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Abstract. In the big data community, Spark plays an important role
and is used to process interactive queries. Spark employs a query opti-
mizer, called Catalyst, to interpret SQL queries to optimized query exe-
cution plans. Catalyst contains a number of optimization rules and sup-
ports cost-based optimization. Although query optimization techniques
have been well studied in the field of relational database systems, the
effectiveness of Catalyst in Spark is still unclear. In this paper, we inves-
tigated the effectiveness of rule-based and cost-based optimization in
Catalyst, meanwhile, we obtained a set of comparative experiments by
varying the data volume and the number of nodes. It is found that even
when applied query optimizations, the execution time of most TPC-H
queries were slightly reduced. Some interesting observations were made
on Catalyst, which can enable the community to have a better under-
standing and improvement of the query optimizer in Spark.
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1 Introduction

With the emergence of various types of big data frameworks, a group of data
query processing systems have been developed, such as Apache Hadoop [1],
Google Dremel [2], Cloudera Impala [3], and Apache Spark [4]. Spark supports
processing structured data using either Spark SQL or DataFrame API [5–7]. Like
relational database management systems, Spark implements a query optimizer,
called Catalyst, which converts SQL-like queries into logical execution plans.

Query optimization techniques, including rule-based and cost-based opti-
mization, have attracted a large number of scholars to study it [8–11]. How-
ever, few people have evaluated the effectiveness of query optimizer in Spark.
Although query optimizer in relational databases can significantly accelerate the
execution of SQL queries [12–15], the performance of query optimizer in Spark is
still unclear. With the rapid development of Spark, Catalyst supports both rule-
based and cost-based optimization since the version of Spark 2.2. A systematic
evaluation of Catalyst will contribute to optimize the performance of Spark.
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In this paper, we investigated the query execution efficiency for different
optimization rules. A group of queries in TPC-H [16–18] are selected to evaluate
rule-based and cost-based optimization. In the experiments, we varied both data
volume and cluster scale to observe the query execution time. We found that
the execution time were accelerated slightly for most query optimization rules.
Optimization rules has slight effect on the optimization of SQL query executions.

2 Related Work

Query optimization has attracted plenty of research attention [19–22]. Many
researchers focused on improving the effectiveness of optimization techniques. Lei
et al. [23] investigated the quality of cardinality estimator in query optimizers of
a group of DBMS, and found that all estimators routinely produce large errors.
They found that exhaustive enumeration techniques can improve performance
despite the sub-optimal cardinality estimates.

Kocsis et al. [24] proposed Hylas, a tool for automatically optimizing Spark
queries in the source code by semantics-preserving transformation strategy. Liu
et al. [25] proposed a prototype of query optimization based on cost model,
and defined cost models for the common operations in relational queries. Zhang
et al. [26] proposed an optimization scheme of partial bloom filter, it can reduce
the amount of data in the shuffle stage and effectively improve the performance
of equivalent connection.

Yang et al. [27] decided to enhance Spark SQL optimizer with detailed statis-
tics information. This scheme is able to filter out most of the records in advance,
which can reduce the amount of data in the shuffle stage and effectively improve
the performance of equivalent connection.

Although a few research efforts have been put on query optimizers in Spark,
the above papers are based on the improvement of optimization techniques or
tools, and there is no systematic study on the optimization effect of Catalyst, it is
still in infant stage. In this paper, we characterized the effectiveness of the query
optimization in Spark, aiming to derive some design implications for improving
the query optimizer in Spark.

3 Experimental Results

TPC-H benchmark are chosen to evaluate the query optimization performance
of Catalyst. During the experiments, we selected a subset of TPC-H queries
based on the optimization rules. Those queries include Q2, Q3, Q5, Q7, Q9,
Q12, Q14, Q16, Q18, Q19 and Q22. The master and slave nodes in Spark cluster
are configured with 128GB memory and 40 CPU cores.

We compared the execution time and tasks in cluster environments between
optimization rules are used and not used, so as to observe the effectiveness of
rule-based optimization and cost-based optimization framework in Catalyst.
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3.1 Overview of Catalyst

Catalyst follows a typical structure of query optimizers. The main components
of Catalyst and their functions are described as follows (Fig. 1).

Fig. 1. The architecture of Catalyst.

– SQLParser–parses SQL statements, generates a syntax tree, and forms unre-
solved logical plans.

– Analyzer–combines the unresolved logic plan generated in the previous step
with the data dictionary to bind and generate analyzed logical plans.

– Optimizer–applies rules to logical plans and expressions, merge and optimize
tree nodes to obtain the optimized logical plans.

– SparkPlanner–transforms optimized logical plans into physical programs
that can be recognized by processing.

– CostModel–selects the best physical execution plan based on some perfor-
mance data.

As the kernel of Catalyst, Optimizer processes SQL queries based on the
rules defined in the batches [6], including CombineFilters, PushDownPredicate,
LikeSimplication, CombineLimits, CombineUnions, ConstantFolding and Null-
ProPagation optimization rules.

However, the query plans automatically chosen by the Spark optimizer are
not optimal, especially on the cost. In order to improve the quality, Yang et al.
[27] decided to enhance Spark SQL optimizer with detailed statistics information.
So that we can better estimate the number of output records and output size
for each database operator.

3.2 Evaluation of Rules

CombineFilters. CombineFilters rule can recursively merge adjacent filter
conditions. If this rule is not applied, the filter statements are carried out one by
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one, as defined in the SQL queries. Q2, Q3 and Q18 in TPC-H are selected to
drive the target system and observe the performance changes caused by Com-
bineFilters rule. The results are shown in Table 1 and Fig. 2. (The prefix “U ”
represents that use of the optimization rules, and the prefix of “UN ” means
no use of optimization rules.) For Q2, there is only a slight differences in the
number of stages and tasks, but for Q3 and Q18, they are completely identical.

Fig. 2. Execution time changes when applying CombineFilters

Table 1. The results when applying CombineFilters and not.

Experiment cases Division of stages Number of tasks

U-Q2 0∼16 2618

UN-Q2 0∼17 2620

U-Q3 0∼4 3377

UN-Q3 0∼4 3377

U-Q18 0∼7 6149

UN-Q18 0∼7 6149

For CombineFilters optimization rule, there are slight differences on the pro-
cessing time of SQL statements (Fig. 2). However, I/O fluctuates and disk trans-
fers are much frequent in the condition without CombineFilters rule. Combine-
Filters rule can reduce disk interaction in the optimization of Q18 (Fig. 3).
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(a) Q18 with CombineFilters rule

(b) Q18 without CombineFilters rule

Fig. 3. The resource utilization with and without CombineFilters.

PushDownPredicate. PushDownPredicate optimization rule can push the
predicate in SQL statements into the subqueries, thereby reduce the number
of subsequent data processing. We selected Q5, Q7, Q16 of TPC-H to carry on
experiments. For the same SQL statements, the results are shown in Table 2. For
Q5, Q7, Q16, the number of stages and tasks is exactly the same when applying
PushDownPredicate and not.

As shown in Fig. 4, the time consumed when not using PushDownPredicate
rule is more than that of using the optimization rule in the optimization process
for Q5. However, the processing time of SQL statements are almost same for Q7
and Q16.

LikeSimplification. LikeSimplification optimization rule can simplify “LIKE”
expression to avoid the full scan of tables with extra calculation burden. For
example, it can optimize the sentence “%N ”(%N represents the demo beginning
with N ) to “StartsWith” for operations. Q2, Q9 and Q14 of TPC-H are selected
to drive experiments.
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Table 2. The results when applying PushDownPredicate and not.

Experiment cases Division of stages Number of tasks

U-Q5 0∼11 4186

UN-Q5 0∼11 4186

U-Q7 0∼10 4184

UN-Q7 0∼10 4184

U-Q16 0∼0(Job0) 1∼5(Job 1) 5(Job0) 1038(Job1)

UN-Q16 0∼0(Job0) 1∼5(Job 1) 5(Job0) 1038(Job1)

Fig. 4. Execution time changes when using PushDownPredicate.

Table 3. The results when applying LikeSimplification and not.

Experiment cases Division of stages Number of tasks

U-Q2 0∼16 2618

UN-Q2 0∼16 2618

U-Q9 0∼11 4548

UN-Q9 0∼11 4548

U-Q14 0∼3 2647

UN-Q14 0∼3 2647
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Fig. 5. Execution time changes when using LikeSimplification (“LS” refers to LikeS-
implification rule).

Stages and tasks remain unchanged during the processing of performing Q2,
Q9, and Q14 (Table 3), Fig. 5 depicts the results for Q2, Q9, and Q14. The suffix
of “LS” refers to LikeSimplification rule. The “%N ” involved in SQL statements
are optimized to “StartsWith” for operations when using LikeSimplification opti-
mization rule. Figure 5 shows that the execution efficiency is slightly improved
when using LikeSimplication.

3.3 Evaluation with Special Queries

In this section, we focused on the optimization strategies of other rules. TPC-
H benchmark do not contain these rules in SQL statement. Same principles as
those mentioned above, we selected representative SQL statements to do exper-
iments, those queries include CombineLimits, CombineUnions, ConstantFolding
and NullPropagation. The query are executed in cluster environments that use
the corresponding optimization rules and do not use.

CombineLimits rule compares adjacent “Limit” statements in SQL, the small
one retains and returns as a result, it can avoid counting “Limit” statements
many times during the process of calculation. CombineUnions rule recursively
merges adjacent “Union” statements. ConstantFolding rule can calculate expres-
sions that are calculated directly in advance, there is no need to put expressions
into the physical execution to generate objects to operate. NullPropagation rule
replaces “Null” value, expressions that determine the value of “Null” are cal-
culated at the logical stage, can avoid propagation of “Null” values on syntax
trees.
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Table 4. The results when applying optimization rules.

Experiment cases Division of stages Number of task

U-CombineLimits 0∼3(Job0) 4∼6(Job1) 639(Job0)
2447(Job1)

UN-CombineLimits 0∼3(Job0) 4∼7(Job1) 639(Job0)
2647(Job1)

U-CombineUnions 0∼2(Job0) 2904(Job0)

UN-CombineUnions 0∼1(Job0) 2∼2(Job1) 3∼3(Job2) 2904(Job0) 4(Job1)
17(Job2)

U-ConstantFolding 0(Job0) 1(Job0)

UN-ConstantFolding 0(Job0) 1(Job0)

U-NullPropagation 0∼1(Job0) 2373(Job0)

UN-NullPropagation 0∼1(Job0) 2373(Job0)

We executed the same SQL statements in cluster environments when the
optimization rules are using and not. The results are shown in Table 4, more
tasks are needed to perform under the condition that CombineLimits or Combine
Unions rule is not used, but stages and tasks remain unchanged when applying
CombineUnions and NullPropagation rule (Each job gets divided into smaller
sets of tasks called stages that depend on each other, similar to the map and
reduce stages in MapReduce).

Fig. 6. Execution time changes when using optimization rules.
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(a) With NullPropagation rule

(b) Without NullPropagation rule

Fig. 7. The resource utilization with and without NullPropagation.

More time are needed to perform under the condition that CombineLimits
rule is not used, and there are slight differences for CombineUnions and Null-
Propagation (Fig. 6). But as far as resource consumption is concerned, more
CPU and I/O resources are needed to process the same SQL statements without
using the corresponding optimization rules (Fig. 7).

3.4 Varying Data Sizes

Spark implements cost-based optimization framework to improve the quality of
query execution plan. In this section, we analyzed the optimization effects of
CBO and RBO under different sizes of data.

The scala factor (SF) was set as 10 and 100, respectively. Evaluation queries
include Q2, Q3, Q5, Q7, Q9, Q12, Q14, Q16, Q18, Q19 and Q22. The results
are shown in Fig. 8. Meanwhile, we set SF = 10 and 100 when RBO is applied.
Experiments are carried out on CombineFilters (Fig. 9a), PushDownPredicate
(Fig. 9b) and LikeSimplication (Fig. 9c) rules.
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Fig. 8. Execution time changes with and without CBO.

The results are shown in Fig. 9. With the increase of the data volume, the
processing time for the same SQL statements is increased correspondingly. For
the same data scale, the execution time reductions are still slight.

3.5 Varying Cluster Scale

In this section, we compared the optimization effects of CBO and RBO under
different cluster scales. At the same time, we guaranteed that the amount of
data processed on each slave node is up to 10G.

The number of slave nodes are ranged from 1 to 15. The rules of Combine-
Filters, PushDownPredicate and LikeSimplication are applied. The processing
time results are shown in Fig. 10, which shows that the improvement achieved
by CombineFilters rule for Q3 is slight, and there is a downward trend for Q9
with the increase of cluster scales. For Q7, the execution time is reduced if not
applying optimization rule. Less time is spent without using the optimization
rule.

Similarly, SQL queries with and without CBO framework are executed. The
results of experiments are shown in Fig. 11. For Q12, the expansion of cluster
scales has limited effect. For Q5, the SQL processing time has a downward trend
without the usage of CBO framework. However, with the increase of cluster
scales, the time needed to use CBO optimization rule is small for Q9.

When the number of slave nodes varies from 1, 5, 10 to 15, neither rule-based
optimization nor CBO framework have much effect. Rule-based optimization and
CBO framework have different optimization effects for different SQL statements.
However, the differences are not obvious.
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(a) CombineFilters optimization rule

(b) PushDownPredicate optimization rule

(c) LikeSimplication optimization rule

Fig. 9. Execution time with different data volumes.



606 Z. Ren et al.

Fig. 10. Execution time changes when using rule-based optimization.

Fig. 11. Execution time changes when using cost-based optimization.
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4 Discussion

Based on the experimental results, the resource consumption by Spark SQL in
runtime can be realized and choose the optimization strategy better, so that we
can further decrease the system overhead and query time. To achieve that, we
must understand the optimization strategy of optimization rules and its behav-
iors. The written SQL statements should be standardized, and conform to the
syntax requirements of the optimization method. Thus, faster and more accurate
query optimization of SQL statements can be achieved.

As the kernel of Catalyst, optimizer is responsible for optimizing the syntax
tree, it contains many rules defined in the batches, including CombineFilters,
PushDownPredicate, LikeSimplication, CombineLimits, CombineUnions, Con-
stantFolding and NullProPagation optimization rules. The corresponding opti-
mization rules are summarized in Table 5.

Table 5. The list of optimization rules.

The optimization rules Introduction of corresponding optimization strategies

CombineFilters Recursively merge adjacent filter conditions

PushDownPredicate Push the predicate in SQL statements into the subquery,
reduce the number of subsequent data processing

LikeSimplication Simplify “LIKE” expression to avoid the full scan of tables

CombineLimits Compare adjacent “Limit” statements, and return the
small one.

CombineUnions Recursively merge adjacent “Union” statements

ConstantFolding Calculate expressions in advance that are calculated
directly

NullPropagation Replace “Null” value

After evaluating the Catalyst optimizer, we investigated the effectiveness of
the optimization rules and cost-based optimization in Catalyst. We derived the
following implications:

– The query optimizer has little effect on execution time reductions. Different
SQL statements correspond to different optimization rules. However, opti-
mization strategies are not always the optimal choice in optimizer.

– For different SQL statements, rule-based optimization and CBO framework
have little effect under different cluster scales.

– For the same SQL statements, the processing time grows with the increase of
the workload data volume. However, even if the amount of data grows, the
reduction of execution time will not become obvious.
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5 Conclusion

In this paper, the optimization effects of rule-based and cost-based optimiza-
tion framework in Catalyst optimizer in Spark were studied. We evaluated their
optimization performance under various queries. At the same time, some com-
prehensive validation experiments was carried out by varying the data volume
and cluster scale. The results show that even if query optimization rules are
applied, the execution time of most benchmark queries were slightly reduced,
and optimization rules have slight effect on the executing of SQL statements.
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