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Abstract. The explosive increase of mobile devices and advanced com-
munication technologies prompt the emergence of mobile computing.
In this paradigm, mobile users’ idle resources can be shared as service
through device-to-device links to other users. Some complex workflow-
based mobile applications are therefor no longer need to be offloaded
to remote cloud, on the contrary, they can be solved locally with the
help of other devices in a collaborative way. Nevertheless, various chal-
lenges, especially the reliability and quality-of-service of such a collabo-
rative workflow scheduling problem, are yet to be properly tackled. Most
studies and related scheduling strategies assume that mobile users are
fully stable and with constantly available. However, this is not realis-
tic in most real-world scenarios where mobile users are mobile most of
time. The mobility of mobile users impact the reliability of corresponding
shared resources and consequently impact the success rate of workflows.
In this paper, we propose a reliability-aware mobile workflow schedul-
ing approach based on prediction of mobile users’ positions. We model
the scheduling problem as a multi-objective optimization problem and
develop an evolutionary multi-objective optimization based algorithm
to solve it. Extensive case studies are performed based on a real-world
mobile users’ trajectory dataset and show that our proposed approach
significantly outperforms traditional approaches in term of workflow suc-
cess rate.

Keywords: Workflow scheduling · Mobile computing ·
Quality-of-service · Reliability

1 Introduction

Recent years have witnessed a rapid growth and advances of mobile devices, e.g.,
smart phones, tablet computers, wearable devices, etc., and mobile services.
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Mobile devices are changing the way people access information in their daily
lives. In the mobile computing environment, mobile users can exploit nearby
resources, e.g., computing resource, data traffic, sensors, etc., through utilizing
mobile services shared in a mobile ad hoc network (MANET). MANET is a self-
organized local mobile network built by nodes within each other’s communication
fields.

High leniency

Bandwidth limitations
Extreme centralization

Cloud

sources

Through D2D link

Energy-saving data transfer
Depend on human mobility

MANET

Fig. 1. Mobile computing paradigm.

As illustrated in Fig. 1, the core idea of mobile computing over MANET is
sharing. In this paradigm, mobile users are allowed to utilize resources and ser-
vices shared by other users nearby in a collaborative way, and thus the provision-
ing capability of involved services is expanded through exploiting direct physi-
cal contacts among users. These available resources and services can be shared
directly among users in an elastic and on-demand way without time-consuming
and energy-requiring communications with pre-existing infrastructure, for exam-
ple, cellular networks and traditional centralized cloud data centers. Note that,
workflow-based mobile applications over MANET (e.g., TensorFlow Lite, Photo
editing on mobile, and Online video sharing) usually require huge computational
resources and data transfer. Therefore, nearby mobile resources are thus more
adept, in terms of timeliness and energy-efficiency, at executing these workflow
tasks than remote cloud with the help of device-to-device (D2D) communica-
tions such as Bluetooth, Wi-Fi, and NFC. D2D communications are featured
by extensively-reduced inter-device delays and energy consumption than tradi-
tional cellular networks [3]. It is widely believed to have potential to improve
Quality-of-Service (QoS) of mobile services over MANET by providing increased
user throughput, reduced cellular traffic, and extended network coverage [5].

However, users in a MANET often have high mobility, which resulting in
topological changes in the MANET over time. Under such circumstances, it has
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become a great challenge how to compose and schedule reliable workflow tasks
over a versatile MANET and fulfill users’ quality-of-service (QoS) requirements
in the meantime.

To cope with aforementioned challenges and concerns, in this study, we pro-
pose a predictive reliability-aware mobile workflow scheduling approach over
MANET. We first present the concept of mobile resources sharing community
and the corresponding mobile resources reliability evaluation method. Then, a
gaussian mixture model for user position prediction is used to capture the mov-
ing trend of mobile users and make a prediction of resource providers’ reliability.
Finally, we develop a multi-objective optimization based composition algorithm
named MDEWS, the predicted reliability values are feed into this algorithm to
yield workflow schedules. The results of experiments conducted on a real-world
user movement dataset show that our approach is capable of dynamically captur-
ing the mobility of mobile users and achieving higher success rates of workflows
than traditional approaches.

2 Related Work

Workflow scheduling aims to schedule tasks into proper time slice of computing
resources at proper time. As a well-known NP-hard problem, extensive studies
have devoted into this problem in the past decades. Typically, most workflow
scheduling approaches can be classified into two categories in term of comput-
ing platform: one is traditional multiprocessor and grid system, another is IaaS
cloud which has attracted great attention recent years. In this section, we first
review workflow scheduling problems in grid system and IaaS cloud, then dis-
cuss the challenges and concerns of scheduling workflow in mobile computing
environment.

Grid can be seen as a service-oriented paradigm for resource-intensive appli-
cations. In a grid, every resource can be represented as a service and these
resources are delivered through a utility computing models based service provi-
sioning. Many heuristics and meta-heuristics based algorithms have been pro-
posed to schedule workflow applications in grid. For example, Maheswaran et
al. [10] studied on-line and batch heuristics for workflows scheduling in hetero-
geneous distributed system, they proposed three heuristics strategies: Min-Min,
Max-Min and Sufferage. Topcuoglu et al. [20] presented two algorithms named
Heterogeneous Earliest-Finish-Time (HEFT) and Critical-Path-on-a-Processor
(CPOP) for workflow scheduling over heterogeneous processors with bounded
number. Zhao et al. [16] assign a weight to each node and edge in a workflow,
then they use a HEFT algorithm to schedule the tasks of workflow onto hetero-
geneous machines with bounded number.

Cloud computing is becoming an increasingly popular platform for workflow-
based applications such as scientific workflows. Recent years, workflow scheduling
in cloud has attracted great attention and extensive efforts have been devoted
to this field based on the features of IaaS cloud [17,21,22]. For instance, Mao
et al. [11] proposed an auto-scaling workflow scheduling approach, they consider
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not only user performance requirements but also budget minimization. Abr-
ishami et al. [1] extended the Partial Critical Paths (PCP) algorithm for utility
grid to IaaS cloud which named Cloud Partial Critical Paths (IC-PCP). The
scheduling goal of IC-PCP is minimizing execution cost while meeting deadline
constrain. Rodriguez and Buyya [15] presented a static, deadline-constrained,
cost-aware workflow scheduling approach based on Particle Swarm Optimisa-
tion (PSO). IaaS cloud features such as elastic and unlimited resource provision
and VM performance variation are considered in their system model. Li et al.
[8] proposed a predictive, fluctuation-aware workflow scheduling approach. They
consider fluctuant VM performance and use an ARMA (Auto-Regressive Moving
Average) model to make a prediction about VMs’ future performance to achieve
lower SLA (Service-Level-Agreement) violation rate. Zhu et al. [24] proposed
a evolutionary multi-objective workflow scheduling algorithm named EMS-C,
they model the workflow scheduling problem as a multi-objective optimization
problem which optimizes both makespan and cost, then a NSGA-II based meta-
heuristic algorithm is developed to solve it.

It can be seen that most approaches and algorithms are designed for cloud
computing environment or grid system. Cloud and grid share the same character-
istic of relative stability, and they are usually deployed in permanent data centers
or distributed systems. However, these scheduling methods cannot be applied to
the mobile computing environment directly because they usually do not consider
resource reliability or they just consider constant reliability. In mobile comput-
ing environment, the topological structure of an MANET can change at any
time and the fluctuation of reliability could be very volatile, which makes them
fail to find a reliable schedule. Therefore, to schedule reliable workflow over
MANET, approaches which adapt to dynamic mobile computing environment
are required. In this paper, we propose a reliability-aware workflow scheduling
approach based on user position prediction. To capture the variation trend of
reliability, the predicted mobile user positions are used to evaluate the reliability
of resource provider, then these reliability values are fed into a multi-objective
evolutionary algorithm to generate reliable-aware schedule plans.

3 Preliminaries

3.1 Mobile Resources Sharing Community

A Mobile Resources Sharing Community (MRSC) is a mobile ad hoc network for
mobile resources sharing. It is usually constructed by nearby mobile devices and
sink nodes. It can be formally described as a 2-tuple M = (N,C), where N is
the set of mobile devices and sink nodes in an MRSC, C the set of connections
for every communication path. Figure 2 shows an example MRSC established
in a coffee shop, where mobile users are within each other’s D2D transmission
ranges.

An MRSC has three characteristics: (1) locality: A mobile user can per-
ceive available computing resources around and deploy workflow tasks to other
mobile devices in the same MRSC, and locality of computing resources can thus
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Fig. 2. An MRSC example in a café.

be exploited and utilized; (2) mobility: In an MRSC, it is not uncommon that all
computing nodes are constantly moving during task executing time; (3) dynam-
icity: Mobile users may join or leave an MRSC automatically when they enter
or leave a participating user’s transmission range.

3.2 Mobile Resource Reliability

It can be seen that scheduling workflow tasks over an MANET is unreliable
due to the high mobility of mobile devices. In this paper, the reliability of D2D
links between mobile devices in MANET are considered when evaluating the
reliability of mobile resource provider [7]. Suppose that there are a total of |N |
nodes and |C| connections in an MRSC at time t, the reliability of computing
resource provided by provider p for requester r can be calculated as the reliability
between these two devices p and r. In an MRSC, each edge has its operational
probability ρ, which can be estimated from the received signal strength indicator
(RSSI) value or GPS data easily [13]. The state of the MRSC at time t can thus
be represented as S(t) = [S1(t), S2(t), ..., S|C|(t)], where the i-th element Si(t)
is assigned to 1 if the i-th edge is working at time t, otherwise 0. Thus, the
probability of an MRSC being in a given state can be calculated as follows:

P(S(t)) =
|C|∏

i=1

ρ
Si(t)
i (1 − ρi)1−Si(t) (1)

then the reliability of a D2D link between p and r can be expressed as follows:

RL(s,d)[G(t)] =
∑

all S(t)

φ(S(t), p, r)P(S(t)) (2)

where φ(S(t), p, r) is the function to identify whether there are available paths
between device p and r. If at state S(t), there is at least one path between p and
r, then φ(S(t), p, r) = 1, otherwise 0.
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It can be seen that the reliability of a resource provider in an MANET varies
over time and is closely related to the communication distance between the
workflow application requester and the mobile resources providers. A mobile
provider currently observed to be available may become unavailable in the near
future due to the change in this distance.

3.3 Gaussian Mixture Model for User Position Prediction

A recent study [18] reports that there is a potential 93% average predictability in
user mobility. For example, Fig. 3 shows pedestrians’ trajectories on a campus.
We can clearly see that most trajectories share similarity and regularity pat-
terns. Such similarity, periodicity, and regularity can be formally and properly
described with novel methods [2,9,14].
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Fig. 3. Trajectories in a campus.

Human trajectories are usually fulfill multiple mobility patterns, depending
on the subjective destination, the limit of objective environment, other peo-
ple’s movement and so on. Each pattern within a trajectory can be effectively
described by a Gaussian process and the entire trajectories thus corresponds to
a Gaussian Mixture Model (GMM).

In a GMM, users’ history trajectory data can be described as follows:

U = {Γ1, Γ2, ..., Γn} (3)
= {(−→x1,

−→y1), (−→x2,
−→y2), ..., (−→xn,−→yn)}

= {−→
X,

−→
Y }

where Γi denotes the i-th user’s trajectories,
−→
X and

−→
Y the mapping vector of

these trajectories in X and Y directions, respectively. A trajectory Γi = (−→xi ,
−→yi )

can be expressed as a multiple different Gaussian processes as follows:
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p(−→xn|λ) =
K∑

i=1

ωiGP (−→xn|μ(x,i), σ(x,i)) (4)

p(−→yn|λ) =
K∑

i=1

ωiGP (−→yn|μ(y,i), σ(y,i))

where GP (−→xn|μ(x,i), σ(x,i)) denotes the probability function of trajectory Γn’s X
direction in the i-th trajectory pattern, K the number of all trajectory patterns,
ωi the weight of the i-th trajectory pattern with

∑K
i=1 ωi = 1, μ(x,i) and μ(y,i) the

means of the i-th trajectory pattern in directions X and Y , σ(x,i) and σ(y,i) the
covariances of the i-th trajectory pattern in directions X and Y , respectively.
We use λ to denote the set of parameters {ωi, μi, σi} where i ∈ {1, 2, ..., N}.
Therefore, the likelihood function of GMM for training set U = {−→X,

−→
Y } can be

expressed as follow:

P (
−→
X |λ) =

K∏

n=1

p(−→xn|λ) (5)

P (
−→
Y |λ) =

K∏

n=1

p(−→yn|λ)

The forecasting process consists three steps: (1) applying a Gaussian Mixture
clustering method [23] to trajectory dataset U to obtain K clusters, which cor-
respond to K different trajectory patterns; (2) an expectation-maximization
algorithm is applied to estimate parameter λ; (3) forecast a mobile user’s future
position based on his/her recent trajectory. The prediction process is employed
in Sect. 4 to obtain the prediction results of mobile devices’ position. Then the
reliability of providers is evaluated based on its predicted position is further fed
into the optimization formulation to facilitate workflow schedules.

3.4 Proposed Approach Architecture

In an MRSC, each mobile device represent a mobile resource provider which
able to provide computing capability to nearby devices. The reliability of mobile
resource providers is varying due to the high dynamic of MANET. In order
to capture the reliability variations at run-time to realize reliable scheduling,
we proposed a user position prediction-based workflow scheduling approach for
MANET. As shown in Fig. 4, the process of our approach consists of three typical
steps: (1) a workflow template is constructed when a mobile user wants to launch
a workflow request. A workflow template usually has multiple tasks and each task
can be scheduled to an available mobile resource provider. (2) then, it begins to
discover potential providers in the same MRSC. At the same time, the reliability
of these providers are evaluated according to its predicted positions. A resource
pool which containing available providers is constructed in this step; (3) next,
it will decide which provider to select for each task to realize the workflow
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Fig. 4. The process of mobile workflow scheduling.

scheduling with satisfactory reliability and makespan. The decision making is
transformed into a multi-objective optimization problem. Then an evolutionary-
based algorithm named MDEWS is employed to yield a set of solutions, which
are equally optimal from the view of Pareto fronts [4] and can be selected based
on user preferences.

4 System Model and Problem Formulation
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Fig. 5. An example of workflow.

A workflow application is described by
a Directed-Acyclic-Graph (DAG) W =
(T,E), where T = (t1, t2, ..., tm) denotes
the set of tasks and E the set of edges.
Without loss of generality, t1 and tm are
considered to be the entry and exit tasks,
respectively. The edge ei,k indicates that
tk can be executed after ti is accom-
plished. ∗ti and t∗i denote the parent and
child sets of ti, respectively. The workflow
starts and concludes by the entry and exit tasks, respectively. Figure 5 shows an
example of sample workflow with 8 tasks. D denotes the user-recommended
constraint of the completion time of the workflow, usually specified in SLA
documents.
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An MRSC supports workflows application through mobile resource providers.
These providers are selected from a resource provider pool, P = {p1, p2, ..., pn},
and at most n providers are required at runtime if no two tasks share the same
providers. Providers can be different in their CPU speed, memory, and pricing
configurations, and each provider have an available period for tasks. The starting
time of tasks is decided by their supporting provider and the completion time
of their preceding tasks. If task ti connects tk through edge ei,k and they are
executed by different providers, the transfer time, Di,k, is inevitable because
inter-device data and control signal transfer is required. Otherwise, Di,k = 0 if
both tasks are on the same provider.

Finally, the problem of workflow scheduling over MANET can therefore be
formulated as:

Min : y = f(x) = (1 − ξ(x), τ(x))T (6)
s.t : τ(x) ≤ D

x = [x1, x2, ..., xn]T ∈ Θ

xmin
i ≤ xi ≤ xmax

i (i = 1, 2, ..., n)

where ξ(x) and τ(x) are two functions to identify the estimated reliability and
makespan required for schedule x respectively, Θ stands for the decision space
(i.e., resource pool).

We use function w(ti) to identify which provider does task ti is going to
be scheduled into, ξ(x) can thus be aggregated by the reliability of each D2D
communication in scheduling plan as follows:

ξ(x) = log

|E|∏

i=1

RL(w(si),w(di))[G(t)] (7)

where si and si are father and child tasks in edge ei respectively. The derivation
of τ(x) requires some efforts, τ(x) can be calculated as the estimated end time
of the last task tm in a workflow:

τ(x) = dm (8)

where dm denotes the estimated end time of task tm. We use di to denote the
estimated end time of task ti, it can be iteratively calculated as:

di = ei + bi (9)

where bi denotes the estimated start time of executing ti and ei the execution
time of ti itself. bi is decided by the estimated end time of its immediately pre-
ceding tasks and the time required for data transfer. Let γi denote the estimated
time when all earlier tasks scheduled to the same provider to ti are finished, we
have:

γi = max{dj | tj ∈ ∗ti ∧ w(ti) = w(tj)} (10)
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where ∗ti denotes the immediately preceding tasks of ti, i.e., those which directly
connect ti through edges in the workflow. w(ti) = w(tj) indicates that ti and tj
are scheduled into the same provider.

Note that the dependency constraint requires that a task be executed only
if its immediately preceding ones successfully terminate and transfer data. We
use yi to denote the estimated earliest time when the described condition holds
for ti.

yi = max{dk + Dk,i | tk ∈ ∗ti ∧ w(tk) �= w(tk) } (11)

The earliest possible time to execute bi, can therefore be calculated as:

bi = max{γi, yi} (12)

The first task of a workflow has no preceding task and therefore its estimated
ending time is obtained as:

d1 = δ + e1 (13)

where δ is the time between receiving a workflow request and generating a cor-
responding schedule.

Since optimal reliability and makespan are two conflicting quality, we con-
sider Pareto domination as the measure of the optimality of candidate solutions.
Consequently, for solution u, v ∈ Θ, u dominates v when:

{
fi(u) ≤ fi(v) ∀ i ∈ [1, n]
fj(u) < fj(v) ∃ j ∈ [1, n] (14)

A solution x∗ is Pareto-optimal if it is not dominated by any other solutions.
The set of all Pareto-optimal solutions in the objective space is called a Pareto
front. For the workflow scheduling problem, solution u dominates solution v if
ξ(u) ≤ ξ(v) ∧ τ(u) < τ(v) or ξ(u) < ξ(v) ∧ τ(u) ≤ τ(v).

5 Multi-objective Differential Evolution for Workflow
Scheduling

For the problem formulated in last section, methods such as multiple-objective-
integer-linear-programming and multi-objective-branch-and-bound can be used
for solutions. However, such method are usually considered to be with high
time-complexity and thus could be impractical due to the fact that the problem
space could be very large (the number of candidate mobile resource providers
for one task can be 100+ for some typical cases, e.g., shopping mall and subway
station. The number of tasks could be 50+ for some typical complex scientific
application, e.g., Montage and Cybershake). In contrast, Multi-objective differ-
ential evolution (MODE) has been shown to be a simple yet efficient evolutionary
algorithm for multi-objective optimization problems in diverse domains. It is fea-
tured by its strong parallelizability of genetic operators and good convergence
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properties than other traditional EMO algorithms. For the above problem for-
mulated, we propose an improved MODE algorithm, named MDEWS, short for
Multi-objective Differential Evolution for Workflow Scheduling to find solutions.

MDEWS developed in this work is a kind of meta-heuristic procedure similar
to the process of natural selection. The process of MDEWS is shown in Fig. 6, it
is used to yield high-quality solutions for optimization and searching problems by
employing bio-inspired operations, e.g., mutation and crossover. A population of
its candidate solutions to an optimization problem keeps evolving toward better
solutions.

5.1 Encoding and Population Initialization

In MDEWS, a schedule is expressed as an individual which described by a vector
of positive integers. The length of vectors are m, i.e., the number of tasks in a
workflow. The i-th entry of the vector, in turn, refers to the mobile provider
which i-th task in the workflow is scheduled into. Figure 7 shows the encoding
scheme of a schedule and its deployment details for the sample workflow given
earlier. In this schedule, task t1, t2, t7 are scheduled into provider p2 to execute,
t3, t4, t8 are scheduled into p1, t5 is scheduled into p3 and t6 is scheduled into
p4.

MDEWS starts with population initialization. The initial population with y
individuals consists of three parts: (1) one individual i1 with the highest ξ(i1)
regardless of its makespan; (2) one individual i2 with the shortest τ(i2) regardless
of its reliability; and (3) y − 2 individuals are randomly generated according to
the current resource provider pool.

5.2 Mutation

The mutation operator simulates the evolutionary activity that an individual
directionally learns from other individuals. To speed up the convergence and
optimize the exploration ability, we consider an improved mutation strategy as
follows:

Vi = Xi + F (X∗ − Xi) + (15)

F (X# − Xi) + F (X1
r − X2

r )
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Fig. 7. An example of encoding.

where F is a scale factor, Vi an offspring individual, Xi mutation target, X1
r and

X2
r two random individuals chosen from the current population, X∗ and X#

the individuals randomly chosen from top-k best individuals in the population
ordered by their estimated reliability and makespan, respectively, k is set to 15%
in this paper. This top-k strategy can accelerate the convergence speed and in
the meantime avoiding trapping into local optima. As shown in Algorithm1,
mutation operator first ranks individuals in a population order by its makespan
and reliability and get the top 15% best group. Then it chooses base individuals
X1

r and X2
r from current population and target individuals X∗ and X# from

top 15% best group randomly. Finally, mutated individuals are generated by
Eq. (15) based on base individuals and target individuals.

The time complexity of ranking all individuals and selecting top 15% best
group (as shown lines 1–3 in Algorithm1) are O(y log y), mutating all individuals
(as shown lines 4–16 in Algorithm1) is O(my). Generally, m is large than log y,
therefore the time complexity of mutation operator is O(my).

5.3 Crossover

The crossover operator simulates the genetic activity that an individual obtains
characteristics from other individuals controlled by a crossover rate. As shown in
Algorithm 2, the dynamic changing crossover rates are employed to avoid useless
crossover operations. The crossover rate in the i-th generation, Ci, is randomly
generated from a Gaussian distribution as:

Ci = G(Cm, 0.1) (16)

where Cm is calculated from the historical value of Ci, Cm in its first generation
is 0.6. We use C to indicate the set of crossover rates which used in previous
generations. Cm thus can be calculated as follows:

Cm = wC × Cm + (1 − wC) × meanPow(C) (17)
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Algorithm 1. Mutation operator
Input: Population X; Task count m; Scale factor F ; Resource pool P
Output: Mutated population V ;

1: rank individuals in X order by its makespan and reliability
2: TopRel ← get top 15% best individuals according to estimated reliability
3: TopMs ← get top 15% best individuals according to estimated makespan
4: for each individual Xi in population X do
5: X1

r ← choose one individual from X randomly
6: X2

r ← choose one individual from X randomly
7: X∗ ← choose one individual from TopRel randomly
8: X# ← choose one individual from TopMs randomly
9: Vi ← Xi + F (X∗ − Xi) + F (X# − Xi) + F (X1

r − X2
r )

10: for j = 1 to m do
11: if Vi[j] < P.LowBounds[j] or Vi[j] > P.UpperBounds[j] then
12: Vi[j] ← choose one provider between low bounds and upper bounds of

providers randomly
13: end if
14: end for
15: add Vi into mutated population V
16: end for
17: return V

where

meanPow(C) =
|C|∑

i=1

[
(Ci)n

|C| ]
1
n (18)

where wC is a real value randomly generated from [0.9, 1] and n is set to 1.5 in
this paper. The time complexity of crossover operator is O(my).

5.4 Complexity Analysis

The overall computational complexity of our proposed approach can be ana-
lyzed by examining its position prediction, population initialization, reliability
and makespan evaluation, mutation, crossover and dominance selection. Suppose
there are k available mobile resource providers in a MRSC, the time complex-
ity of forecasting all providers’ future position is O(k2). The time complexity
of initializing an individual is O(m), and thus population initialization requires
O(my) where y is the size of initial population. The reliability and makespan
evaluation for each individual has the time complexity of O(mlog|E|) and thus
reliability and makespan evaluation for initial population of size y with ω gen-
erations has the time complexity of O(yωmlog|E|). The time complexity for
mutation, crossover, and dominance selection operations are O(my), O(my), and
O(y2), respectively. Consequently, the total time complexity of motion, crossover
and dominance selection with ω generations is O(ωmy) + O(ωmy) + O(ωy2).
Finally, the total time complexity of position prediction, population initializa-
tion, reliability and makespan evaluation, mutation, crossover and dominance
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Algorithm 2. Crossover operator
Input: Population X; Mutated population V ; History crossover rate C; Task count

m;
Output: Population after crossover operation X ′;

1: calculate meanPow according to history crossover rate C by (18)
2: calculate Cm by (17)
3: calculate crossover rate Ci by (16)
4: for each individual Xi in population X do
5: for j = 1 to m do
6: if rand() < Ci then
7: Cv[j] ← 1
8: else
9: Cv[j] ← 0

10: end if
11: end for
12: for j = 1 to m do
13: X ′

i[j] ← Xi ∧ (1 − Cv[j]) + Vi ∧ Cv[i]
14: end for
15: add X ′

i into X ′

16: end for
17: return X ′

selection is thus O(k2) + O(yωmlog|E|) + O(ωmy) + O(ωmy) + O(ωy2). Gener-
ally, mlog|E| is large than y, thus the total time complexity of our approach is
O(k2 + yωmlog|E|), and such complexity suggests good scalability.

6 Experiments and Analysis

To evaluate the effectiveness of our approach, we conducted experiments on a
real-world user trajectory dataset and multiple scientific workflow templates in
a wide range of application scenes.

The Stanford Drone dataset [19] is a user trajectory dataset collected from
Stanford campus. In this dataset, all pedestrians’ movement trajectories in a
certain scene are recorded for consecutive periods. We choose bookstore, gates,
deathcicle, and hyang these four scenes with varying crowd density to conduct
our experiments. The aerial views of four scenes are shown in Fig. 8, and we
assume that pedestrians within each others’ D2D communication distances in
the same scene establish an MRSC.

Pegasus project [6] has released a real-world scientific workflow dataset which
includes Montage, CyberShake, Sipht and so on. In this dataset, the structure
of DAG, size of tasks and data transferring are well recorded. Besides, it also
provides a reference execution time of each task. In this paper, we use Montage,
CyberShake and Sipht these three most common scientific workflow templates
and one randomly generated workflow template to conduct our experiments. The
structures of these workflows are shown in Fig. 9.
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(a) bookstore (b) deathcircle (c) gates (d) hyang

Fig. 8. The aerial view of experiment scenes.

(a) Montage (b) Cybershake (d) Random (c) Sipht

Fig. 9. Workflow templates used for experiment.

We first evaluate the exploitation ability of MDEWS and its peers towards the
problem of workflow scheduling. Figure 10 shows the trade-off between reliabil-
ity and makespan (i.e., pareto fronts) get by MDEWS and it peers. We consider
NSGA-II, MOPSO, MOEA\D and SPEA2 as baseline algorithms because they
are most widely used methods in solving multi-object workflow scheduling prob-
lem. It can be clearly seen that MDEWS can yield better pareto fronts in most
cases, NSGA-II performs close to ours, then SPEA2 and MOPSO, MOEA\D
cannot get a full pareto front in some cases such as deathcicle scene with Sipht
workflow and hyang scene with Montage workflow and Sipht workflow.

To make a more clear comparison, HV values (a comprehensive evaluation
index used to judge a multi-objective optimization method, the higher the better)
are used to show the differences between MDEWS and it peers. As shown in
Table 1, the ratios are used to offer a clearer comparison, for example, the HV
improvement ratio can be calculated as follows:

HV (MDEWS)
HV (Peer)

− 1 (19)

Similarly, the comparison ratio of algorithms’ runtime can be calculated as fol-
lows:

RunTime(Peer)
RunTime(MDEWS)

(20)
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bookstore scene gates scene deathcircle scene hyang scene

Fig. 10. Trade-off between reliability and makespan for different multi-objective opti-
mization methods.

It can be seen that, MDEWS achieves a higher HV value in most cases. This
advantage is achieved in a way that the individuals, with the help of MDEWS,
are more likely to learn from a group of other individuals with high reliability
and low makespan estimates, rather than learning from a single individual with
seemingly highest optimality achieved by traditional algorithms. It also shows
that MDEWS achieves higher time-efficiency in all cases (2 times faster than
MOPSO on average, 3 times faster than MODE and SPEA2 on average).

We also compared MDEWS with traditional non-prediction-based workflow
scheduling algorithms (EMS-C [24], PSO [15], and CEGA [12]) which assume
stable resource reliability, in terms of the success rate of workflow execution.
As shown in Fig. 11, our proposed approach clearly outperforms non-prediction-
based approaches in most cases. To be specific, the success rate achieved by our
method is 3.74%, 9.25%, 12.35% and 20.51% higher success rate than EMS-C
on average in four scenes, respectively; 5.20%, 9.51%, 12.33% and 23.40% higher
than PSO; and 6.05%, 10.94%, 15.02% and 23.07% higher than CEGA. Note that
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Table 1. HV and runtime comparison between MDEWS and traditional MOO
Algorithms

Scene Workflow NSGA-II MOPSO MOEA\D SPEA2

HV Runtime HV Runtime HV Runtime HV Runtime

Bookstore Montage −5.81% 1.21 −8.27% 1.51 121.48% 2.43 14.65% 3.04

Cybershake −0.47% 1.27 −17.85% 1.62 19.54% 2.68 8.57% 3.28

Siph −4.90% 1.31 117.54% 1.69 83.80% 2.93 5.03% 3.43

Random 1.03% 1.28 13.10% 1.75 117.25% 3.01 61.59% 3.62

Gates Montage 8.58% 1.13 27.69% 1.51 23.03% 2.06 11.57% 2.73

Cybershake 10.12% 1.24 21.95% 1.59 61.14% 2.31 8.84% 2.89

Siph 5.70% 1.25 64.75% 1.65 127.19% 2.94 73.91% 3.41

Random 8.39% 1.31 36.12% 1.69 117.53% 3.03 42.62% 3.63

Deathcircle Montage 3.91% 1.07 23.96% 1.54 77.42% 2.13 112.93% 2.63

Cybershake 7.34% 1.14 77.49% 1.63 132.18% 2.31 16.40% 2.91

Siph 12.63% 1.19 113.15% 1.65 61.91% 2.53 53.67% 3.13

Random 6.01% 1.22 124.37% 1.71 143.27% 2.61 22.01% 3.28

Hyang Montage −0.24% 1.05 4.76% 1.52 141.57% 2.15 71.87% 2.77

Cybershake 9.09% 1.12 23.97% 1.53 188.79% 2.26 13.75% 2.90

Siph 11.75% 1.15 131.06% 1.55 131.22% 2.40 23.77% 3.15

Random 17.03% 1.20 140.38% 1.59 117.80% 2.51 27.31% 3.32

these four experiment scenes are with vary density of mobile users (bookstore
about 3428 per km2, gates about 4981 per km2, deathcicle about 6571 per km2,
and hyang about 8714 per km2). The experimental results also show that the
more crowded of the mobile users, the better MDEWS performs than traditional
non-prediction-based methods.

When the density of mobile users in an MRSC is sparse, there are few resource
providers for requester to choice, therefore baseline algorithms perform close to
ours. But when the density of mobile users become dense, there will be more
resource providers available. Under such condition, traditional non-prediction
methods trend to schedule tasks into providers with high reliability and low
makespan to meet deadline constrain and QoS requirement. However, as we
mentioned earlier, mobile users are keep moving during the resource provision-
ing, which means that providers which are reliable at the current state are not
guaranteed to keep its reliability in the future. In contrast, with the help of user
position prediction and reliability evaluation methods, MDEWS prefers to choice
those service providers with good expected reliability and acceptable response
time. In this way the knowledges and patterns behind users’ movement are prop-
erly mined to generate more reliable schedules.
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Fig. 11. Success rate comparison between MDEWS and non-prediction-based
approaches.

7 Conclusion and Further Work

This paper targets at the problem of unreliable workflow scheduling under the
mobile computing environment, and proposed a position-prediction-based mobile
workflow scheduling approach in the context of MANET. We evaluate the relia-
bility of mobile resource providers dynamically based on predicted user positions
through a Gaussian mixture prediction model. Mobile providers are selected and
schedule plans are generated by an evolutionary multi-objective optimization
algorithm.
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We consider hard deadline in this paper, as future work, we plan to consider
soft deadline constraints (where makespan is allowed to exceed a threshold value
with a bounded given rate) and introduce corresponding algorithms to generate
run-time schedules. Besides, some learning-based method will be employed to
achieve a smarter scheduling.
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