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Abstract. Knowledge base (KB) completion aims to infer missing facts
based on existing ones in a KB. Many approaches firstly suppose that
the constituents themselves (e.g., head, tail entity and relation) of a fact
meet some formulas and then minimize the loss of formula to obtain the
feature vectors of entities and relations. Due to the sparsity of KB, some
methods also take into consideration the indirect relations between enti-
ties. However, indirect relations further widen the differences of training
times of high-degree entities (entities linking by many relations) and low-
degree entities. This results in underfitting of low-degree entities. In this
paper, we propose the path-based TransE with aggregation (PTransE-
ag) to fine-tune the feature vector of an entity by comparing it to its
related entities that linked by the same relations. In this way, low-degree
entities can draw useful information from high-degree entities to directly
adjust their representations. Conversely, the overfitting of high-degree
entities can be relieved. Extensive experiments carried on the real world
dataset show our method can define entities more accurately, and infer-
ring is more effectively than in previous methods.

Keywords: KB completion · Entity degree · Indirect relation ·
Entity prediction · Relation weakening

1 Introduction

Knowledge bases (KBs), such as Freebase [1], WordNet [2] and DBPedia [3] have
recently grown in popularity since they are useful for various tasks, including
information extraction [4], semantic parsing [5] and question answering [6]. These
KBs contain large collections of facts about things, people and places that mostly
in the form of triples (e.g., (Bill Gates, FounderOf, Microsoft)). A KB can be
encoded as a graph, as shown in Fig. 1(a), where the nodes and edges represent
entities and relations, respectively. While these KBs have been very large, they
still miss large percentages of facts about common or popular entities. The lack
of enough facts makes these KBs difficult to fulfill their potentials. However,
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manually enriching KBs with all possible facts is impossible. Thus, researchers
have devised techniques to automatically fill in missing facts by examining the
facts already in the KB, which is formally known as KB completion.

Fig. 1. (a) shows the origin knowledge base G in the form of graph; (b) demonstrates
result of modeling G with PTransE, where correlation between e1 and e5 is weakened,
even eliminated; (c) demonstrates another result that correlation between e2 and e6 is
eliminated.

Latent feature models [7,8] are popular for performing knowledge base com-
pletion, which embed entities and relations of a KB into a continuous vector
space. TransE [7] is a typical latent feature model that represents a relation
with a translation vector so that the pair of embedded entities in a triple (h, r, t)
(h, r and t are the head entity, relation and tail entity respectively.) can be
connected by r with a low error. However, because of KB sparsity, the num-
ber of direct relations is small. Only utilizing the direct relations, TransE may
tend to make the representations of two different entities become the same one.
PTransE [9] incorporates into TransE the idea from graph feature models [10]
that the relation between entities can be inferred by the indirect relations (i.e.,
sequences of relations) between them. In the following, direct relations and indi-
rect relations are both referred to as path. Hence, PTransE treats each path as
correlation between entities. Since high-degree entities are linked by more paths,
their vector representations can be trained jointly with many entities and rela-
tions. Meanwhile, indirect relations do not bring equivalent number of paths to
low-degree entities. This causes the training proportion of low-degree entities to
be smaller. In addition, since vectors of entities and relations meet some formu-
las, the vectors of relations are also affected by the high-degree entities. Take
entities e1, e2 and e5 in Fig. 1(a) for example. There are three paths from e1 to
e2: r1, r2 → r3 and r1 → r4 and only one from e1 to e5: r1. The quantitative
differences on the paths make the correlation between e1 and e2 stronger and the
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correlation between e1 and e5 weaker. In extreme cases, the correlation between
e1 and e5 will completely disappear. As shown in Fig. 1(b), resulting model of
the KB in Fig. 1(a) may lose the correlation between e1 and e5. Similarly, in term
of e2, e3, e6 and r3, the correlation between e2 and e6 may also be weakened.

Consider entity a being linked by relation r to entity b and c, namely, two
triples (a, r, b) and (a, r, c). In terms of basic translation model, the smaller the
difference between vectors of b and c is, the less information the two triples lose.
Motivated by this raw idea, we propose PTransE-ag to adjust the vector repre-
sentations of related entities like the above. In fact, the nature of our method
is to let entities directly learn information from each other. The effectiveness of
PTransE-ag is verified on one real-world, large-scale KB: Freebase. The experi-
mental results show that PTransE-ag substantially outperforms the baselines on
missing entity prediction.

In the remainder of this paper, PTransE-ag and its implementation details
are discussed in Sect. 2. The experiments and analyses are listed in Sect. 3. The
related works are discussed in Sect. 4. Section 5 presents the conclusion and plans
for future work.

2 Our Approach

Our method is based on PTransE [9], and utilizes its many formulas. So, we
introduce PTransE briefly in Sect. 2.1. PTransE-ag will be presented in Sect. 2.2.
Before proceeding, let us define our mathematical notation. We denote the
knowledge base as G = (E,R, S), where E = {e1, · · · , e|E|} is the set of entities
composed of |E| different entities. R = {r1, r2, · · · , r|R|} is set of relations com-
posed of |R| different relations, and S ⊆ E × R × E is the set of triples in the
knowledge base.

2.1 Background

PTransE [9] broadens the correlations between entities by implementing path
based translation. Path Ranking Algorithm [10] assembling sequential relations
to get a path proves effective. For example, triples (A, ParentOf, B) and (B,
ParentOf, C) can form triple (A, [ParentOf, ParentOf], C). [ParentOf, Par-
entOf] corresponds to GrandparentOf. Obviously, composed relations can reflect
the correlation between A and C. Hence, PTransE utilizes some paths for each
pair of entities to strengthen their correlations. Firstly, paths whose lengths are
less than 3 are preserved. Then, path-constraint resource allocation algorithm
(PCRA) computes the reliability of relation paths. Finally, reliable paths are
selected for representation learning.

PCRA associates a certain amount of resources with the head entity h and
then distributes resource along the given path p. The resource that eventually
flows to the tail entity t is the reliability of the path p, which is denoted as
R(p|h, t). The number of resources flowing to t is defined in [9] as follows:

Rp(t) =
∑

n∈Si−1(·,t)

1
|Si(n, ·)|Rp(n), (1)
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where Si(n, ·) is the direct successors of n ∈ Si−1, following the relation ri, and
Rp(n) is the number of resources flowing to entity n.

Composition methods of relations include: ADD, MUL and RNN. ADD is an
addition operation p = r1+r2+· · ·+rl. MUL is cross product p = r1×r2×· · ·×rl.
RNN refers to recurrent neural networks. Since its performance is weak, our
method will not use it.

Following TransE, PTransE defines energy function for a multi-relation path
triple (h, p, t) as E(h, p, t) = ||h + p − t||. Since ||h + r − t|| has been minimized
to make sure r ≈ t − h, the loss function of (h, p, t) can be transformed to
E(h, p, t) = ||p− (t−h)|| = ||p− r|| = E(p, r), which is expected to be low when
the multiple-relation path p is consistent with the direct relation.

2.2 PTransE-ag

As shown in Fig. 1(a), there are three paths from e1 to e2: r1, r2 → r3 and r1 → r4
and only one from e1 to e5: r1. The quantitative differences of paths make the
correlation between e1 and e2 stronger and the correlation between e1 and e5
weaker. In extreme cases, the correlation between e1 and e5 will completely
disappear. The resulting model of the KB in Fig. 1(a) may become Fig. 1(b). In
a word, the relations between low-degree entities and other entities are weakened.
We call this problem the relation weakening problem.

To address the relation weakening problem, we utilize the fact that two enti-
ties being both related to another entity by the same relation means that these
two entities have some similarities. Given three entities a, b and c, if a is related
to b by relation r and b is similar to c, then there also should be relation r between
a and c. Figure 2(a) demonstrates the weakening of the relation between e1 and
e5, where the entities and relations are represented as vectors to better display
the translation. The result of the translation on e1 is far away from e5. To make
e5 closer to e1 + r1, our method reduces the distance between e2 and e5 (as
shown in Fig. 2(b)), which is equivalent to increasing their similarities. Since our
method corresponds to forming aggregations of entities and is based on PTransE,
it is named as PTransE-ag. In addition, experiments show that directly applying
aggregation on TransE would not improve the efficiency. This suggests that con-
sidering the similarities between entities modeled by few correlation information
makes no sense.

Optimization Objective. Note that we will not judge whether some relations
between entities are weakened. Instead, we construct a valid triple during the
training of triple (h, r, t), and then directly increase the similarity between the
component and its replacement to reach the goal of strengthening relations. For
the sake of understanding, the valid triple is denoted as (h, r, t′′) which means
that it is constructed by replacing t by t′′. PTransE-ag aims to ensure that the
loss of (h, r, t′′) will not be too large when minimizing the loss of (h, r, t). The
larger the loss of (h, r, t′′) is, the weaker the correlation between h and t′′ is.
Because the only difference between (h, r, t) and (h, r, t′′) is the tail entity and
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Fig. 2. (a) illustrates the outcome of modeling two triples (e1, r1, e2) and (e1, r1, e5),
where e5 is too far away from e1 + r1. (b) demonstrates the method to make e5 closer
to e1 + r1, i.e., reducing the distance between them (α2 < α1).

the loss of (h, r, t) has been minimized, the loss of (h, r, t′′) can be reduced by
reducing the distance between t and t′′. In short, PTransE-ag balances the losses
of (h, r, t) and (h, r, t′′) to reduce the global loss of the KB. The optimization
objective of PTransE-ag is defined as

L(S) =
∑

(h,r,t)∈S

[L(h, r, t) + L1(h, r, t) +
1
Z

∑

p∈P (h,t)

R(p|h, t)L(p, r)], (2)

where components except L1(h, r, t) are defined in PTransE [9]. Therefore, we
just list their definitions without detailed explanation. Z =

∑
p∈P (h,t) R(p|h, t)

is a normalization factor, and P (h, t) is the paths set between h and t. Following
TransE, L(h, r, t) and L(p, r) are loss functions with respect to the triple (h, r, t)
and the pair (p, r):

L(h, r, t) =
∑

(h′,r′,t′)∈S′
[γ + E(h, r, t) − E(h′, r′, t′)]+, (3)

and
L(p, r) =

∑

(h,r′,t)∈S′
[γ + E(p, r) − E(p, r′)]+. (4)

where [x]+ = max(0, x) returns the maximum between 0 and x, γ is the margin,
S is the set of valid triples in KB. S′ is the set of invalid triples. E(h, r, t) =
||h+r−t||1 and E(p, r) = ||p−r||1 are energy functions. And Formula L1(h, r, t)
is defined as

L1(h, r, t) =

⎧
⎪⎨

⎪⎩

0, ||h − h′′||2 < β and ||t − t′′||2 < β and ||r − r′′||2 < β
∑

(h′′,r′′,t′′)∈S′′
||h − h′′||2 + ||r − r′′||2 + ||t − t′′||2, otherwise (5)

β > 0 is the threshold of the distance between the entities or relations. S′′

is the set of valid triples constructed by replacing one of the three components
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of a triple. In Eq. (5), the error does not exist when the distances between the
corresponding components of (h, r, t) and (h′′, r′′, t′′) are all less than β (Note
that there always be only one difference between (h, r, t) and (h′′, r′′, t′′).). We use
Eq. (5) to realize the aggregation. Here, the aggregation is extended to relation.
We think that if two relations link the same head and tail entity, then they
should also have some similarities. If the distance between a component and its
replacement exceeds β, the distance between them should be reduced, such as
with e2 and e5 in Fig. 1(a). In fact, our method adds the term L1(h, r, t) into
PTransE optimization objective.

Implementation Detail. Before proceeding, the idea of the margin-based loss
is worth discussing. Ideally, the loss of each triple is expected as small as possible.
But explicitly specifying how small the loss should be is infeasible. Hence, the
margin-based loss is employed to make the loss of invalid triple at least one
margin larger than the loss of valid triple. Only when the loss difference is less
than margin does the error exist, and then, parameter updating is executed.

Algorithm 1. Learning PTransE-ag
Input: Training set S(h,r,t), entities and rel. sets E and L; path sets P ; path reliability

set R; learning rate λ, margin γ, embeddings dim. k, threshold β.
1: initialize r ← uniform(− 6√

k
, 6√

k
) for each relation r ∈ L,

e ← uniform(− 6√
k
, 6√

k
) for each entity e ∈ E

2: loop
3: e ← e

||e|| for each e ∈ E
4: r ← r

||r|| for each r ∈ L

5: Sbatch ← sample(S, b) //sample a minibatch of size b
6: Tbatch ← ∅ //initialize the set of triplets of triples
7: for (h, r, t) ∈ Sbatch do
8: (h′, r′, t′) ← sample(S′

(h,r,t)) //sample a invalid triple
9: (h′′, r′′, t′′) ← sample(S′′

(h,r,t)) //sample a valid triple
10: Tbatch ← Tbatch

⋃{((h, r, t), (h′, r′, t′), (h′′, r′′, t′′))}
11: end for
12: Update embeddings w.r.t.
13:

∑
((h,r,t),(h′,r′,t′),(h′′,r′′,t′′))∈Tbatch

[∇L(h, r, t) + ∇L1(h, r, t) +
1
Z

∑
p∈P (h,t) R(p|h, t)∇L(p, r)]

14: end loop

The detailed optimization procedure is described in Algorithm 1. Algorithm 1
is similar to that of PTransE [9], with the only difference that PTransE-ag needs
an extra valid triple set, denoted as S′′(Line 9, Algorithm 1), to reduce the
distance between similar entities. For optimization, we employ the stochastic
gradient descent (SGD) with constant learning rate to minimize the loss func-
tion. All embeddings for entities and relations are first initialized following the
random procedure proposed in [11]. At each main iteration of the algorithm, the
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embeddings are first normalized. Then, a small set of triples is sampled from
the training set, and will serve as the training samples of the minibatch. For
each training sample (h, r, t), randomly select a component to be replaced. For
the sake of description, we take t as example. Then, the updating (step 13 in
Algorithm 1) performs the following steps:

Step-1. Construct a invalid triple (h, r, t′). If Condition-1 (The loss of train-
ing sample (h, r, t) is not at least one margin smaller than the loss of invalid
triple (h, r, t′).) is met, the embeddings of h, r, t and t′ will be updated.
Step-2. Construct a valid triple (h, r, t′′). Note that (h, r, t′′) may not exist.
If Condition-2 ((h, r, t′′) exists and the distance between the embeddings
of t and t′′ exceeds threshold β) is met, the embeddings of t and t′′ will be
updated. This step is unique to PTransE-ag.
Step-3. Construct a invalid triple (h, r′, t). This step involves the path-based
translation. Like Step-1, for each path p between h and t, if Condition-3
(The loss of (p, r) is not at least one margin smaller than the loss of (p, r′).)
is met, the embeddings of r, r′ and relations in path p will be updated. Note
that no matter which component in training sample (h, r, t) is replaced, Step-
3 always replaces r of (h, r, t). This is because the path-based translation only
uses relation and path.

Among three steps above, Step-2 is our work integrated into PTransE.
Therefore, the difference between PTransE-ag and PTransE is that PTransE-
ag will take into account other valid triples when training a triple.

Evaluation Function. The evaluation function of PTransE is directly used as
ours. In TransE, the loss function of a triple also works as its evaluation function.
Similarly, the evaluation function of PTransE-ag can also be derived from its loss
function. It is defined as

S(h, r, t) = G(h, r, t) + G(t, r−1, h), (6)

where G(h, r, t) is defined as

G(h, r, t) = E(h, r, t) +
1
Z

∑

p∈P (h,t)

Pr(r|p)R(p|h, t)E(p, r). (7)

The inversion of the relation (e.g., r−1) is needed in paths and learned in the
path-based translation. Pr(r|p) = Pr(r,p)

Pr(p) is the global correlation between r and
p, where Pr(x) is the number of x in the KB.

3 Experiments and Analysis

In this section, experiments on entity prediction is performed. Given an entity e
and a relation r, entity prediction discovers the entities which are most likely to
be related to e by relation r.
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Dataset. To make a direct comparison to PTransE [9], we evaluate our method
on the dataset used in PTransE, that is, a dataset extracted from Freebase,
FB15K [7]. The statistics of FB15K are listed in Table 1.

Table 1. Statistics of dataset

Dataset #Relation #Entity #Train #Valid #Test

FB15k 1,345 14,951 483,142 50,000 59,071

Evaluation Metrics. For each testing triple (a.k.a., seeded triple), we construct
a set of triples by replacing one component of seeded triple and then compute
scores of these triples including seeded triple with evaluation function. These
triples are sorted in ascending order to evaluate the performance of an approach.
Here, we concentrate on two evaluation metrics [7]: Hits@n and Mean. Hits@n
records the proportion of seeded triples ranking in top n and Mean records the
mean of seeded triples’ ranks. For Mean, the smaller the figure is, the better
the performance of a method is. For Hits@n, it is quite the contrary. These two
metrics are defined as follows:

Hits@n =
num of seeded triples ranking in top n

num of seeded triples
(8)

Mean =

∑
triple in testing set rank of triple

num of seeded triples
(9)

However, the method of replacing one component is flawed when a con-
structed triple that is not in testing set ends up being valid in the KB. For
example, one of our testing triples is (NewYork, locatedIn, USA). Then, during
prediction, the triple (Chicago, locatedIn, USA) is constructed, which is obvi-
ously not the original testing triple but is also valid in the KB. This kind of
triples will be regarded as invalid because in the evaluation only the ranks of the
seeded triples are the concern. This is not reasonable. Therefore, it is necessary
to filter out those undesirable valid triples during the evaluation. We name the
raw evaluation setting mentioned before as Raw, the filtering setting as Filter.

Baselines. Although many recent works are referred to in Sect. 4, we only pick
some early variants of TransE as our baselines because the aim of comparison is
to verify if our modification is efficient. The employed baselines include SE [12],
TransE [7], TransH [8], TransR [13] and PTransE [9].

Parameters Configurations. The optimal configurations of PTransE-ag are
λ = 0.001, γ = 1, k = 100, and β = 0.05 and we take L1 as dissimilarity of the
loss function. λ is the learning rate of SGD, γ is the margin between loss of a
valid triple and the loss of its corresponding invalid one, k is the dimensionality
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of entity and relation embeddings and β is the threshold of the distance between
entities or relations. The number of training epochs over all training triples is
set to 500.

Entity Prediction. In entity prediction, the missing head or tail entity of a
triple is inferred. Given a seeded triple, construct triples by replacing tail entity
by each member of entity set E. Because searching path is of high memory-
consumption, we first employ evaluation function of TransE to select newly
constructed triples ranking in top 500. These top 500 triples are then sorted
according to scores computed by evaluation function of PTransE-ag in ascend-
ing order. Finally, record the rank of the seeded triple (Usually, seeded triple is
in top 500). Having iterated over all seeded triples, we can compute values of
Hits@n and Mean.

Experiment Analysis. Results on entity prediction are demonstrated in
Table 2, where four metrics are listed: the Raw and Filter version of Mean and
Hits@10. For PTransE, we list its results with different relation composition
operations and step length. For example, PTransE(ADD,2-step) means that the
composition operation is addition and the length of the step is not more than
2. For PTransE-ag, we only list the results of the ADD and MUL composition
operation because RNN works worse than the other two composition operations
in PTransE. Moreover, due to the complexity of the cross product of vectors,
only (ADD,3-step) is listed. Aggregation is also applied on TransE, which is
TransE-ag in Table 2. TransE-ag’s performance is worse than TransE’s. This is
because TransE only takes into consideration the direct relations between enti-
ties. Direct relations are not enough to model an entity, let alone to judge if two
entities have similarities. The best result for each metric is shown in bold font.

Table 2 shows that PTransE-ag consistently outperforms baselines including
PTransE. This indicates that preventing the information of direct relations from
being overwhelmed by paths can better define an entity. No matter whether
PTransE or PTransE-ag is used, (ADD,2-step) always outperforms its coun-
terparts on most of the metrics. This indicates that the addition composition
operation is effective and too long paths provide little information on entities.
In addition, PTransE with RNN obtains the worst performance among three
kinds of composition operations. This suggests that complex models unnecessar-
ily outperform simple models.

Tables 3 and 4 demonstrate the performance of PTransE and some baselines
with respect to different types of relations. Relations can be categorized into
four classes according to the cardinalities of their head and tail arguments: 1-
to-1, 1-to-N, N-to-1 and N-to-N. On all types of relations, PTransE-ag achieves
the best results. It appears that predicting entities on the “side 1” is easier
(e.g., predicting the head entities in 1-to-N relations and tail entities in N-to-1
relations). However, in the other hand, it can be observed that N-to-1 relations in
head entity prediction and 1-to-N relations in tail entity prediction always obtain
the worst performance in all methods and they perform much worse than other
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Table 2. Evaluation results on entity prediction

Metric Mean rank Hits@10(%)

Raw Filter Raw Filter

SE 273 162 28.8 39.8

TransE 243 125 34.9 47.1

TransE-ag 252 133 33.2 45.9

TransH 212 87 45.7 64.4

TransR 198 77 48.2 68.7

PTransE(ADD, 2-step) 200 54 51.8 83.4

PTransE(MUL, 2-step) 216 67 47.4 77.7

PTransE(RNN, 2-step) 242 92 50.6 82.8

PTransE(ADD, 3-step) 207 58 51.4 84.6

PTransE-ag(ADD, 2-step) 182 45 53.9 87.8

PTransE-ag(MUL, 2-step) 205 56 52.7 87.7

PTransE-ag(ADD, 3-step) 180 46 53.2 82.1

Table 3. Head prediction by mapping properties of relations. (%)

Tasks Predicting head entities(Hits@10)

Relation Category 1-to-1 1-to-N N-to-1 N-to-N

SE 35.6 62.6 17.2 37.5

TransE 43.7 65.7 18.2 47.2

TransH 66.8 87.6 28.7 64.5

TransR 78.8 89.2 34.1 69.2

PTransE(ADD, 2-step) 91.0 92.8 60.9 83.8

PTransE(MUL, 2-step) 89.0 86.8 57.6 79.8

PTransE(RNN, 2-step) 88.9 84.0 56.3 84.5

PTransE(ADD, 3-step) 90.1 92.0 58.7 86.1

PTransE-ag(ADD, 2-step) 91.4 96.3 64.2 88.9

PTransE-ag(MUL, 2-step) 92.6 95.7 63.4 89.4

PTransE-ag(ADD, 3-step) 90.0 94.6 58.0 82.2

types of relations. This reflects the inherent problem of TransE-series methods
that non-1-to-1 relations are incompatible with the translation operation.

4 Related Work

The task of knowledge base completion has seen a lot of attention in recent
years. Statistical relational learning (SRL) is widely applied on KB comple-
tion. We will touch on the latent feature models. Approaches of latent feature
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Table 4. Tail prediction by mapping properties of relations. (%)

Tasks Predicting tail entities(Hits@10)

Relation Category 1-to-1 1-to-N N-to-1 N-to-N

SE 34.9 14.6 68.3 41.3

TransE 43.7 19.7 66.7 50.0

TransH 65.5 39.8 83.3 67.2

TransR 79.2 37.4 90.4 72.1

PTransE(ADD, 2-step) 91.2 74.0 88.9 86.4

PTransE(MUL, 2-step) 87.8 71.4 72.2 80.4

PTransE(RNN, 2-step) 88.8 68.4 81.5 86.7

PTransE(ADD, 3-step) 90.7 70.7 87.5 88.7

PTransE-ag(ADD, 2-step) 90.1 74.2 94.8 90.7

PTransE-ag(MUL, 2-step) 92.0 74.3 92.7 90.7

PTransE-ag(ADD, 3-step) 89.2 67.3 93.5 85.0

models usually learn an embedded representation of entities and relations in
low-dimensional spaces to capture the correlation between the entities/relations
using latent variables. Our approach PTransE-ag also fits in this line of work.

Some earliest works include collective matrix factorization models repre-
sented by RESCAL [14] and energy-based frameworks represented by SE [12].
However, these methods acquire great expressivity at the expense of substantial
increases in model complexity.

To achieve better trade-offs between accuracy and scalability, TransE [7]
represented each entity with a constant vector regardless of the relation type
linking this entity. TransH [8] and TransR [13] argued that an entity should
behave diversely when linking different relations, and thus proposed to trans-
form the representation of an entity based on current relation before transla-
tion. TranSparse [15] proposed to substitute sparse matrices for dense matrices
of TransR to deal with the heterogeneity and the imbalance of KB. TransG
[16] assumed that each relation corresponds to various semantics, each of which
can be revealed by the entity pairs associated with triples. KR-EAR [17] dis-
tinguished relation types and classified them into two classes, i.e., relations and
attributes. The former indicates the relationship between entities. The other one
represents the properties of entities. Similar methods that tried to discovered
geometric structure of the embedding space also include TransD [18], TransA
[19] and TransCoRe [20]. TransD learned projection matrix by considering the
interaction among relations and entities. TransA introduced Mahalanobis dis-
tance into the energy function of TransE because original L1 or L2 distance is
sort of simple and treats each dimension of representations equally. TransCoRe
further employed SVD to find out that a small number of dimensions can capture
most information of a relation, and thus converted the problem of learning the
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embedded relation matrix into learning two low-dimensional matrices. In this
way, each relation can be represented by less dimensions with a shared basis.

Although innovative and efficient, above methods only tried to exploit more
information from relation-based triples. In fact, relation paths can also reflect
the correlations among entities and relations. PTransE [9] learned the vector
representations of paths to enrich the number of triples and thus obtained high
performance on knowledge base completion. DPTransE [21] computed the con-
tribution of paths to a certain relation by employing a graph feature model, and
then learned the representations of knowledge base based on a modified TransE
model. However, to obtain the contribution of paths, DPTransE needed prede-
fined embeddings of relations in KB. RPE [22] embedded entities and relations
into different low-dimensional spaces with semantics of relation paths. That is,
RPE simultaneously embedded each entity into two types of latent spaces. Other
works will also consider logic rules. TARE [23] integrated knowledge triples and
logic rules and emphasized the importance of transitivity and asymmetry of logic
rules to order the relation types. All these latent feature models tried to mini-
mize the margin-based loss. However, they ignored the problem that some other
valid triples are likely to be discarded while optimizing current triple.

5 Conclusion and Future Work

Our method aims to address the problem that indirect relations weaken correla-
tions between some entities. PTransE obtains significant performance improve-
ment but it ignores the side effect paths bring. However, it is the side effect
that guides us to the workaround. It is found that high-degree entities are
trained much more than low-degree entities do, which means more information
are embedded in high-degree entities. Tracking down the basic idea of transla-
tion model, we proposed PTransE-ag that allows low-degree entities to directly
learn from high-degree entities. And experiments also prove the effectiveness of
PTransE-ag.

In addition, there are some shortcomings of our method. Firstly, the training
time is an issue due to the extra time for finding related entities. This can
be improved by optimizing the searching algorithm. In fact, the running time
matters the most, which remains the same as PTransE’s. Secondly, the relation
weakening problem is from our intuition. Although we follow this intuition and
propose PTransE-ag that surely improves performance, concrete evidences still
remain to be proposed. Our future work will explore more detailed experiments.
Lastly, PTransE-ag simply shrinks the difference between the vector of similar
entities. It overlooks the motivation of low-dimensional vector representation
that the features of an entity can be distributed represented. It is noteworthy
that each dimension of an entity usually plays a different role when this entity
interacts with different relations. Therefore, our future work will center on the
distinguishing of dimensionality. For example, SVD [24] can be employed to learn
the primary component of a vector. This may guide the direction along which
entities should be closed to each other. In addition, we will further extend our
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method to the relation prediction task to examine and improve the universality
of PTransE-ag.
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References

1. Evans, C., Paritosh, P., Sturge, T., Bollacker, K., Taylor, J.: Freebase: a collabo-
ratively created graph database for structuring human knowledge. In: Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data, pp.
1247–1250 (2008)

2. Miller, G.A.: WordNet: a lexical database for English. Future Gener. Comput. Syst.
38(11), 39–41 (1995)

3. Jakob, M., Mendes, P.N., Bizer, C.: DBpedia: a multilingual cross-domain knowl-
edge base. In: Proceedings of Language Resources and Evaluation, pp. 1813–1817
(2012)

4. Zhou, M., Nastase, V.: Using patterns in knowledge graphs for targeted information
extraction. In: KBCOM 2018 (2018)

5. Gesmundo, A., Hall, K.: Projecting the knowledge graph to syntactic parsing.
In: Proceedings of Conference of the European Chapter of the Association for
Computational Linguistics, pp. 28–32 (2014)

6. Singh, K., Diefenbach, D., Maret, P.: WDAqua-core1: a question answering service
for RDF knowledge bases. In: WWW 2018 Companion (2018)

7. Usunier, N., Garcia, A., Weston, J., Bordes, A., Yakhnenko, O.: Translating embed-
dings for modeling multi-relational data. In: Proceedings of International Confer-
ence on Neural Information Processing Systems, pp. 2787–2795 (2013)

8. Zhang, J., Feng, J., Wang, Z., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: Proceedings of AAAI Conference on Artificial Intelligence, pp.
1112–1119 (2014)

9. Liu, Z., Luan, H., Sun, M., Rao, S., Lin, Y., Liu, S.: Modeling relation paths
for representation learning of knowledge bases. In: Proceedings of Conference on
Empirical Methods in Natural Language Processing, pp. 705–714 (2015)

10. Mitchell, T., Lao, N., Cohen, W.W.: Random walk inference and learning in a
large scale knowledge base. In: Proceedings of Conference on Empirical Methods
in Natural Language Processing, pp. 27–31 (2011)

11. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. Mach. Learn. 9, 249–256 (2010)

12. Weston, J., Collobert, R., Bordes, A., Bengio, Y.: Learning structured embeddings
of knowledge bases. In: Proceedings of AAAI Conference on Artificial Intelligence,
pp. 301–306 (2011)

13. Liu, Z., Lin, Y., Zhu, X.: Learning entity and relation embeddings for knowledge
graph completion. In: Proceedings of AAAI Conference on Artificial Intelligence,
pp. 2187–2195 (2015)

14. Tresp, V., Nickel, M., Kriegel, H.P.: A three-way model for collective learning
on multi-relational data. In: Proceedings of International Conference on Machine
Learning, pp. 809–816 (2011)

https://github.com/IdelCoder/PTransE-ag


Learning from High-Degree Entities for Knowledge Graph Modeling 517

15. Liu, K., He, S., Ji, G., Zhao, J.: Knowledge graph completion with adaptive sparse
transfer matrix. In: Proceedings of AAAI Conference on Artificial Intelligence, pp.
985–991 (2016)

16. Huang, M., Xiao, H., Zhu, X.: TransG: a generative model for knowledge graph
embedding. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, pp. 2316–2325 (2016)

17. Liu, Z., Lin, Y., Sun, M.: Knowledge representation learning with entities,
attributes and relations. In: Proceedings of International Joint Conference on Arti-
ficial Intelligence, pp. 2866–2872 (2016)

18. He, S., Xu, L., Liu, K., Ji, G., Zhao, J.: Knowledge graph embedding via dynamic
mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics, pp. 687–696 (2015)

19. Huang, M., Yu, H., Xiao, H., Zhu, X.: TransA: an adaptive approach for knowledge
graph embedding (2015)

20. Jia, Y., Zhu, J., Qiao, J.: Modeling the correlations of relations for knowledge graph
embedding. J. Comput. Sci. Technol. 33(2), 323–334 (2018)

21. Wang, Q., Xu, W., Li, W., Zhang, M., Sun, S.: Discriminative path-based knowl-
edge graph embedding for precise link prediction. In: Pasi, G., Piwowarski, B.,
Azzopardi, L., Hanbury, A. (eds.) ECIR 2018. LNCS, vol. 10772, pp. 276–288.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76941-7 21

22. Liang, Y., Giunchiglia, F., Feng, X., Lin, X., Guan, R.: Relation path embedding
in knowledge graphs. Neural Comput. Appl. 1–11 (2018)

23. Rong, E., Zhuo, H., Wang, M., Zhu, H.: Embedding knowledge graphs based on
transitivity and asymmetry of rules. xplan-lab.org (2018)

24. Kalman, D.: A singularly valuable decomposition: the SVD of a matrix. Coll. Math.
J. 27(1), 2–23 (1996)

https://doi.org/10.1007/978-3-319-76941-7_21

	Learning from High-Degree Entities for Knowledge Graph Modeling
	1 Introduction
	2 Our Approach
	2.1 Background
	2.2 PTransE-ag

	3 Experiments and Analysis
	4 Related Work
	5 Conclusion and Future Work
	References




