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Abstract. Recently, the development of quantum chips has made great
progress – the number of qubits is increasing and the fidelity is getting
higher. However, qubits of these chips are not always fully connected,
which sets additional barriers for implementing quantum algorithms and
programming quantum programs. In this paper, we introduce a gen-
eral circuit optimizing scheme, which can efficiently adjust and optimize
quantum circuits according to arbitrary given qubits’ layout by adding
additional quantum gates, exchanging qubits and merging single-qubit
gates. Compared with the optimizing algorithm of IBM’s QISKit, the
quantum gates consumed by our scheme is 74.7%, and the execution
time is only 12.9% on average.
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1 Introduction

Quantum computing has attracted increasing attention because of its tremen-
dous computing power [7,11,12] in recent years. There are more and more com-
panies and scientific research institutions who devote themselves to developing
quantum chips with more qubits and higher fidelity. While most theoretical
studies assume that interactions between arbitrary pairs of qubits are available,
almost all these realistic chips have certain constraints on qubit connectivity
[6,8]. For example, IBM’s 5-qubit superconducting chips Tenerife and Yorktown
[1] adopt neighboring connectivity. [14] uses a 4-qubit superconducting chip, in
which four qubits are not directly connected, but are connected by a central
resonator. That is, the layout of this chip is central. In addition, CAS-Alibaba
Quantum Laboratory’s 11-qubit superconducting chip [4] and Tsinghua Univer-
sity’s 4-qubit NMR chip [13] both reduce the fully connectivity to the linear
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nearest-neighbor connectivity. Distinctly, this non-fully connected connection
sets additional barriers for implementing quantum algorithms and programming
quantum programs.

As early as 2007, Cheung et al. made a discussion about the non-fully con-
nected physical layout [6]. By adding SWAP gates, they turned illegal CNOT
operations into legitimate operations and proved that the star-shaped or the lin-
ear nearest-neighbor connectivity could be able to utilize additional O(n) quan-
tum gates to complete the adjustment, where n stands for the number of qubits.
In 2017, IBM developed a quantum information science kit, namely QISKit [3],
which contains an algorithm that can adjust and optimize quantum programs
according to any layout. Recently, in order to find more efficient solutions, IBM
organized the QISKit Developer Challenge [2].

The paper is organized as follows: Sect. 2 briefly introduce the necessary
conceptions. In Sect. 3, the design concept of our optimizing scheme is presented
in detail. We next compare the cost and efficiency of our scheme with QISKit’s
optimizing method in Sect. 4. The conclusion and future research can be found
in Sect. 5.

2 Common Solutions

Before introducing the common solutions, we need to point out the main obsta-
cles for hindering the execution of quantum programs:

– Obstacle-1: the direction of CNOT gate is illegal, as shown in the red line in
Fig. 1(a);

– Obstacle-2: the connectivity between two specific qubits is illegal, as shown
in the blue line.

(a) Given Layout (b) Actual Layout

Fig. 1. An example of Obstacle-1 and Obstacle-2. (Color figure online)

For Obstacle-1, a common solution is to flip the direction by 4 additional H
gates:

H2 × CNOT(q1, q2) × H2 = CNOT(q2, q1). (1)

As for Obstacle-2, the basic idea is exchanging the states of qubits by SWAP
gates. For example, although cnot(q1, q4) is illegal in Fig. 1(a), we can use another
way to accomplish the same task, such as the circuit shown in Fig. 2.
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However, the additional overhead of this solution is costly, especially for
sparse physical layouts. Specifically,

cost = 2m × costSWAP, (2)

where m stands for the number of intermediate nodes on the shortest path
between the control-qubit and the target-qubit, costSWAP stands for 3 CNOT
gates and 4 H gates.

q0 × H • H ×
q1 H H

q4 × ×

(a) cnot(q1, q4)

q0 H H

q4 • H • H •

(b) SWAP(q0, q4)

Fig. 2. Equivalent circuits of cnot(q1, q4) and SWAP (q0, q4).

3 Our Optimizing Scheme

Our optimizing scheme is an efficient general solution. Specifically, we design the
following three steps to adjust and optimize quantum programs.

3.1 The Global Adjustment of Qubits

This step can be described as Algorithm 1. In Algorithm 1, we extract all CNOT
gates from the quantum program separately and traverse them from front to
back. Once encountering an illegal CNOT gate, we try to find an available qubits’
mapping to adjust the whole Open-QASM code without converting the traversed
CNOT gates illegal. At each adjustment, we have (dcq × dtq − t) available map-
pings to choose, where t stands for the number of mappings which make some
traversed CNOT gates illegal, dcq and dtq stand for the number of adjacent
qubits of control-qubit and target-qubit in the given layout, respectively. The
traversal terminates when there is no illegal CNOT gate or (dcq × dtq − t) = 0.

Suppose that there are M possible mappings, where M is related to the
given layout and the connectivity of quantum programs. At this point, we need
to estimate the cost of solving Obstacle-2 in the program adjusted according to
these (M + 1) mappings (M mappings and one empty mapping) respectively.
Then take the smallest one as the global adjustment mapping. The reason for
estimation, rather than accurate calculation, and the estimation process are
explained in the next part. Finally, we adjust the qubits of the original Open-
QASM code according to the global mapping. As for the classical register, which
stores the results of the measurement, does not need to be modified. For example,
cnot(q1, q4) is illegal in Fig. 1 and it can be adjusted by the global mapping
{1 : 3, 3 : 1}, as shown in Fig. 3.
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Algorithm 1. Global Adjustment
Input: The set of CNOT in QP, C; the set of legal CNOT, A; the record of all

possible costs, costs; the record of all possible mappings, maps; the
current mapping, amap;

Output: The mapping of qubits’ ID, map
1 GlobalAdjust(costs, maps, amap)
2 costs ←[ ],maps ←[ ] and amap ←[ ];
3 Adjust(C, A, amap, costs, maps);
4 i ←getIndexofMinValue(costs);
5 return maps[i];

6

7 Adjust(C, A, amap, costs, maps)
8 alternativeMap ← [ ];
9 for CNOT c in C do

10 if c not in A then
11 cq ← c[0] and tq ← c[1];
12 cqAdj ← getAdjacentQubit(cq) and tqAdj ← getAdjacentQubit(tq);
13 tMaps ← {cq : tqAdj, tq : cqAdj};
14 for map m in tMaps do
15 tempC ← C;
16 change qubits’ ID in tempC according to m;
17 if no illegal CNOT in tempC then
18 add m to alternativeMap;

19 break;

20 if alternativeMap == [ ] then
21 cost ← estimateCost();
22 add cost to costs and add amap to maps;

23 for map am in alternativeMap do
24 tempC ← C and add am to amap;
25 change qubits’ ID in tempC according to am;
26 if no illegal CNOT in tempC then
27 add amap to maps and add 0 to costs;

28 else
29 Adjust(C, A, amap, costs, maps);

3.2 The Local Adjustment of Qubits

Compared with the basic solution described in Sect. 2, our scheme has the fol-
lowing differences:

– There is no need to use SWAP gates again to restore the state.
– The effect of exchanging control-qubit or target-qubit with intermediate

qubits by SWAP gates is completely different for the subsequent code.
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q1 H • T • c1

q2 Z • c2

q3 Z X c3

q4 Y H c4

(a) Before adjusting

q3 H • T • c1

q2 Z • c2

q1 Z X c3

q4 Y H c4

(b) After adjusting

Fig. 3. Adjust the circuit according to {1 : 3, 3 : 1} and (b) can be executed on
Fig. 1(a)

However, it is difficult to accurately calculate the costs of these two cases in
the second difference. During the calculation, we will encounter several illegal
CNOT gates, and for each illegal CNOT, we have two solutions. Actually, the
solution space is a binary tree whose height is n and the number of leaf nodes
is approximately O(2n), where n stands for the number of illegal CNOT gates.
Obviously, we have to estimate the cost by greedy ideas. With the increase in
the scale of programs, the manifestation of this greedy choice is more obvious,
which can be seen in Sect. 4.

The cost of adjusting the Open-QASM code qasm is estimated by

costqasm =
n∑

i=1

[(
n − i

n
)2 · mi · costSWAP], (3)

where mi stands for the number of intermediate qubits between the control-qubit
and the target-qubit of the ith illegal CNOT. Among the various estimation
formulas we tried, the result obtained by Eq. (3) is optimal. The reason for
adding the correction factor (n−i

n )2 in Eq. (3) is that the later the CNOT gate
is executed, the easier it is influenced by the previous adjustments. That is,
estimation is not reliable for the later CNOT gates. Multiplying the factor,
which will continue to decrease as the estimation progress, with the estimation
results can have a certain correction effect.

For improving the accuracy of estimation, we accurately calculate the top 4
layers of the binary tree, and estimate the cost of the subsequent gates of the 24

cases respectively, where 4 is the optimal value determined after repeated trials.
Then add the estimated result and the calculated result together and choose the
smallest one among the 16 cases as our choice.

Specifically, we traverse the Open-QASM code. Whenever encountering an
illegal CNOT, we call Algorithm 2 to adjust it and then update the subsequent
code and the classical register until the traversal terminates. It can be seen from
Algorithm 2 that the mapping generated by Adjust function only affects the
subsequent code of illC and that is why we call this step Local adjustment.

At this point, there is no Obstacle-2 in quantum programs. Then we traverse
the new Open-QASM code again to handle Obstacle-1 by Eq. (1).



472 X. Zhang et al.

Algorithm 2. Local Adjustment
Input: The Open-QASM code of the quantum program, qasm; the first illegal

CNOT, illC; the rest CNOTs after illC in qasm, Cs; the record of all
possible costs, costs; the cost in the current case, cost; the record of all
possible mappings, maps; the current mapping, amap; the depth of
recursion, d

Output: The adjusted Open-QASM code, qasm
1 LocalAdjust(qasm, illC, Cs)
2 cost ← 0, costs ←[ ], amap ←[ ], d ← 1 and maps ←[ ];
3 Adjust(illC, Cs, cost, costs, amap, maps, d);
4 i ←getIndexofMinValue(costs);
5 add SWAP gates to qasm according to maps[i];
6 change qubits’ID in qasm according to maps[i];
7 return qasm;

8

9 Adjust(illC, Cs, cost, costs, map, maps, d)
10 interQs ← getIntermediateNode(illC[0], illC[1]);
11 cost ← cost + 34×interQs.length;
12 for qubit q in illC do
13 tc ← cost;
14 if q is control-qubit then
15 tc ← tc + 4;

16 tMap ← constructMapBetweenQ(interQs,q);
17 change qubits’ ID in cnots according to tMap;
18 nIllC ← getFirstIllegalCnot(cnots);
19 restC ← getAllCnotAfterNewIllC(cnots);
20 if map != [ ] then
21 tMap ← map;

22 if nIllC == None then
23 add tc to costs and tMap to maps;

24 else if d == 4 then
25 tc ← tc + estimateCost();
26 add tc to costs and add tMap to maps;

27 else
28 Adjust(nIllC, restC, tc, costs, tMap, maps, d + 1);

3.3 The Mergence of Single-Qubit Gates

In this step, we will reduce the circuit depth by merging single-qubit gates. At
first, we need to determine which kind of single-qubit gates can be merged.

The random quantum circuit shown in Fig. 4(a) contains three CNOT gates
and these gates divide the execution processes of q0, q1, q2 into three parts
respectively. Obviously, single-qubit gates in these parts can be merged and we
can reduce Fig. 4(a) to (b). Based on this example, we can draw a conclusion
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that for any qubit q, the n multi-qubit gates with q involved can divide the
execution process of q into n + 1 subintervals and the single-qubit gates in each
subintervals can be merged into one gate.

q0 H • T H •

q1 Z •

q2 Z X

(a) Before merging

q0 H • H × T •

q1 Z •

q2 X × Z

(b) After merging

Fig. 4. The change of a quantum random circuit before and after merging single-qubit
gates.

As mentioned before, all single-qubit gates in Open-QASM belong to
{u1, u2, u3}. Therefore, merging single-qubit gates actually contains 9 different
cases: u1×u1, u1×u2, u1×u3, u2×u1, u3×u1, u2×u2, u3×u2, u2×u3 and
u3 × u3. In order to handle these cases, we need to do Z-Y decompositions
[9] for u1, u2 and u3. For the first five cases, we can directly merge them by
Rz(λ) × Rz(φ) = Rz(λ + φ) [5]. As for the last four cases, we have:

Rz(φ1) · Ry(θ1) · Rz(λ1) · Rz(φ2) · Ry(θ2) · Rz(λ2)
= Rz(φ1) · [Ry(θ1) · Rz(λ1 + φ2) · Ry(θ2)] · Rz(λ2)
= Rz(φ1) · [Rz(α) · Ry(β) · Rz(γ)] · Rz(λ2) (4)
= Rz(φ1 + α) · Ry(β) · Rz(γ + λ2)
= u3(β, φ1 + α, γ + λ2).

The key of this kind of merging lies in how to transform the Y-Z decomposition
of a quantum gate to the Z-Y decomposition. And we use QISKit’s merge
method proposed in [10] to solve this problem.

4 Numerical Results

In this section, we use the method proposed in the QISKit Developer Challenge
to count the cost of gates:

cost = n2 × 10 + n1 × 1, (5)

where n2 and n1 stand for the number of CNOT gates and single-qubit gates in
optimized quantum circuit, respectively.

The experiments are designed as follow: for the 14 cases of qubits number
from 3 to 16, we generate 10 different random quantum circuits respectively
for 16 cases with circuit depth from 1 to 16 respectively. That means, in total,
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14 × 16 × 10 = 2240 circuits are generated. Then we chose four common con-
nected graphs (linear, central, neighboring and circular) and use our optimizing
scheme and QISKit’s algorithm to adjust and optimize these 2240 random cir-
cuits according to these layouts, respectively. That is, each algorithm handles
8960 (2240 × 4) quantum circuits. Finally, the optimized quantum programs
are executed by QASM-simulator. If the result of our scheme is consistent with
QISKit’s result, we count the cost and the execution time of each circuit.

Comparison with QISKit’s Optimizing Method
Table 1 shows the quantum gates consumption of the 2240 original random quan-
tum circuits, and the average cost of gates and compiler time required to adjust
and optimize these 2240 circuits by our scheme and QISKit. Obviously, the quan-
tum gates consumed by our scheme is 74.7% of QISKit, and the execution time
is only 12.9%.

Table 1. The overall statistical

Time (s) Gate cost

Original circuit 0 3084391

Our scheme 16472.48 6703061

QISKit 127751.99 8974717

Specifically, the performance of our scheme varies for different scales of quan-
tum circuits. Figure 5(a) and (b) illustrate the ratio of QISKit and our scheme
about the cost of quantum gates and efficiency with various qubits q and circuit
depths d, respectively. The two formulas are shown as follows:

Fig. 5. Experimental results

cost(n,d) =
qc(n,d)

c(n,d)
, efficiency(n,d) =

qt(n,d)

t(n,d)
, (6)
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where qc and qt stand for the gate cost and execution time of QISKit’s algorithm,
and c and t indicate those of our method. Figure 6 shows that in all cases we
executed, our algorithm can use fewer quantum gates to adjust and optimize the
original circuits in less time. In the worst case (more qubits and more circuit
depth), we can use 6% less gates and the efficiency is about 5 times; in optimal
case (more qubits and less circuit depth), we can use 63% less gates and the
efficiency is about 20 times.

Performance in Different Physical Layouts
For the four layouts we have chosen, there are also significant differences in costs
of quantum gates and execution time. In order to deal with different scales of
circuits in a fair manner and avoid the statistical result being dominated by
large-scale circuits, we no longer directly sum up the gate costs in different cases
(as used in Table 1). Specifically, the statistical method is as follows:

costl,c =
1

2240
[
2240∑

i=1

(
ci
oi

)], efficiencyl =
1

2240
[
2240∑

i=1

(
qti
oti

)]. (7)

where l ∈ {Linear, Circle, Center,Neighbour}, c ∈ {oc, qc}, oi, qci and oci
stand for the gate cost of the ith original circuit, the ith circuit adjusted by
QISKit and our scheme respectively, qti and oti stand for the time required to
compile the ith circuit by QISKit and our scheme respectively.

Fig. 6. Experimental results of four different layouts

Figure 6(a) shows that for the central layout, our scheme requires 1.80 times
the gate consumption of the original circuit, and the optimizing method of
QISKit requires 3.68 times; for the linear layout, the gate cost of our scheme is
2.28 times as many as the original cost and the cost of QISKit is about 2.86 times;
as for the circle and neighbour layouts, our scheme need to use 1.77 times and
1.60 times the gate cost respectively, while QISKit’s method need 2.05 times and
2.01 times. Figure 6(b) illustrates that for the four different layouts, our scheme
is at least 4 times faster than QISKit; especially for central layout, the efficiency
is about 17.3 times as fast as QISKit’s method.
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5 Conclusions

Considering the cost of physical implement, layouts of most existing quantum
chips are not fully connected, which sets additional barriers for implementing
quantum algorithms and programming quantum programs. We propose a gen-
eral optimizing scheme to accomplish the task by adding additional logic gates,
exchanging qubits in the quantum register and merging single-qubit gates. Com-
pared with QISKit’s optimizing method, the quantum gates consumed by our
scheme is 74.7% and the execution time is only 12.9% overall. For circuits with
more qubits and less circuit depth, this advantage is more obvious. In addition,
several common connected graphs (linear, central, neighboring and circular) are
compared as well. In these four cases, our scheme has advantages. Especially
for the central layout, we can use only 49% gates and 5.8% execution time of
QISKit’s optimizing algorithm to adjust and optimize the original quantum cir-
cuits.
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