Gi

1. coordinator send bitmap request to F+1 replicas within Gi (except the failed former leader)
2.with the F+1 bitmaps, coordinator calculates the value of Gi-logEntry
3. coordinator send Gi-logEntry to the new leader
4. foreach missing log entry recordk in the new leader's log:
5. check Gi-logEntry to get replica Rj, and Rj has recordk in its log
6. send a request to Rjfor recordk
7. fill the missing log entry with Rj's response
8. end foreach

Algorithm 2 summaries the algorithm to repair a new elected leader with missing
log entries. Take the scenario in Fig. 5 for example, when R1 fails, R2 will elected as
the new leader. With bitmap information from both R2 = {1, 1, 1, 1, 1, 0, 0, 0} and
R3 = {1, 1, 1, 0, 1, 1, 0, 1}, Gi-logEntry = {R2, R2, R2, R2, R2, R3, NULL, R3}.
Compared with former leader R1, R2’s missing log entry is record6. And with Gi-
logEntry, it can obtain record6 from R3.

5 Comparison Analysis

In this section, we evaluate our proposal (OMP) by comparing it with the typical Multi-
Paxos protocol (MP) with respect to when failover is triggered. As introduced in
Sect. 4, when the coordinator detects there’s exception with current leader in a group,
failover mechanism is triggered to elect a new leader and repair log entries for the new
leader. Two factors are considered in the comparison: message delay to restore normal
service; as well as the message cost to repair the new leader with missing log entries.
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5.1 Comparison of Message Delay

The message delay means how many round trips is required for the coordinator to
choose a new leader and repair missing log entries for the new leader.

For our optimized Multi-Paxos protocol, message delay consists of following parts:

(a) 0.5 round trip to obtain heartbeat messages sent from coordinator to all nodes;
(b) 1 round trip to get bitmap messages required by coordinator;
(c) 1 round trip to get missing log entries, since leader already know where to find

missing log entries from Gi-logEntry.

As a result, the message delay of the optimized Multi-Paxos protocol is a const as
listed in formula (1):

messageDelay OMPð Þ ¼ 2:5 ð1Þ

While for typical Multi-Paxos protocol, message delay consists of following parts:

(a)
Pm

i¼0 a
i round trips to elect a new leader. a is the probability that conflict happens

when electing a new leader. m is the total times of conflict. In optimal case, there’s
only 1 round trip to elect a new leader, if majority nodes replies with Prepare OK
for the first replica initiating Prepare request.

(b) n round trip of Prepare requests to obtain the missing log entries on leader, to
broadcast Prepare request to all replicas within the same group.

As a result, the message delay of the typical Multi-Paxos protocol is n + 1 as listed
in formula (2):

messageDelay MPð Þ ¼ nþ
Xm

i¼0
ai ð2Þ

5.2 Comparison of Message Cost

Suppose there’re n missing log entries in the new leader node. Message cost include the
message produced when a new leader is elected and missing log entries are repaired.

For our proposed optimized Multi-Paxos protocol, the message cost consists of
following 4parts:

(a) 2F + 1 heartbeat messages, from which the coordinator detects leader failure;
(b) F + 1 bitmap messages from majority replicas, with which the coordinator decide

which replica to be new leader;
(c) 1 log entry summary message (i.e., Gi-logEntry) merged with F + 1 bitmap

messages in (b) is sent to the new leader;
(d) n request messages made by the new leader, to require missing log entries from

Gi-logEntry in (c);

Combined with (a)–(d), the message produced during failover is
(2F + 1) + (F + 1) + 1 + n = 3F + n + 3 = 3 * (F + 1) + n.
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Furthermore, the message produced for optimized Multi-Paxos could be reduced
for step (d) when n > F. Since we already know the missing log entry exists in one of
the F + 1 majority nodes, the maximum request messages in step (d) is F + 1.
Therefore, the message cost for OMP is (2F + 1) + (F + 1) + 1 + (F + 1) = 3(F + 1)
when n > F.

messageCost OMPð Þ ¼ 3 � ðF þ 1Þ þ n if n � F ð3Þ

messageCost OMPð Þ ¼ 3 � F þ 1ð Þ if n [ F ð4Þ

For typical Multi-Paxos protocol, the message cost includes 2 parts:

(a) 2 � F �Pm
i¼0 a

i Prepare requests to elect a new leader. Similar to formula (1), a is
the probability that conflict happens when electing a new leader. m is the total
times of conflict.

(b) 2 * F * n requests to repair n missing log entries in the new leader.

Combined (a) and (b), the total message produced by failover mechanism with
typical Multi-Paxos protocol is 2 � F �Pm

i¼0 a
i þ 2 � F � n ¼ 2F � Pm

i¼0 a
i þ n

� �
:

messageCost MPð Þ ¼ 2 � F �
Xm

i¼0
ai þ n

� �
ð5Þ

Table 2 summaries the comparison result, which indicates our optimized Multi-
Paxos protocol works better than the typical Multi-Paxos protocol, in terms of both
message delay and message cost.

6 Evaluation

We evaluated the optimized Multi-Paxos protocol against typical Multi-Paxos protocol,
using three replicas for each replicated state machine. The protocols are implemented
with Golang [19] and running on Mac OS 10.13.16. For the coordinator node, we apply
the existing open source library etcd (which implements Raft protocol) [20] as the
centralized manager to monitoring data cluster and electing leader replica.

A client on a separate instance sends batched requests to both three-replica group in
loop. And the client requests are initiated by using a replicated key-value store where
client requests are updates (i.e., write operations). For each protocol, the evolution of
commit throughput in the three-replica setup that experiences the failure of one replica
is recorded, as depicted in Fig. 7.

Table 2. Comparison summary of difference between OMP vs. MP

Protocol Message delay Message cost

Multi-Paxos (MP) 2.5 3 � ðF þ 1Þ þ n if n � F
3 � F þ 1ð Þ if n [ F

Optimized Multi-Paxos (OMP) nþ Pm
i¼0 a

i 2 � F � Pm
i¼0 a

i þ n
� �
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As shown in Fig. 7, under normal cases, the commit throughput of both optimized
Multi-Paxos protocol and typical Multi-Paxos protocol are almost identical; Moreover,
a follower replica fails has no impact on the system’s performance. This is due to both
protocols are using a stable leader to handle client requests. Furthermore, both pro-
tocols suffer from availability issue when the leader replica fails. This is reasonable as
well, since a distributed system running either protocol can’t process client requests
until a new leader is elected.

The difference between two protocols is the impact on commit throughput when the
leader of three replicas fails. In our implementation, optimized Multi-Paxos takes about
1 s to elect a new leader and recovery client request handling service; while Multi-
Paxos protocol takes about 10 s to restore the service. And the reason for this difference
is: when failover happens, for our proposed optimized Multi-Paxos protocol, a new
leader is elected by the coordinator node when it loses heartbeat information of the
leader, which takes 1 round of message; while in typical Multi-Paxos protocol, new
leader is elected during broadcasting prepare requests, which takes at least 1.5 round of
message loop among each replica pair within the group. Please be noted, as discussed
previously, it’s of great opportunity that no leader can be elected in Multi-Paxos
protocol due to the mutual stomping issue [4]. Under such circumstances, the commit
throughput of typical Multi-Paxos protocol will be delayed infinitely.

Follower replica failure

Leader replica failure

Delayed commit throughput

Delayed commit throughput

Optimized Multi-Paxos

Typical Multi-Paxos

Seconds

Seconds

Throughput

Throughput

Fig. 7. Commit throughput evolution when one replica fails
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7 Conclusion

In this paper, we proposed an optimization with centralized failover mechanism for
Multi-Paxos protocol, so as to improve performance of cloud storage applications.
Compared with original design of typical Multi-Paxos protocol, failover mechanism
and data handling logic are split to different clusters. A coordinator cluster is introduced
as a central manager to handle failover issues; while data cluster only takes charge of
log replication for data storage. In the new design of failover mechanism, a replica with
largest apply index value is elected as new leader; and repair missing log entries is
conducted with limited replica’s bitmap information. Finally, comparison between two
protocols is analyzed to prove the feasibility of our proposal.
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