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Abstract. Malicious domains are key components to a variety of illicit
online activities. We propose MalShoot, a graph embedding technique
for detecting malicious domains using passive DNS database. We base
its design on the intuition that a group of domains that share similar
resolution information would have the same property, namely malicious
or benign. MalShoot represents every domain as a low-dimensional vec-
tor according to its DNS resolution information. It automatically maps
the domains that share similar resolution information to similar vectors
while unrelated domains to distant vectors. Based on the vectorized rep-
resentation of each domain, a machine-learning classifier is trained over a
labeled dataset and is further applied to detect other malicious domains.
We evaluate MalShoot using real-world DNS traffic collected from three
ISP networks in China over two months. The experimental results show
our approach can effectively detect malicious domains with a 96.08% true
positive rate and a 0.1% false positive rate. Moreover, MalShoot scales
well even in large datasets.

Keywords: Domain reputation - Graph embedding -
Domain representation - Malicious domains detection

1 Introduction

The Domain Name System (DNS) servers as one of the most fundamental Inter-
net components and provides critical naming services for mapping domain names
to IP addresses. Unfortunately, it has been abused by miscreants for various ille-
gal attack campaigns (e.g., directing victims to malicious Web sites [1], exploit-
ing algorithmically generated domains to circumvent the take-down [2,3]). Cisco
2016 annual security report [4] measured that 91.3% malware abused the DNS
to achieve their evil intentions.

To mitigate these threats, tremendous efforts have been devoted in the last
decades to establish domain reputation and blacklisting systems. The general
approaches [5-8] extract multiple domain features (e.g., TTL, lookup patterns,
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number of IPs) from DNS records and then build a classifier over some labeled
datasets. However, many of the features used are shown to be not robust [9] and
can be easily altered by adversaries to evade the detection. Several recent tech-
niques [10,11] propose to utilize graph methods to establish similarity between
domains. These methods treat each domain as a vertex and add an edge between
two domains if they exist an association (e.g., hosted on a same IP [10]). Next,
they use graph theories to calculate each domain’s marginal probability distri-
bution and infer its property (i.e., malicious or benign). Comparing with previ-
ous works, graph-based methods exploit global associations of the DNS data to
identify malicious domains, which are more robust. Unfortunately, graph-based
methods cost a large amount of calculations, which making they not suitable for
large scale passive DNS database (e.g., millions of vertices).

In this paper, we propose MalShoot, a lightweight and robust technique for
detecting malicious domains from passive DNS database. Our work is based on
the fundamental intuition that domains sharing a similar resolution data (e.g.,
hosted on some same IPs) are strongly associated and tend to have same prop-
erty, namely malicious or benign. Inspired of the great success of embedding
techniques in nature language processing, we treat a domain’s DNS resolution
data (rdata) as its context information and embed it into a low-dimensional vec-
tor. The domains that share similar context information are finally embedded
into similar vector while. Based on the feature representation, a machine-learning
classifier is trained over a labeled dataset and is further applied to detect other
malicious domains. We evaluate MalShoot using real-world DNS traffic collected
from three large ISP networks in China over two months under three popular
machine learning algorithms (RandomForest, XGBoost and Deep Neural Net-
work). MalShoot achieves 96.08% detection rate with an approximately 0.1%
false positive rate with a 10-fold cross-validation when using RandomForest.

In summary, our paper makes the following contributions:

— We develop MalShoot, a lightweight and robust approach to detect malicious
domains through graph embedding technique on passive DNS database.

— We design a novel domain representation technique that can automatically
represent every domain into a feature vector while maintaining their DNS
resolution information.

— We perform a comprehensive evaluation of MalShoot using two months real-
world DNS traffic collected from three large ISP networks in China, demon-
strating its effectiveness for detecting malicious domains.

We organize our paper as follows. Section 2 presents the background of passive
DNS data and related works. Section3 elaborates on the technical details of
the proposed approach. Section4 describes the datasets. Experiment setup and
results analysis are reported in Sect.5. We discuss a few issues of our approach
in Sect. 6 and conclude the paper in Sect. 7.
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2 Background and Related Work

2.1 Passive DNS Data

Passive DNS replication captures inter-server DNS messages through sensors
that are voluntarily deployed by contributors in their DNS infrastructures. The
captured DNS messages are further processed and then stored in a central passive
DNS (PDNS) database which can be queried for various purposes [12].

## From ISP1
{“rrname”:”api.device.xiaomi.net”, “rrtype”:”A”,
“rdata”:”111.13.142.31”, ”count”:66

“time_first”:1481877769, ”time_last”:1485527818}

Fig. 1. A sample record collected from ISP,

A typical record in a PDNS database is represented as a tuple: (rrname,
rrtype, rdata, ty, t;, count), where the rrname is a domain name, rrtype repre-
sents the type of resource record (RR) returned by DNS servers, rdata is the
data field in the RR, t; and ¢; denote the time when an individual rdata is first
and last seen, and count is the number of DNS queries that receive the rdata in
response. Figure 1 shows a sample record in our dataset. The rdata field is an IP
address, which represents that the rrname ever was hosted on this IP.

rrname rdata count D R
X a 4 X—4—» a
X b 3 = 3\
Y b
Y c 1
Z b 2 Z c

Fig. 2. Domain-resolution graph

Typically, we represent a passive DNS database as a domain-resolution bipar-
tite graph G = (D, R, E) by formatting each DNS record (rrname, rrtype, rdata,
ty, ti, count) as an edge e;; = (rrname — rdata) with weight w;; = count,
where D is the set of rrnames, R is the set of rdatas and E is the set of edges.
Figure 2 shows an illustration for constructing a domain-resolution graph from
DNS records.
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2.2 Malicious Domain Detection

A wealth of research has been conducted on detecting malicious domains.
Notos [5] is a pioneer work for establishing a dynamic reputation system to
detect malicious domains. It use three categories of features to check a domain
d, namely (i) network-based (i.e., IPs associated with d); (ii) zone-based (i.e.,
subdomains under d) and (iii) evidence-based (i.e., malware samples contact-
ing d). Bilge et al. proposed Exposure [6] with original time-based features,
which requires less training time and data. On the other hand, Exposure over-
comes some limitations of Notos, as it is able to identify malicious domains and
addresses that were never seen in malicious activities before. Antonakakis et al.
developed Kopis [7]) that aims at detecting malicious domains using the DNS
traffic collected at the upper DNS hierarchy level (i.e., Top Level DNS servers).
The vantage point enables Kopis the global visibility. Moreover, Kopis can detect
malware domains even when no IP reputation information is available. However,
multiple features used in these detection systems, such as TTL and temporal
patterns tend to be relatively brittle and allow attackers to take advantages of
these features to evade detection.

Rahbarinia et al. proposed Segugio [8] for efficiently tracking the occurrence
of new malware-control domain names in very large ISP networks. Their funda-
mental intuition is that infected machines tend to query new malware-control
domains, moreover, machines infected with the same malware, or malware fam-
ily, tend to query the same (or a partially overlapping) set of malware-control
domains. On the other hand, benign machines have no reason to query malware-
control domains. Manadhata et al. [13] proposed to identify malicious domains
through host-domain query graph in an enterprise network. However, these
efforts require the private information about individual users, which tends to
be very sensitive.

Khalil et al. [10] and Peng et al. [11] proposed to discover malicious domains
through the domain-resolution graphs. Compared to the host-domain graphs,
domain-resolution graphs are constructed with publicly available DNS replica-
tion and without privacy concern. Khalil et al. [10] build domain-association
graph by adding an edge between two domains if they hosted on same IPs for
a period of time. The weight of the edge is decided on the number of IP they
share. Then, they proposed a path-based inference to compute the global asso-
ciation with a set of malicious seeds for each unknown domain. Peng et al. [11]
proposed a malicious domain detection method through DNS CNAME graph
and focused on domains that are not resolved to IP addresses directly, but only
appear in DNS CNAME records. The basic intuition is that domains connected
by CNAME resource records share intrinsic relations and are likely to be in sim-
ilar reputation. Unfortunately, these works are graphical analysis methods that
cost complex calculation on the built domain-resolution graph when comput-
ing a domain’s reputation score, which causes not scale well for large dataset.
For example, [10] takes O(|D|?) steps to build the corresponding domain graph
where |D| is the number of domains. Our method first automatically learn the
low-dimensional feature representation of every domain, which is linear with the
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number of records (or, edges, in O(|E| time). Afterwards, MalShoot calculates a
domain’s reputation only depending on the domain’s low-dimensional represen-
tation, which is independent from the graph. Therefore, our method can scale
well even with millions of domains.

2.3 Graph Embedding

Recent years have seen a surge of research on node embeddings on the
graphs. Formally, these works aim to learn a mapping function that encodes
each node on the graph to a low-dimensional vector. Early methods for
learning representations for nodes largely focused on matrix-factorization
approaches [14,15]. Many recent successful methods learn the node embed-
dings based on random walk statistics. DeepWalk [16] preserves higher-order
proximity between nodes by maximizing the probability of observing the last k
nodes and the next k nodes in the random walk centered at v;, i.e. maximiz-
ing log Pr(vi—k, * yVi—1,Vi+1, "+ ,Vi+k). Node2vec [17] preserves higher-order
proximity between nodes by maximizing the probability of occurrence of sub-
sequent nodes in fixed length random walks. LINE [18] defines two functions,
one each for first- and second-order proximities, and minimizes the combina-
tion of the two. MalShoot preserves the second-order proximity on the domain-
resolution graph to embed every domain node into a low-dimensional feature
vector.

3 Proposed Approach

In this section, we present our design of MalShoot. MalShoot is a lightweight
method for identifying malicious domains using passive DNS database. It consists
of three modules:

1. Representation Module: The representation module is designed for represent-
ing every individual domain name in PDNS database as a low-dimensional
vector through graph embedding technique.

2. Training Module: The training module is responsible for training a malicious
domain detection classifier using the learned vector representations over some
labeled domains.

3. Classification Module: The classification module classifies remained unknown
domains using the trained classifier.

Figure 3 provides an overview of MalShoot’s architecture, of required inputs,
of outputs, and of the way MalShoot processes data internally. We describe the
three modules in detail in the following.

3.1 Representation Module

A domain name consists of a set of strings separated by a period. Representa-
tion module is responsible for embedding every individual domain into a low-
dimensional (e.g., 128 dimensions) vector used for a downstream prediction task.
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Fig. 3. Abstract illustration of the architecture of MalShoot

We formulate representation learning in our approach as a optimization prob-
lem. Let G = (D, R, E) be the domain-resolution bipartite graph constructed
from a given PDNS database, where D = {d;,ds,--- ,d,} is the set of domains,
R = {ry1,ra, -+ ,rm} is the set of rdatas and E is the set of edges. Each edge,
(di,rj) € E, represents a DNS record that domain d; ever mapped to rdata r;.

Let f : D — R? be the mapping function from domain nodes to d-dimensional
vectors and g : R — R? be the mapping function from rdata nodes to d-
dimensional vectors, where d <« |R| and d < |D|. Our goal is to map the
domains that share a similar context information into similar vectors while the
unrelated domains into distant vectors in the embedding space RY.

Denote u; = f(d;) be the low-dimensional representation of domain d; and
v; = g(r;) be the low-dimensional representation of rdata r;. We first define the
conditional probability of mapping to rdata r; when giving domain d; as:

exp(u] )

> exp(vf] - u;)
rrER

p(rjldi) =

(1)

To preserve the context information in the embedding space, we should
make the conditional distribution of the contexts p(-|d;) specified by the low-
dimensional representation be close to the empirical distribution p(-|d;). There-
fore, we minimize the following objective function:

O =Y Nd(p(-|di), p(-|d:)), (2)

d;,eD

where d(+, -) is the distance between two distributions and )\; indicates the impor-
tance or bias of domain d;, which can be measured by occurrence times.
The empirical distribution p(:|d;) is defined as

. Wi j
plrsld) = 57 Wi = > wik,
v reE€N(d;)

which w;; is the weight of edge (d;, ;) and N(d;) is set of rdatas that a domain,
d, ever mapped on the graph, G. In this paper, for simplicity we set A\; = W;
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and we adopt KL-divergence as the distance function. Therefore, the objective
function in Eq. (2) is as:

O =" Nd(p(-|d;), p(-|d:)) (3)

d, €D

S Wi 2 1og AUt (4)
d;€D r;€N(d;) plryld;)

= Z Z —wij logp(rj|di) + Wi 10g]3(7“j ‘dl)] (5)
d,eD ’l"jGN(di)

= Y [~wijlogp(rj|ds) + wi; log p(r;ld;)] (6)
(di,rj)EE

Due to the w;; and p(r;|d;) are constants after the domain-resolution graph is
given, we omit these constants. Therefore, our objective function is to minimize:

0=-— Z Wy j 10gp(’l“j‘di) (7)
(di,rj)EE

By learning {u;}i—1...p| and {v;};—1.. g that minimize this objective, we are
able to represent every domain d; with a d-dimensional vector ;.

However, optimizing objective (7) is computationally expensive, which
requires the summation over the entire rdata set of R when calculating the
conditional probability p(:|d;). To address this problem, we adopt the approach
of negative sampling proposed in [19], which samples multiple negative edges
according to some noisy distribution for each edge (d;, ;). More specifically, it
specifies the following objective function for each edge (d;,r;):

wj; log a( )+ ZErann(d) [wm log o(—v,, Uz)] ) (8)
k=1

where o(z) = 1/(1 + exp(—=x)) is the sigmoid function. The first term models
the positive edges, the second term models the negative edges drawn from the
noise distribution and K is the number of negative edges. We set P, (d;) =~ WZ-B/ 4
as proposed in [19]. We use sigmoid function in Eq. (8) is considered on that the
derivation of sigmoid function can be easily computed, o(x) = o(z)(1 — o(x)).
Therefore, minimizing objective function (8) is equal to minimize the vJT - u; for
positive edge (d;, ;) and maximize the v - u; for negative edge (d;, 7).

We adopt the asynchronous stochastic gradient algorithm (ASGD) [20] for
optimizing Eq. (8). In each step, the ASGD algorithm samples a mini-batch
of edges and then updates the model parameters. Notice that, MalShoot can
directly operate on the edges to learn the feature representations. In practical,
we do not need to construct the domain resolution graph.
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3.2 Training Module

As MalShoot is based on supervised learning classifiers, it requires training
with labeled data. The training module implements training of classifiers and
requires the input of benign domains and malicious domains. We obtain mali-
cious domains from various sources, including Malware Domains List [21], Phish-
tank [22], Openphish [23]. To obtain an as clean as possible set of benign domains,
we choose domains that are consistently ranked among the top 20 thousands in
the world according to Alexa [24]. Section 4 describes how we collect benign and
malicious domains.

The output of training module is a well-trained model, ready to be used for
classification of unknown domains in the classification module.

3.3 Classification Module

The classification module classifies arbitrary domains into benign and malicious
based on a model trained from the training module and pre-learned vector rep-
resentation.

4 Dataset

4.1 Malicious Domains

We consistently collected malicious domains from multiple sources, including
Malware Domains List [21], Phishtank [22], Openphish [23] everyday from Jan.
03, 2017 to Oct. 14, 2017. In addition, we also use the Zeus Block List [25] and
the list of domains that are generated by the DGAs of Conficker [26]. These
malicious domains lists represent a wide variety of malicious activity, including
botnet command and control servers, drive-by download sites, phishing pages,
scam sites that are found in spam mails and ransomware malware domains.
Domains listed in Openphish and Phishtank are operated on URLs that are
submitted by users. Hence, while most URLs in these repositories are malicious,
not all of them are. We submit these domains to Google Safe Browsing [27] and
only reserve the confirmed malicious ones.

4.2 Benign Domains

We collected legitimate domains according to Alexa [24]. We chose domains that
are consistently ranked among the top 20 thousands from Jan. 16, 2015 to Mar. 5,
2017 (513 days). In addition, we manual filter out domains that allow for the “free
registration” of subdomains, such as popular blog-publishing services or dynamic
DNS domains (e.g., wordpress.com and dyndns.com), as their subdomains are
often abused by attackers. Finally, this produced a list of 9,216 popular domains.
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4.3 Passive DNS Traffic

Thanks for CNCERT/CC [28], we accessed the passive DNS traffic of three large
ISP networks in China. The three ISP networks are located in the provinces of
Anhui, Guangdong and Shanghai respectively. We refer to these ISP networks
simply as ISP, ISP, and ISPs. Notice that this paper is part of an IRB-
approved study; appropriate steps have been taken by our data provider to
minimize privacy risks for the network users.

By inspecting the DNS traffic between the ISPs’ customers and their local
resolvers over two months (Dec 5, 2016 - Feb 5, 2017), we collected about 530
millions DNS queries, roughly 200 millions queries in 7.5 Py, 130 millions in 1.5 P,
and 200 millions in 1.5 P53. Due to the privacy concerns, we only preserved the data
in network layer. We extracted the DNS RRs from the DNS response packets.
Each RR is formated as {rrname, rrtype, rdata,ts}, the rrname is the domain
name, rrtype and rdata represent the type and data of the RR and the ts is the
timestamp when observing this RR.

5 Experiment

In this section, we present the evaluation of MalShoot on the datasets collected
from thee ISP networks. We first define the evaluation metrics and describe the
experiments settings. Next, we compare the overall performance of three differ-
ent classifiers on the three datasets. Then, we evaluate MalShoot on unknown
datasets. Finally, we compare the performance to other two domain-resolution
graph based works [10].

5.1 Evaluation Metrics

To quantify to performance of MalHunter, we define following three metrics:

— True Positive Rate (TPR): the ratio of number of true positives of the total
number of domains that identified as malicious. TPR = NTQ’%

— False Positive Rate (FPR): the ratio of number of true positives to the total

number of domains that are actually malicious. FRP = %

— Area Under the ROC Curve (AUC): the area under the receiver operating

characteristic curve, which is compromise between TPR and FPR.

where Npp is the number of malicious domains that are correctly identified as
malicious, Npp is the number of benign domains that are falsely identified as
malicious, Ngpy is the number of malicious domains that are falsely identified as
benign and Nry is the number of benign domains that are correctly identified
as benign. Our goal is to achieve as high as T"PR while maintaining low F'PR.



MalShoot 497

5.2 Experiment Setting

We conducted experiments using the two-month DNS traffic collected from the
three large ISP networks. For each dataset, we first constructed a domain-
resolution graph and then applied the unsupervised feature learning module,
described in Sect. 3.1, to represent every domain to a low-dimensional feature
vector. We tried different choices of the dimension d € {64,128,256} and found
the performances were very similar, therefore, we set d = 128 in the follow-
up experiments. Based on the collected domain blacklists and whitelists, we
obtained some known malicious and benign domains in our datasets, i.e., ground
truth. Last, we performed standard 10-fold cross-validations based the labeled
domains and their low-dimensional representations. Specifically, we partition the
ground truth into ten fold, train the classifier using nine fold and test it on the
remain one fold. We repeat the process for each fold and compute the average
performance. For simplicity, we only focused on the A, AAAA and CNAME records
and discard the other entries. Table 1 describes the detail statistics of the three
domain-resolution graphs.

Table 1. Data description in the three ISPs. Each row in the table represents the
ISP network of data source, the number of domains, rdatas, edges (records) in the
domain-resolution graph, the known malicious and benign domains in the ISP.

ISP | Domains | RDatas | Edges Malicious | Benign
ISP | 2,001,117 | 411,720 | 2,518,641 4,674 3,651
ISP, | 1,542,334 | 559,338 | 1,767,760 | 4,587 4,659
I1SPs | 1,841,241 | 486,946 | 2,485,603 | 3,538 5,383

We adopt three popular supervised machine learning algorithms: Random-
Forest, XGBoost [29] and Deep Neural Network (DNN) as the classifiers to
evaluate the performances.

1. RandomForest: We implement RandomForest using the scikit-learn [30]
machine-learning library. The parameter settings are n_estimator =200,
min_samples_split =11 and max_features = ‘sqrt’. The others are as default.

2. XGBoost: XGBoost [29] is an optimized distributed gradient boosting
machine learning algorithms designed to be highly efficient, flexible and
portable. We implement XGBoost with the open repository in Python. The
parameter settings are maz_depth =6 and num_boost_round = 100. The others
are as default.

3. DNN: We implement a four layer perceptron model in PyTorch. Besides
the input layer (receiving low-dimensional representations) and output layer
(indicating the domain’s reputation score), we add two hidden layers. The
architecture is as follow: Dense(D;n,nh1) — Relu(-) — Dense(nhi,nhs)
— Relu(-) — Dense(nha,2) — softmax(-), where the D;, = d = 128 is
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the length of features, Dense(n,m) is a full connected layer with n input
nodes and m output nodes, Relu(:) is a non-linear activation function,
Relu(xz) = max(x,0) and softmax(-) is a normalized function to ensure the
sum of the output to be 1. We empirically set nh; = 128 and nhy = 32. We
optimize the model using ASGD [20] with batch_size = 32 and cross_entropy
loss for 100 epochs.
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Fig. 4. Performance comparison of classifiers under 10-fold cross-validation.

5.3 Experimental Results

We test the effectiveness of our detector over the ground-truth datasets through
the standard 10-fold cross-validation. We compare three mostly used machine-
learning classification algorithms, including RandomForest, XGBoost and Neu-
tral Network. Figure4 illustrates the receiver operating characteristic (ROC)
curves of these classifiers, when using three PDNS database collected from three
ISPs. The z-axis shows the false positive rate (FPR) and the y-axis shows the
true-positive rate (TPR). We observe that all classifiers can achieve promising
accuracy on the three data sources. To reach a 90% detection rate, the maximum
FRP is always less than 4% for all classifiers, suggesting that MalShoot can effec-
tively detect malicious domains. RandomForest outperforms the other classifiers
in all cases. We achieves a 96.08% true positive rate with an approximately 0.1%
false positive rate when using RandomForest.

5.4 Evaluation on Unknown Dataset

We now evaluate MalShoot on unknown dataset to examine whether we can
accurately detect other unknown malicious domains based on the trained classi-
fier. We focus on the best performing classifier RandomForest only and use it to
for all follow-up experiments. We first use the full labeled dataset to train our
detection model and then apply it to unknown domains. Due to the space limit,
we only present the results on dataset of I.SP; (results on other two ISPs have
a similar distribution) in the rest of evaluations.
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Among the 1,992,792 unknown domains in /.S P; dataset (Table 1), MalShoot
reports 173,279 malicious domains. Since this dataset is unlabeled, we have to
validate the result through manual investigation. We use following two rules to
consider a domain as a true positive (1) if it is hosted on a black IP address, and
(2) if its second level domain (SLD) is reported as malicious (e.g., if abc.com is
reported as malicious, we treat its all subdomains as malicious). Notice that, we
are conservative to judge an IP address as a black IP. We treat an IP as black
only if it ever hosted enough malicious domains, (e.g., 10 in our rule), which can
reduce the false positives. Rule (1) confirms 168,002 as true positives and rule
(2) confirms 1,219 of the left 5,277 as true positives. For the remain 4,058 not
matched domains, we randomly select 100 domains and manually validate them.
We find 34 domains host web content and most of them can be classified under
gambling and sex categories. Therefore, MalShoot can effectively discover newly
malicious domains with very low false positive rate.

5.5 Comparison

We compare MalShoot to one previous domain-resolution graph method [10].

1. Khalil et al. [10]:
(a) First phase: constructing domain association graphs from DNS A records
by adding an edge between two domains if they share common IPs.
(b) Second phase: computing the global association scores with a given set of
malicious seeds for every unknown domain through path-based inference.
2. MalShoot:
(a) First phase: embedding every domain into a low-dimensional feature vec-
tor while maintaining its context information.
(b) Second phase: training a classifier over a labeled dataset based on the
feature representations and then applying it to detect other unknowns.

We first compare the time complexity of these two methods. For a regular
domain-resolution graph G = (D, R, E), the time complexity is listed in Table 2.
Due to the complexity of training classifier relies on the machine-learning algo-
rithm, we only analyze it for RandomForest.

In the first phase, approach in [10] computes the weight of every two domains
if they share common IPs, therefore it costs about O(|D|?) steps. MalShoot
updates model parameters edge by edge using Eq. (8), which costs O(|E|) steps.
Notice that |D| =~ |E| in domain-resolution graphs (detail numbers are listed in
Table1). In the second phase, MalShoot works independently from the domain-
resolution graph while method in [10] still needs to run complex calculation
(e.g., find shortest path) on the graph. Therefore, MalShoot can detect malicious
domains without constructing domain-resolution graph or complex graphical
calculation, which endows it scales well in large dataset.

We implement the method [10] and run it on the three datasets. Figure5
shows the performances of comparing with our method. We observe that
MalShoot outperforms the Khalil et al. [10] in the three datasets. The weight
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Table 2. Time complexity analysis of MalShoot and [10]. Where |D]|, | E| is the number
of domains and edges in the domain resolution graph. M is the number of trees used in
RandomForest and N is the number of training samples. |S| is the number of malicious
seeds and |E’| is the number of edges in domain graph, which could be as large as | D|?

Method First phase | Second phase

MalShoot O(|E]|) Training: O(M N log N)
Predicting: O(M log N)
Khalil et al. [10] | O(|D|?) O(|S|(|E'| + |D|log|DJ))

°

s uf =

o o
>

°
IS

True Positive Rate (TPR)
True Positive Rate (TPR)

True Positive Rate (TPR)

°
9

—e— MalShoot (AUC = 99.92%) —e— MalShoot (AUC = 99.91%) —=— MalShoot (AUC = 99.94%)
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°
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Fig. 5. Performance comparison to [10] and [11]

between the two domains in [10] is defined as w(d;,d;) = 1— 1+\asn(ip(¢11i)mp(dj))\ )
where ip(d;) is the set of IPs that domain d; is resolved to and asn(I) is the set
of ASNs that the IPs in I belong to. Notice that each domain-IP pair is treated
with same weight, neglecting the preferences. For example, domain d may be
typically hosted on ip; while temporarily on ips, however, (d,ip;) and (d,ip2)
are treated the same in [10], which causes it not robust for noisy resolutions
(e.g., fake resolution information). MalShoot takes a fine-grained consideration
on the weight (e.g., w;;) of different domain-rdata pairs, which makes it robust
for noisy resolutions.

6 Discussion and Future Work

In this section, we discuss some practical issues of our method.

First, MalShoot is a graph embedding method to detect malicious domains.
It embeds every domain into a low-dimensional vector based on its context infor-
mation. One practical issue is how to accurately embed domains with limited
context information. For example, it is very hard to accurately infer a domain’s
representation if it never shares rdatas with others or only maps to a few rdatas.
Notice that MalShoot only extract the second-order proximity in the domain-
resolution graph. An intuitive solution to this is also preserving the first-order
proximity, ¢.e., maintaining the association between domain and rdata, when
embedding. Therefore, if a domain maps to IPs listed in blacklists, we can also
detect it.
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Second, MalShoot is trained based on historical DNS data. Therefore, another
practical issue is how to find the representation of a new domain. For a new
domain d;, if it maps to the existing rdatas, we can obtain the empirical distri-
bution p(:|d;) over existing rdatas. To obtain the embedding of the new domain,
according to the objective function Eq. (7), a straightforward way is to minimize
the following objective function

Z wjj log p(r;|d;)

Tj EN(di)

by updating the embedding of the new domain and keeping the embeddings of
existing rdatas. If the rdata that the new domain maps is also new, we must
resort to other information, such as the lookup pattern behavior of the domain
and we leave it as our future work.

7 Conclusion

In this paper, we propose a graph embedding based technique to discover mali-
cious domains through public DNS records. We treat the set of rdatas that a
domain ever mapped as its context and assume that domains sharing a similar
context information are strongly associated. We design a unsupervised feature
learning module that automatically represent every individual domain into a low-
dimensional vector while maintaining their context information. Based on the
learned features, a classifier is built over a labeled dataset and further be applied
for detecting other unknown malicious domains. Experimental results show that
our technique can achieve high true positive rates with low false positive rates.
Compared to previous works, our approach scales well in large datasets.
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