
Extracting Business Execution Processes
of API Services for Mashup Creation

Guobing Zou1,2, Yang Xiang1,2, Pengwei Wang3, Shengye Pang1,
Honghao Gao1, Sen Niu4(B), and Yanglan Gan3(B)

1 School of Computer Engineering and Science, Shanghai University, Shanghai, China
guobingzou@gmail.com, yangxiang618@gmail.com

2 Shanghai Institute for Advanced Communication and Data Science,
Shanghai University, Shanghai, China

3 School of Computer Science and Technology, Donghua University, Shanghai, China
{wangpengwei,ylgan}@dhu.edu.cn

4 School of Computer and Information Engineering,
Shanghai Polytechnic University, Shanghai, China

sens306314@gmail.com

Abstract. Mashup services creation has become a new research issue for
service-oriented complex application systems. During the mashup service
creation, how to extract business execution processes among APIs plays
an important role when a mashup service developer receives a bunch
of recommended API services. However, it does not exist an effective
way to perform mashup recommendation with the support of extract-
ing API business execution processes. In this paper, we propose a novel
approach for automated extraction of API business execution processes
for mashup creation. Based on the proposed word-domain matrix model,
API annotation in a mashup service is transformed as a bipartite graph
problem that is solved by the maximum bipartite matching algorithm
to semantically annotate involved APIs. Then, directed dependency net-
work among APIs is constructed by analyzing path dependencies and
evaluating the compound polarity. Finally, API business execution pro-
cesses in a mashup service can be extracted. The advantage of the work
is that it generates business execution processes instead of a list of
independent APIs, which can significantly facilitate mashup service cre-
ation for software developers. To validate the performance, we conduct
extensive experiments on a large-scale real-world dataset crawled from
ProgrammableWeb. The experimental results demonstrate the feasibility
and effectiveness of our proposed approach.

Keywords: Service-oriented computing · API service ·
Mashup creation · Business execution processes · API annotation

1 Introduction

With the advancement of network technology and increasing demands on service-
oriented application integration, more and more service providers publish their
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

H. Gao et al. (Eds.): CollaborateCom 2018, LNICST 268, pp. 448–466, 2019.

https://doi.org/10.1007/978-3-030-12981-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12981-1_31&domain=pdf
https://doi.org/10.1007/978-3-030-12981-1_31


Extracting Business Execution Processes 449

software on the Internet in the form of web APIs. It accelerates the interoperable
machine-to-machine interaction and greatly promotes the procedure of service
discovery, optimum selection, automatic composition and recommendation. As
of May 2018, the world’s largest online service repository ProgrammableWeb
recorded more than 19,000 API services and approximately 8,000 mashup ser-
vices. Especially, developing a mashup service for software engineers who use
multiple individual existing APIs as components to create a value-added compos-
ite service becomes a popular software development schema in service-oriented
environment [12]. Mashup services integrate the data and functionality from
more than one APIs that enriches the applicability of web services. Currently,
most existing mashup services are created by software developers who manually
choose appropriate APIs and compose them together as a whole to a service
management platform. As a result, it tends to be a labor-intensive challenging
task for mashup service developers to select their desired web APIs from multiple
functionally equivalent candidate ones in a large service repository.

To address the provision of web APIs, correlative research efforts have been
made to improve the effectiveness of mashup creation. The mainstream method
includes semantic-based, social network-based and machine learning-based ser-
vice recommendation. The semantic-based methods [5,6,8,12] mainly focus on
using LDA probabilistic topic model to calculate semantic similarity between
mashup request and API description. Another way [1,11,12] is to leverage social
network techniques to mine user’s social features and interests from usage his-
torical logging, where candidate APIs are recommended according to their high
similarity of the social aspects with users. Moreover, machine learning algorithms
[9,10,13] such as clustering and matrix factorization are recently exploited to
more effectively enhance API recommendation.

Although the above investigation can assist and facilitate the procedure of
recommending appropriate APIs from a large-scale web service repository, the
deficiency of the existing approaches is that they are still difficult and time-
consuming for software developers to create a mashup service. The reason is
that they need to further understand the functionality of the provided web APIs
and their corresponding business invocation relationships, when these APIs are
programmed and integrated into a mashup service. Therefore, how to design a
novel approach for automatically and effective extraction of business execution
processes among APIs has been a key research issue to be solved in mashup
service creation.

An ideal way of overcoming the above problem is to reason out the busi-
ness execution processes for a set of APIs that are recommended to mashup
developers. To this end, we propose a novel framework for automated extraction
of API business execution processes when developing a mashup service. Given
a mashup service repository, a word-domain matrix is firstly modeled through
calculating the semantic similarity between word and domain by WordNet. In
such case, we then transform an API annotation problem to a weighted bipar-
tite graph, where the maximum bipartite matching algorithm is employed to
optimally find a solution to semantically annotate APIs in a mashup functional



450 G. Zou et al.

description. Afterwards, a directed dependency network is constructed among
APIs by analyzing path dependencies and evaluating the compound polarity via
Stanford CoreNLP parser. Finally, business execution processes among APIs can
be extracted by network maximum flow algorithm. The advantage of the work is
that it generates API business execution processes based on an existing service
recommendation approach that only produces a list of independent APIs. There-
fore, it can significantly facilitate mashup service creation for software develop-
ers. To validate the feasibility and effectiveness of our approach, we conduct
extensive experiments on a real-world dataset crawled from ProgrammableWeb.
The experimental results demonstrate that our approach outperforms the com-
peting ones in terms of six evaluation metrics.

The main contributions of this paper are summarized as follows:

• We propose a novel API annotation approach that semantically maps highly
correlative words to their corresponding APIs in mashup functional descrip-
tion, where word-domain matrix is constructed to provide weights in the
modeled bipartite graph.

• On the basis of API annotation, we propose a novel approach for extracting
API dependency network in mashup service by analyzing path dependencies
between APIs and evaluating their compound polarity.

• We design and implement a prototype system and conduct extensive exper-
iments on a large-scale real-world dataset crawled from ProgrammableWeb.
The experimental results validate the feasibility and effectiveness of our pro-
posed approach for business execution processes extraction.

The reminder of this paper is organized as follows. The problem is formu-
lated in Sect. 2. Section 3 elaborates our approach for extracting API business
execution processes. Section 4 presents extensive experiments and analyzes the
performance. Section 5 reviews the related work. Finally, Sect. 6 concludes the
paper.

2 Problem Formulation

Definition 1 (API Service). A web API can be denoted as a two-tuple api =
〈W (a),D(a)〉, where W (a) = {w1, w2, · · · } is a functional description, and wi(i =
1, 2, · · · ) is the i-th word in the description. D(a) = domaina corresponds to a
domain tagged in api.

Definition 2 (Mashup Service). A mashup service, M , is represented as a
three-tuple M = 〈W (m), L(m),D(m)〉, where W (m) = {w1, w2, · · · } is a functional
description. L(m) = {api1, api2, · · · } is a list of APIs, where apii is the i-th API
involved in M . D(m) = domainm corresponds to a domain tagged in M .

Definition 3 (Atomic Grammatical Dependency). Given a mashup ser-
vice M = 〈W (m), L(m),D(m)〉, the atomic grammatical dependency of any two
words ws and wt in W (m) is reflected by a set of directed paths denoted as
dep(ws, wt)



Extracting Business Execution Processes 451

dep(ws, wt) = {ws
tdz1−−→ wz1

tdz2←−− wz2
tdz3−−→ . . .

tdzn−−−→ wt} (1)

Where wzi is the i-th dependency bridge word. tdzj represents a binary
dependency relationship of the two adjacent words.

Note that the arrow direction of the dependency relationship indicates the
order of dependency or domination between two adjacent words. The forward
arrow ws → wt states the dependency of ws on wt, or wt is dominated by ws.
Conversely, the reverse arrow ws ← wt states the dominance of ws on wt, or wt

depends on ws.

Definition 4 (Grammatical Dependency Set). Given a mashup service
M = 〈W (m), L(m),D(m)〉, the set of grammatical dependencies C(m) in W (m)

can be expressed as

C(m) = {dep(ws, wt)|ws, wt ∈ W (m)} (2)

Definition 5 (Mashup Functionality Annotation). A functional descrip-
tion W (m) of a mashup service M corresponds to a markup description SW (m),
expressed by

SW (m) = {〈w1, {api11, · · · }〉, 〈w2, {api21, · · · }〉, · · · } (3)

Where {w1, w2, · · · } are words in the description of W (m). {apik1, · · · } states
the set of APIs annotated by wk.

Definition 6 (Business Execution Processes Extraction). Given a
mashup service M = 〈W (m), L(m),D(m)〉, the task of extracting business execu-
tion processes of APIs in M is defined as

g(SW (m), C(m)) : =G′ (4)

Where SW (m) is a semantically annotated functional description of W (m);
C(m) is the set of atomic grammatical dependencies in W (m); g is an effective
approach that derives a generated graph G′, corresponding to the desired busi-
ness execution processes of APIs in M .

It is observed that given a mashup service M or a mashup functional descrip-
tion with a set of recommended APIs, we mainly focus on how to semantically
annotate its APIs from W (m) to SW (m) and design an effective approach g for
business execution processes extraction.

3 Automated Extraction of Business Execution Processes

3.1 Framework of the Approach

Figure 1 illustrates the overall framework of our proposed approach. From the
perspective of task functionality, it goes through three crucial stages, including



452 G. Zou et al.

word-domain model construction, mashup functionality API annotation, and
dependency network extraction.

In the stage of word-domain model construction, all the mashup services are
aggregated to form a word bank. Domains are derived from the partitioning of
original API and mashup service repository. WordNet is then applied to calculate
the semantic similarity degree of a pair of word and domain. In the stage of
mashup functionality API annotation, the similarity between a word and an
API is evaluated by word-domain matrix and API-domain concurrence matrix.
Furthermore, we transform a mashup annotation problem to a bipartite graph
and adopt the maximum bipartite graph matching algorithm to annotate APIs in
mashup service. In the stage of dependency network extraction, we generate a set
of semantic relationship trees for an annotated mashup description via Stanford
CoreNLP parser. By evaluating the polarity of invocation relationships among
APIs based on analyzing path dependencies, we construct an API dependency
network where network maximum flow algorithm is applied to detect start and
end points for business execution processes extraction.

API
Repository

Mashup
Repository

Mashup 
Description

 Aggregation

WordNet Word-Domain Matrix

MD Word 
Bank

Tools

Financial

Mapping
Similarity 
Calculation

Word-Domain Model Construction

Mashup Functionality API Annotation

Word-API
Similarity

Calculation
Bipartite Graph 

Matching
Algorithm

Dependency Network Extraction

API Annotation

Stanford
CoreNLP

Parser

Domain
Partitioning

Mashup 
Description

Annotated 
Mashup Description

s t

APIs Path 
Mining

Maximum 
Network Flow 

Algorithm

Dependency  
Polarity 

Recognition

api

w

Semantic 
Dependency Tree

API Dependency NetworkAPI Business Execution 
Processes

w

Fig. 1. The framework of our approach.



Extracting Business Execution Processes 453

3.2 Word-Domain Model Construction

To best match feasible words for an API in a mashup service, the similarity cal-
culation between them becomes a key factor. Since domain and API concurrency
matrix can be available from service description, word and API relationships can
be directly derived if we have word and domain matrix model.

Definition 7 (Word-Domain Matrix). The word-domain model is denoted
by an m ∗ n matrix Md w, where m is the number of all service domains and n
is the number of words collected from all mashup functional descriptions.

Md w =

w1 w2 . . . wn

d1
d2
...

dm

⎛
⎜⎜⎜⎝

sem11 sem12 . . . sem1n

sem21 sem22 . . . sem2n

...
...

. . .
...

semm1 semm2 . . . semmn

⎞
⎟⎟⎟⎠

(5)

Each entry semij represents the semantic similarity degree between di and wj ,
ranging from 0 to 1. All the domains D = {d1, . . . , dm} are accumulated by
domain partitioning from API and mashup service repository, while all the words
W = {w1, . . . , wn} are collected and preprocessed from mashup service reposi-
tory.

We use WordNet as a lexical database to measure the semantic similarity
between domain and word. Domains and mashup functional description words
are mapped into a hierarchical semantic tree in WordNet representation, where
the similarity degree of two nodes can be calculated based on their path distance.
Given a domain di and a mashup functional description word wj , the semantic
similarity degree semij is calculated by

sim (di, wj) =
2 ∗ depth (lso (di, wj))

len (di, wj) + 2 ∗ depth (lso (di, wj))
(6)

Where, lso (di, wj) represents the deepest common parent between di and wj .
depth (lso (di, wj)) is the depth of lso (di, wj). len (di, wj) represents the shortest
path length between di and wj .

Due to polysemy, a mashup functional description word may correspond to
multiple concepts in semantic dictionary. In order to eliminate the ambiguity
between two words, an improved similarity calculation algorithm is used to
maximize the semantic matching degree. Given a domain di and a word wj ,
the updated semantic similarity degree semij is calculated by

sim′ (di, wj) = max
cx∈synsets(di),cy∈synsets(wj)

sim(cx, cy) (7)

Where, synsets (di) and synsets (wj) represent the collection of concepts
corresponding to di and w′

j respectively.



454 G. Zou et al.

3.3 Mashup Functionality API Annotation

In this section, we describe how to map the words in a mashup functionality
description to the corresponding involved APIs. Given a mashup service M =
〈W (m), L(m),D(m)〉, API annotation is to match the most mashup appropriate
functional description words for each API that belongs to M . It converts original
mashup functional description W (m) to the annotated one SW (m), which is
formally expressed by

f(W (m)) = SW (m) (8)

W (m) = {w1, w2, · · · }
⇓ f

SW (m) = {〈w1, {api11, · · · }〉, 〈w2, {api21, · · · }〉, · · · }
(9)

Where function f performs two steps, including the task of semantic similar-
ity calculation between API and word (fa) and the task of optimally matching
an API to its semantically correlative words (fb). Thus, mashup functionality
API annotation can be decomposed as

f
(
W (m)

)
= fb

(
fa

(
W (m)

))
(10)

(1) fa: semantic similarity calculation between API and word. Derived from
API service repository, the concurrency tagging between an API apii and a
domain dj indicates that whether apii belongs to dj . Here, another API-domain
matrix denoted as Ma d reflects the relationship.

Ma d =

d1 d2 . . . dm
api1
api2

...
apil

⎛
⎜⎜⎜⎝

tag11 tag12 . . . tag1m
tag21 tag22 . . . tag2m

...
...

. . .
...

tagl1 tagl2 . . . taglm

⎞
⎟⎟⎟⎠

(11)

Where each row and column in the matrix represents an API and a domain,
respectively. Each entry is either equal to 0 or 1. If the domain tagging of apii
is marked by dj , tagij equals 1, while the rest of the values in Ma d are 0.

Based on the API-domain matrix Ma d and constructed word-domain matrix
Md w, the weighting matrix Ma w between API and mashup functional descrip-
tion word can be directly produced with the multiplication of Ma d and Md w.

Ma w =

w1 w2 . . . wn

api1
api2

...
apil

⎛
⎜⎜⎜⎝

wt11 wt12 . . . wt1n
wt21 wt22 . . . wt2n

...
...

. . .
...

wtl1 wtl2 . . . wtln

⎞
⎟⎟⎟⎠

(12)



Extracting Business Execution Processes 455

Taking the above matrices, given a mashup service M = 〈W (m), L(m),D(m)〉,
the semantic similarity degree between an API and a mashup functional descrip-
tion word can be calculated. Formally, two submatrices M

(m)
a d and M

(m)
d w are

intercepted to deduce semantic similarity matrix Sima w(m).

Sima w(m) = M
(m)
a d × M

(m)
d w (13)

Where M
(m)
a d represents a submatrix of Ma d whose rows are composed of

APIs involved in L(m). Similarly, M
(m)
d w represents a submatrix of Md w whose

columns are composed of words involved in W (m). As a result, Sima w(m) is a
submatrix of Ma w and each entry reflects the weighting between an API and a
word in M .

(2) fb: optimally matching an API to its semantically correlative words. By
applying the generated similarity matrix Sima w(m), API annotation problem
for a mashup service M = 〈W (m), L(m),D(m)〉 is transformed to a fully connected
and weighted bipartite graph G = 〈V,E〉. Specifically, API vertices Va ⊂ V
originates from all of the APIs in L(m); word vertices Vw ⊂ V originates from all
of the mashup functional description words in W (m); the weighting wtij of each
edge in E corresponds to an entry in Sima w(m). The transformed bipartite
graph for API annotation of mashup functionality is illustrated in Fig. 2.

w1 w2 w3 w4 wn

api1 api2 apil...

...

Va

Vw

wtij

Fig. 2. The transformed weighted bipartite graph for API annotation.

In this way, the solution to a mashup functionality API annotation problem
is formally equivalent to best finding a partition of the bipartite graph G. Here,
we apply a threshold-based API annotation algorithm called T-WDM and an
API annotation algorithm called G-WDM based on bipartite graph maximum
matching. For the T-WDM algorithm, if an edge weighting wtij in G is greater
than predefined threshold θ, then apii is annotated by wj . Based on bipar-
tite graph maximum matching, G-WDM is an improvement of Kuhn-Munkres
method, which optimizes the matching between APIs and words.

Note that API annotation is a content-based matching problem like LDA
topic modeling, which can be thought as classifying each word into a category
of APIs. Since the words that actually express the API has low frequency in
the entire large-scale service repository, it can easily occur inaccuracy with high



456 G. Zou et al.

error on mapping words to API tags using LDA modeling. To avoid this appli-
cation scenario, we leverage an external lexical database WordNet for similarity
calculation between mashup description words and API tags.

From the maximum matching solution to the bipartite graph, we mark the
original mashup functional description W (m) to its semantically annotated one
SW (m), by replacing the words with their matched APIs.

3.4 Dependency Network Extraction

In this section, we generate API business execution processes based on depen-
dency network, which can be extracted by parsing mashup description and ana-
lyzing the path dependency relationships.

Given an annotated mashup service description SW (m), Stanford CoreNLP
parser [2] is applied to further generate a set of semantic dependency trees, each
of which represents a sentence in SW (m). An edge in a semantic dependency
tree states a unique binary relationship by a dependency type r (wa, wb). r rep-
resents a specific dependency type; wa and wb represent a dominant word and
a dependent word in the relationship, respectively. Taking an annotated service
description SW (m) as input, we mark an API to its corresponding position in
semantic dependency tree. For example, given a mashup functional description
“See where the latest news is happening in the UK”, its semantic dependency
tree is illustrated in Fig. 3.

the the

see

happening

advcl

where

advmod

news

nsubj

is

aux

UK

nmod

det

latest

amod det

in

case

Google Maps BBC

Fig. 3. Semantic dependency tree is extracted from a mashup functionality description.
CoreNLP tool is used to analyze the functionality description and derive its correspond-
ing semantic dependency tree of a mashup service. In the figure, those words in the
eclipse come from mashup service description; those words around the arrows represent
the dependency relationships; those words in the rectangles below the circles are tags
marked for involved APIs.



Extracting Business Execution Processes 457

As shown in Fig. 3, there are multiple dependency types among words in
a semantic dependency tree. The binary dependency modification between two
words for a dependency type is defined as below.

Definition 8 (Binary Dependency Modification). Given a dependency
type r (wa, wb), the binary dependency modification between wa and wb holds
three different kinds of possibilities:

(1) If wa directly modifies wb on r, it is denoted as wa
r=⇒ wb;

(2) If wa is reversely modified by wb on r, it is denoted as wa
r⇐= wb;

(3) If wa and wb are mutually modified on r, it is denoted as wa
r⇐⇒ wb.

Based on above definition, all dependency types are classified into three cat-
egories, including positive , negative and neutral .

Definition 9 (Dependency Relationship Polarity). Given a dependency
type r (wa, wb), its dependency relationship polarity can be identified by a piece-
wise function H (r)

H(r(wa, wb)) =

⎧⎨
⎩

positive, if wa
r=⇒ wb is satisfied

neutral, if wa
r⇐⇒ wb is satisfied

negative, if wa
r⇐= wb is satisfied

(14)

By using H (r), dependency polarity of two APIs in a semantic dependency
tree can be recognized via multiplicative chain rule. Given two APIs apii
and apij , assume that it has a reachable path from apii to apij , denoted as

dep(apii, apij) = {apii
tdz1−−→ wz1

tdz2←−− wz2
tdz3−−→ . . .

tdzn−−−→ apij}, the dependency
polarity of these two APIs is calculated by

L(dep(apii, apij)) =
∏

(wi,wj)

δ(wi,wj) · H(r(wi, wj)), (wi, wj) ∈ dep(apii, apij)

(15)
Where δ(wi,wj) is a symbol term indicating the dependency direction in the

pathway chain of dep(apii, apij). H (r (wi, wj)) is the dependency relationship
polarity for a dependency type r(wi, wj) in dep(apii, apij).

Performing the calculation of dependency polarity between every pair of APIs
in a mashup service, we extract an API dependency network.

Definition 10 (API Dependency Network). Given a mashup service M =
〈W (m), L(m),D(m)〉, its API dependency network is a directed graph G′ =
〈V ′, E′〉. V ′ = L(m) and an edge e′ ∈ E′ satisfies the conditions:

(1) E′ = {e′|e′ = 〈apii, apij〉, apii, apij ∈ L(m)};
(2) The dependency polarity of L(dep(apii, apij)) is positive.



458 G. Zou et al.

Fig. 4. Extracted API dependency network and business execution processes.

When extracting API dependency network, if the two APIs
(
apii, apij

)
has

positive dependency polarity, an edge e′ = 〈apii, apij〉 is added to E′; if it has
negative dependency polarity, an edge e′ = 〈apij , apii〉 is added to E′; if it has
neutral dependency polarity, above two edges are both added to E′. An API
dependency network is shown in Fig. 4(a).

As shown in Fig. 4(a), the extracted API dependency network G′ can be
regarded as a candidate of business execution processes before a starting and
ending point are chosen, respectively. To pick them out, the capacity of each edge
in G′ is set as 1 as shown in Fig. 4(b). Under this setting, the maximum network
flow algorithm [3] is applied to check the entire network traffic value of G′. When
it reaches the maximum traffic value, the reliance level arrives at the optimum
state. The starting and ending points of the maximum flow corresponds to the
ones where the sum of in-degree and the sum of out-degree are the maximum.
Consequently, business execution processes of APIs in a mashup service can be
extracted as shown in Fig. 4(c).

4 Experiments

4.1 Experimental Setup and Dataset

We developed a prototype system and all modules are implemented in Java.
It integrates WordNet1 for word-domain matrix construction and Stanford
CoreNLP parser for API dependency network extraction. Meanwhile, four com-
peting approaches are integrated in our prototype system. All the experiments

1 https://wordnet.princeton.edu/.

https://wordnet.princeton.edu/


Extracting Business Execution Processes 459

have been carried out on a PC with an Intel Dual Core 2.8 GHz processor and
4 GB RAM in Windows 10.

The dataset used in the experiment was collected from the largest online
service management platform ProgrammableWeb.com2. As of May 2018, Pro-
grammableWeb recorded more than 19,000 API services and approximately 8,000
mashup services. We crawled the information of APIs and mashup services,
including name, functional description and domain. After the preprocessing, we
obtained a collection of 13,869 API services and 6,254 mashup services. The
statistics of experimental dataset is shown in Table 1.

Table 1. The statistics of experimental dataset crawled from ProgrammableWeb.

Dataset item Value

Total number of mashup services 6,254

Total number of API services 13,869

Total number of domains 474

Average number of mashups in a domain 13.927

Average number of APIs in a domain 2.121

Total number of words in mashup descriptions 112,987

All the mashup services, including two or more than two API services are
selected from Table 1, to conduct the experiments. We classify these mashups
based on the number of API that mashup contains. Each class randomly
extracted 100 samples as experimental data. Because the data on the Pro-
grammableWeb does not contain the API execution process sequence, we invite
experienced web development experts to manually determine the execution pro-
cess of each mashup service. For each mashup record we only keep the mashup
identification number (including), natural language text description, API list
and domain. The API set as experimental data is directly using all the APIs
that we collected. For each API record we keep the API ID, natural language
text description and domain.

4.2 Case Study of Business Execution Processes Extraction

To validate the applicability, we show a case study of three crucial stages for API
business execution processes. Figure 5 illustrates a specific case of API business
execution processes extraction for mashup “BBC News Map”. Its functional
description is described as “See where the latest news is happening in the UK”.
Two involved APIs are invoked for the implementation of mashup functionality,
including Google Maps in domain Mapping and BBC in domain Media. There are
10 tokens in this description except punctuation. After removing the nonsensical

2 https://www.programmableweb.com.

https://www.programmableweb.com


460 G. Zou et al.

Fig. 5. The experimental result of extracting API business execution processes from a
mashup service requirement.

prepositions and particles (the, is, and in), there are 6 remaining tokens. After
the preprocessing, it goes through three steps as below.

(1) The word-domain matrix is constructed to evaluate the similarity between
6 words and 2 domains. The generated word-domain matrix is shown in the
second part of Fig. 5.

(2) For API annotation, we can find the most similar word to the first domain
Mapping from the word-domain matrix. Suppose we use the constant-
threshold method (T-WDM) method. Under the threshold 0.9, we can find
the two words of where (Similarly 0.97) and UK (0.93). For another domain



Extracting Business Execution Processes 461

media, we can find a word news (0.97). In this way, we will give the corre-
sponding API tags to these words we find.

(3) In the dependency network extraction, we invoke Stanford CoreNLP to
analyze mashup functionality description and obtain a parser tree, where
it consists of 10 basic Stanford dependency types. In these parse result,
related to the tagged APIs is happening → where = advmod(negative),
and happening → news = nsubj(positive). Using the proposed multi-
plicative chain rule, we can calculate the dependency relationship polarity:
where → news = positive, which is H (Google Maps,BBC) = positive.
Calculate all tagged API pairs in this method, then we can extract API
execution business processes: Google Maps ⇒ BBC.

4.3 Competitive Methods and Evaluation Metrics

To demonstrate the effectiveness of our approach for API business execution pro-
cesses extraction, we compare our two self-developed methods with two baseline
ones. Here, the differences among these competing methods lie in API annota-
tion.

(1) LED [7]: Levenshtein edit distance is an annotation algorithm based on the
edit distance similarity calculation. This method measures the minimum
number of edit operations required to convert from one string to another.

(2) STEM: It is an annotation algorithm based on stem similarity calculation.
This method extracts stems from two words and calculates their similarity
degree using string comparison strategy.

(3) T-WDM: This method constructs a word-domain matrix for semantic sim-
ilarity degree calculation, and then transforms API annotation problem to
a bipartite graph model. It identifies those edges that reach or exceed the
threshold for semantic annotation of APIs in a mashup service.

(4) G-WDM: Based on T-WDM, this method annotates API service by applying
the maximum matching in weighted bipartite graph. In light of the mapping
among words and APIs, it performs API annotation in a mashup service.

We evaluate the effectiveness of above approaches in terms of two aspects,
including API annotation and business execution processes extraction in mashup
service. To test the performance of API annotation, three evaluation metrics are
used including API hit rate HitRate, API average tagged times AvgTag and API
cover rate CoverRate. HitRate is defined as the ratio of the sum of annotated
APIs and the total number of APIs involved in a mashup service. AvgTag is
defined to measure the average number of times that an API was tagged in a
mashup service. CoverRate is defined as the ratio of the sum of words used
to annotate more than one API service and the total number of words used to
annotate APIs in a mashup service.

To test the performance of business execution processes extraction in mashup,
Recall, Precision and F−measure are used in the experiments. Precision is
defined as the ratio of the number of correctly extracted business execution



462 G. Zou et al.

processes and the total number of extracted business execution processes. Recall
is defined as the ratio of the number of mashup services where business execution
processes are accurately extracted and the total number of mashup services.
F−measure is a comprehensive indicator based on Precision and Recall.

4.4 Comparative Results and Analyses

In API annotation experiments, we test the performance of four competing meth-
ods on the evaluation metrics HitRate, AvgTag and CoverRate. The experi-
mental results on API annotation are shown in Fig. 6.

Fig. 6. Experimental results on API annotation among four competing approaches.

The horizontal axis represents the number of APIs invoked by a mashup ser-
vice and the vertical axis represents the performance on each evaluation metric.
Overall, three competing approaches based on semantic similarity calculation
(T-WDM, G-WDM and STEM) are better than LED on all three-evaluation
metrics. The main reason is that the style of mashup functional description
words has many variants, while LED does not take into account semantics and
can only establish logical connections among mashup and API services that use
the same vocabulary.

More specifically, our two proposed approaches G-WDM and T-WDM out-
perform STEM and LED on HitRate, because latent topics have been applied
to calculate semantic similarity degree based on WordNet. Regarding AvgTag,
our approach T-WDM reaches the highest performance, while G-WDM is supe-
rior to another two competing approaches. The main reason is that a bunch of
words can be matched with an API when the threshold is set as a small value in
T-WDM, while an API can be approximately annotated by a word in G-WDM
by the maximum matching of bipartite graph. Conversely, low similarity degree
leads to a smaller number of matched words on average for an API in STEM
and LED. As for CoverRate, our approach T-WDM has the highest value, while
other three competing approaches are much lower than T-WDM. The underlying
reason is that they either can only match approximately a mashup functional
description word for an API in G-WDM or less than that in STEM and LED.



Extracting Business Execution Processes 463

In the experiment of extracting business execution processes from a mashup,
we compare the performance of the four competing approaches on precision,
recall and F−measure. The experimental results are shown in Fig. 7.

Fig. 7. Experimental results on business execution processes extraction.

From the experimental results in Fig. 7, we conclude that with the increase of
the number of APIs invoked by a mashup service, our two proposed approaches
T-WDM and G-WDM are better than STEM and LED. Due to the loosely rela-
tional selection strategy, the precision of T-WDM becomes smaller as the increas-
ing number of APIs involved in a mashup service. On the contrary, the precision
of G-WDM becomes bigger as the number of APIs increases in a mashup ser-
vice, counting on the effective annotation by bipartite graph maximum match-
ing. Generally, the precision of T-WDM and G-WDM exceeds more than 50% no
matter how the number of APIs varies in a mashup service, whereas STEM and
LED are both less than 45%. In conclusion, the experimental results validate the
feasibility and effectiveness of our proposed approach.

4.5 Performance Impact of Parameters

The proposed approach T-WDM takes a threshold θ as the constraint during API
annotations. This parameter directly affects the effectiveness of API annotation.
In order to test its influence, we set the value of θ from 0.7 to 0.9 with a step
size of 0.1 and compare the performance with G-WDM on HitRate, AvgTag
and CoverRate. The experimental results are illustrated in Fig. 8.

It can be observed that the effectiveness of T-WDM becomes worse along
with the increasing number of θ. The explanation is that as the threshold of
semantic similarity degree increases, the number of matched words for an API
obtained by T-WDM decreases.

For our proposed two approaches, T-WDM is superior to G-WDM in terms
of AvgTag and CoverRate, regardless of the variations of θ in the experimental
setting. Note that once a bipartite graph is modeled for API annotation, the
results by G-WDM keep unchanged on three evaluation metrics, since the map-
ping from an API to its annotated words are found by the maximum matching
algorithm. Therefore, when θ becomes large enough, the values of AvgTag and



464 G. Zou et al.

Fig. 8. Experimental results on parameter impact of API annotation.

CoverRate in T-WDM could be lower than that in G-WDM. The reason is that
the value of these two metrics tends to be 0, if the threshold is so large that no
appropriate words can be matched for an API.

5 Related Work

In this section, we mainly review the recent advancements on service recommen-
dation and mashup creation that is highly related with our work.

To assist mashup developer’s API selection and improve the efficiency of
mashup creation, the authors in [1,11] extracted user’s social attribute and
interests’ portrait to recommend candidate APIs for mashup service creation.
The authors in [14] proposed a dynamic mashup recommendation system, where
service evolution has been taken into account by exploiting LDA topic model
and time series prediction. The authors in [10] enriched service recommendation
results for mashup creation by employing variant K-means. This can enhance
service categorization and restrain candidate services from each category.

Recently, the authors in [9] proposed an API recommendation method for
mashup development using matrix factorization where mashup services are clus-
tered through a two-level topic model. The authors in [12] proposed a new tech-
nique to fast and accurately build an API network using semantic similarity con-
struction and community detection. By doing so, mashup developers are freed
from the exhausting search phase to find their desired APIs. The authors in [4]
proposed a novel service set recommendation framework for mashup creation by
applying an improved clustering algorithm vKmeans and hypergraph modeling.
It solves the problem of redundant service recommendation and ignored coopera-
tion relations among services. The authors in [13] proposed a probabilistic matrix
factorization approach to discover implicit co-invocation patterns between APIs,
finding more accurate API rankings for mashup recommendation.

From the above investigation, we observe that the existing methods mainly
focus on how to accurately and efficiently find appropriate APIs for mashup
creation. Due to lacking business execution processes of these recommended
APIs, it is still a challenging and time-consuming task for software developers
to create a new mashup service.



Extracting Business Execution Processes 465

6 Conclusion

In this paper, we propose a novel approach to extract API business execution pro-
cesses for mashup creation. It goes through three crucial stages including word-
domain model construction, mashup description API annotation and dependency
network extraction. Extensive experiments conducted on large-scale real-world
APIs and mashup services crawled from ProgrammableWeb validate the feasi-
bility and effectiveness of the proposed approach. By providing the invocation
relationships among APIs, it could be potentially applied to assist software devel-
opers in expediting the procedure of mashup creation. In the future work, we
will consider using a greater number of criteria, including API functionality,
reliability, and a range of non-functional features such as cost, performance, and
API provider reputation, when recommending a set of web APIs with business
execution processes.

Acknowledgement. This work was partially supported by Shanghai Natural Sci-
ence Foundation (No. 18ZR1414400 and 17ZR1400200), National Natural Science
Foundation of China (No. 61772128 and 61303096), Shanghai Sailing Program (No.
16YF1400300), and Fundamental Research Funds for the Central Universities (No.
16D111208).

References

1. Cao, B., Liu, J., Tang, M., Zheng, Z., Wang, G.: Mashup service recommendation
based on user interest and social network. In: IEEE International Conference on
Web Services (ICWS), pp. 99–106. IEEE (2013)

2. De Marneffe, M.C., Manning, C.D.: Stanford typed dependencies manual. Techni-
cal report, Stanford University (2008)

3. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for
network flow problems. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinato-
rial Optimization — Eureka, You Shrink!. LNCS, vol. 2570, pp. 31–33. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36478-1 4

4. Gao, W., Wu, J.: A novel framework for service set recommendation in mashup
creation. In: IEEE International Conference on Web Services (ICWS), pp. 65–72.
IEEE (2017)

5. Gao, Z., et al.: SeCo-LDA: mining service co-occurrence topics for recommendation.
In: IEEE International Conference on Web Services (ICWS), pp. 25–32. IEEE
(2016)

6. Jain, A., Liu, X., Yu, Q.: Aggregating functionality, use history, and popularity of
APIs to recommend mashup creation. In: Barros, A., Grigori, D., Narendra, N.C.,
Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 188–202. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48616-0 12

7. Levenshtein, V.: Binary codes capable of correcting spurious insertions and deletion
of ones. Probl. Inf. Transm. 1(1), 8–17 (1965)

8. Li, C., Zhang, R., Huai, J., Sun, H.: A novel approach for API recommendation in
mashup development. In: IEEE International Conference on Web Services (ICWS),
pp. 289–296. IEEE (2014)

https://doi.org/10.1007/3-540-36478-1_4
https://doi.org/10.1007/978-3-662-48616-0_12


466 G. Zou et al.

9. Rahman, M.M., Liu, X., Cao, B.: Web API recommendation for mashup develop-
ment using matrix factorization on integrated content and network-based service
clustering. In: IEEE International Conference on Services Computing (SCC), pp.
225–232. IEEE (2017)

10. Xia, B., Fan, Y., Tan, W., Huang, K., Zhang, J., Wu, C.: Category-aware API
clustering and distributed recommendation for automatic mashup creation. IEEE
Trans. Serv. Comput. 8(5), 674–687 (2015)

11. Xu, W., Cao, J., Hu, L., Wang, J., Li, M.: A social-aware service recommendation
approach for mashup creation. In: IEEE International Conference on Web Services
(ICWS), pp. 107–114. IEEE (2013)

12. Yang, X., Cao, J.: A fast and accurate way for API network construction based
on semantic similarity and community detection. In: Shi, X., An, H., Wang, C.,
Kandemir, M., Jin, H. (eds.) NPC 2017. LNCS, vol. 10578, pp. 75–86. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68210-5 7

13. Yao, L., Wang, X., Sheng, Q.Z., Benatallah, B., Huang, C.: Mashup recommen-
dation by regularizing matrix factorization with API co-invocations. IEEE Trans.
Serv. Comput. (2018). https://doi.org/10.1109/TSC.2018.2803171

14. Zhong, Y., Fan, Y., Huang, K., Tan, W., Zhang, J.: Time-aware service recommen-
dation for mashup creation. IEEE Trans. Serv. Comput. 8(3), 356–368 (2015)

https://doi.org/10.1007/978-3-319-68210-5_7
https://doi.org/10.1109/TSC.2018.2803171

	Extracting Business Execution Processes of API Services for Mashup Creation
	1 Introduction
	2 Problem Formulation
	3 Automated Extraction of Business Execution Processes
	3.1 Framework of the Approach
	3.2 Word-Domain Model Construction
	3.3 Mashup Functionality API Annotation
	3.4 Dependency Network Extraction

	4 Experiments
	4.1 Experimental Setup and Dataset
	4.2 Case Study of Business Execution Processes Extraction
	4.3 Competitive Methods and Evaluation Metrics
	4.4 Comparative Results and Analyses
	4.5 Performance Impact of Parameters

	5 Related Work
	6 Conclusion
	References




