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Abstract. At present, the data related to the Internet of Things has shown
explosive growth, and the importance of data has been greatly improved. Data
collection and analysis are becoming more and more valuable. However, a large
number of abnormal data will bring great trouble to our research, and even lead
people into misunderstandings. Therefore, anomaly detection is particularly
necessary and important. The purpose of this paper is to find an efficient and
accurate outlier detection algorithm. Our work also analyzes their advantages
and disadvantages theoretically. At the same time, the effects of the data set size,
number of proximity points, and data dimension on CPU time and precision are
discussed. The performance, advantages and disadvantages of each algorithm in
dealing with high-dimensional data are compared and analyzed. Finally, the
algorithm is used to analyze the actual anomaly data collected from the Internet
of Things and analyze the results. The results show that the LOF algorithm can
find the abnormal data in the data set in a shorter time and with higher accuracy.
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1 Introduction

The application of the Internet of Things technology in the power industry is the result
of the development of information and communication technology to a certain stage.
The Internet of Things integrates communication, information, sensing, automation and
other technologies. It deploys a wide range of intelligence with certain perception,
computing and execution capabilities in all aspects of power production, transmission,
consumption and management. It can sense equipment, adopt standard protocol based
on IP, realize reliable transmission of information security, cooperative processing,
unified service and application integration through power information communication
network, thus realize holographic perception, interconnection and seamless integration
in the whole process of power grid operation and enterprise management. The con-
struction of power Internet of Things can effectively integrate communication infras-
tructure resources and power system infrastructure resources, improve the level of
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power system information, improve the efficiency of existing power system infras-
tructure, and provide important technical support for power grid generation, trans-
mission, transformation, distribution and power consumption.

2 Angle-Based Anomaly Detection (ABOD)

At present, there are many kinds of abnormal data detection algorithms, and each
method faces some problems which are suitable for different scenarios. For example,
anomaly detection algorithms based on statistics generally need to know the model of a
given data set, the distribution parameters and the expected number of anomaly data
objects. However, these parameters are very difficult to obtain [1–3]. Distance-based
abnormal data detection algorithms [4–6] have good effects on the detection of high-
dimensional data, but the relevant parameters must be set in advance, and the setting of
parameters is related to the detection results of the entire abnormal data object, and the
detection of abnormal data based on distance is only to detect the global data. When
detecting abnormal data objects, the whole data set must be scanned frequently, and it
is a difficult problem for the rapid mining of data flow. Density-based anomaly data
detection algorithms [7, 8] are for local anomaly data object detection, and they have
great dependence on the nearest, index data structure and other methods, high
computational complexity.

In view of the above situation, Kriege et al. [9] proposed an outlier detection
algorithm based on angle to mine outlier data objects in high-dimensional data sets. At
the same time, Pham and others proposed a new outlier detection algorithm based on
angle analysis [10]. The basic principle is to compare the angle variance between each
data object and other data objects in the hyperplane. The smaller the variance, the
farther away from the center point. In the high-dimensional massive data space,
the angle is more stable than the distance calculation, moreover, the method based on
the angle distribution will not deteriorate substantially [11].

According to the method based on angle distribution proposed by Kriegel and
others to calculate the anomalies of each data object, the distribution of a 2-dimensional
cube on the plane is shown in Fig. 1 above. Point P is a normal point (see Fig. 1(a)).
Since all the other points are distributed in all directions around it, the angles of point P
and any point are not uniform, so these angles fluctuate more, that is, the angular
variance of point P is larger. Therefore, for other points, the greater the angular vari-
ance of a point, the greater the likelihood that the point will be normal.

If point P is outside the cluster (see Fig. 1(b)), each angle is made up of point P and
arbitrary points. Because all the other points are in a specific direction of P, the size of
these angles is very close. Moreover, the angular fluctuation is also small, that is, the
angle variance of point P is small. For other points, if the angular variance of a point is
smaller, then this point is more likely to be an outlier.

As is known above, when the variance of the angle is between the two, it can be
seen as a boundary point (see Fig. 1(c)). Therefore, we can use the variance of the
angle to obtain the abnormality of each point, to distinguish normal points, outliers and
boundary points.

Based on the above idea, Pham and others put forward the concept of anomaly
factor based on angular distribution. The specific definitions are as follows:
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Given a data set, and a sample point, randomly select a sample point, and have
different vectors and angles between them, then all variance angular distribution
anomaly factor VOA (p), i.e.,

VOAðpÞ ¼ VOA½Hapb�
¼ MOA2ðPÞ � ðMOA1ðPÞÞ2

ð1Þ

MOA1ðpÞ ¼ 2

P
a;b2Snfpg;a 6¼b

Hapb

ðn� 1Þðn� 2Þ ð2Þ

MOA2ðpÞ ¼ 2

P
a;b2Snfpg;a 6¼b

H2
apb

ðn� 1Þðn� 2Þ ð3Þ

In the upper form, they are the 1-order matrix and the 2-order matrix of point P
respectively. Therefore, VOA has no parameters. Therefore, this method is suitable for
unsupervised anomaly data monitoring algorithm [12, 13]. ABOD algorithm prototype
algorithm calculates VOA of each data point, and returns the minimumm points in VOA

(a)                              (b)

(c)

Fig. 1. Distribution of the data set

Assessing Data Anomaly Detection Algorithms in Power Internet of Things 405



as the anomaly data points to be mined. At the same time, the time complexity of the
prototype algorithm is illustrated, where D is the dimension of the dataset, and N rep-
resents the number of data sets. Because its time complexity is cubic time complexity, it
will be very difficult to mine high-dimensional massive abnormal data [14, 15].

3 An Approximate Algorithm Based on ABOD

Because the time complexity of ABOD is cubic, in order to avoid such a high time
complexity, we propose a near-linear time complexity algorithm to estimate the angle
variance of each data point.

(1) We first approximate estimate the first order matrix.

F1ðpÞ ¼ 2
ðn� 1Þðn� 2Þ 2p

X
a;b2Snfpg

a 6¼b

E XðiÞ
apb

h i0
BB@

1
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h i
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��� ��� ð4Þ

The set L ið Þ
p ¼ x 2 Snfpf gjx � ri\p � rig and set R ið Þ

p ¼ x 2 Snfpf g x � rij ip � rig are
composed of points on both sides of the P point.

(2) We further estimate the two-order matrix.
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Based on the above formula, we can estimate MOA2(p):

F
0
2ðPÞ ¼

4p2

tðt� 1Þðn� 1Þðn� 2Þ pk k2F�
2p
t � 1

F1ðpÞ ð6Þ

The time complexity of FAST-ABOD has been greatly improved for ABOD.

4 An Improved Algorithm Based on Filter-Refinement

From above section, we can see that FAST-ABOD is more sensitive to the dimension
of data. What’s more, we find that abnormal data from ABOD is always those data
points with the highest ranking, and ABOD always has a lower bound [16]. Therefore,
based on the above analysis, we can select the lower bound of the angle variance
anomaly factor from L candidate outliers and correct it until no point in the candidate
list has an angle variance anomaly factor smaller than the corrected one.

Therefore, we get a more accurate MOA1(p) unbiased estimator:

F1ðpÞ ¼ 2p
tðn� 1Þðn� 2Þ

Xt
i¼1

LðiÞp
��� ��� RðiÞ

p

��� ��� ð7Þ

The last two order matrix F2(p) is estimated to be:

F2ðpÞ ¼
4p2

Pt
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p

� �
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The vectors AMSðL ið Þ
p Þ and vectors AMSðR ið Þ

p Þ are estimated by product domain
AMS Sketch. And there are:

Pk k2F¼
Xt
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� �

AMS RðiÞ
p

� � !2
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Therefore, for the first L outlier data points, we propose the following methods to
find the first L outlier data objects:

1. (Filtering Process) For each point in the region D, find k points (e.g. k nearest
points) that have the greatest impact on it.

2. Calculate the LB-ABOF value of each point.
3. The LB-ABOF of each point calculated by 2 will be arranged in ascending order

and coexist in the candidate column.
4. (Correction Process) Calculate the true ABOF of the first L objects in the candidate

column, delete them from the candidate column and insert them into the result
column.
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5. Calculate the ABOF value of the next object in the candidate column and delete it
from the candidate column. If the ABOF value of the next object is smaller than the
maximum ABOF value in the result column, interchange the object corresponding
to the maximum ABOF value in the result column, remove the point from the result
column, and insert the next object into the result column.

6. If the largest ABOF value in the result column is smaller than the smallest
approximate ABOF value in the candidate column (that is, LB-ABOF), the algo-
rithm terminates; otherwise, step 5 is executed.

The LB-ABOD algorithm combines the scalability of Fast ABOD on data scale and
the robustness of ABOD in dimensionality. The time complexity of the filtering process
is (same as FAST-ABOD), and the time complexity of the correction process is, where
n is the number of corrected data points. Therefore, the acceleration effect of ABOD
depends on the value of the lower bound and the number of final corrected object points
n. In practice, the running time of LB-ABOF is very unstable, which is closely related
to the number of neighboring points (kNN).

5 Performance Analysis

5.1 The Influence of the Number of Adjacent Points (KNN)

All the above algorithms are implemented in C# language on Visual Studio 2016
development platform, and all the experiments are implemented on a PC running
Windows 10 64bit operating system.

Due to the unsupervised nature of the actual collected data sets of power sensor
networks, we cannot determine whether the abnormal data detected by the above
algorithms are abnormal data in the real sense. In order to compare the performance and
accuracy of the above detection algorithm more comprehensively, we randomly gen-
erated a number of different dimensions of the data set. Generation rules are: using time
as random number seed to generate dimension D data sets, by controlling the range of
random numbers to generate outliers and normal points. There is one outlier per 50
points in the generated dataset (here we call each table item of the dataset a “point”).

This experiment will test the performance of the algorithm based on the above
dataset. Therefore, we will use the precision and recall to evaluate the performance of
the algorithm.

The precision ratio (precision) is an index to measure the signal-to-noise ratio
(SNR) of a retrieval system, that is, the percentage of the relevant literature detected
and the total literature detected. It is generally expressed as: precision ratio = (retrieves
the total amount of information/information retrieved) � 100%. The retrieval language
with strong generality (such as upper class and upper subject word) can improve the
recall rate, but the precision rate decreases.

Recall rate (recall rate) is a measure of a retrieval system from the collection of
relevant documents to detect the success of an indicator, that is, the number of relevant
documents detected in the retrieval system and the total amount of relevant literature
ratio. It is generally expressed as: recall ratio = (the total amount of relevant infor-
mation retrieved/the relevant information in the system) � 100%. The retrieval
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language with strong generality (such as upper class and upper subject word) can
improve the recall rate, but the precision rate decreases.

We hope that the higher the precision, the better the recall. But in fact, this is not the
case. In some extreme case, we only detected an abnormal result, and it was accurate.
Well, we can say that the precision rate is 100%, but the recall rate is very low.
Conversely, when we return all the data, our recall rate is very high, but the precision
rate is very low.

As a result, when we want both of them to be very high, we use F1 (F-score) to
measure the equilibrium point, where P Precisionð Þ ¼ A

AþB, R Recallð Þ ¼ A
AþC, and

F1 ¼ 2PR
PþR.

In order to study the effect of the number of neighboring points on the performance
of each algorithm, we tested 1000 data objects with 50 dimensions. According to the
simulation test data set generation rules, there are 20 outliers.

For Fast ABOD and LB-ABOD, the theory holds that the former top K object is an
outlier. For LOF algorithm, the theory holds that when the local reachable density of P
is much smaller than that of its neighbors, P is an outlier. Because of the different data
sets, it is difficult to have a unified definition of k, that is, it is difficult to determine a
unified value, and the size of K has a greater impact on the detection results. For
convenience of comparison, we calculate the LOF values of each point and sort them.
The top K points with the largest LOF values are treated as outliers. Top K must be
specified here. Because we know in advance which points are outliers, we set the
number of outliers to be detected in the program (Top K) equal to the number of real
outliers in the data set. Therefore, in this section, for FAST-ABOD, LB-ABOD, and
LOF, the precision equals the recall equals its harmonic mean (precision = recall =
F-Score).

From Table 1, we can see that the CPU time of LB-ABOD decreases with the
increase of KNN, while the CPU time of Fast-ABOD and LOF both go to a larger
direction with the increase of KNN. At the same time, for their precision LOF has
always maintained an efficient precision of 100%, on the contrary, LB-ABOD, and
FAST-ABOD are not so ideal precision.

Table 1. Relationship between CPU time and kNN (N = 1000, D = 50, Top K = 20)

(kNN) CPU time (s) Precision
LB-ABOD Fast ABOD LOF LB-ABOD Fast ABOD LOF

100 2217.6 28.45 5.53 1 0.85 1
200 2280.5 101.22 13.26 1 0.95 1
300 2396.3 224.63 26.51 1 0.95 1
400 2555.2 397.32 44.87 1 0.95 1
500 2751.1 618.87 68.7 1 1 1
600 882.5 910.93 103.19 1 1 1
700 1139.7 1236.38 137.79 0.5 1 1
800 1459.4 1609.21 177.8 0.5 1 1
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Figure 2 shows the influence of the number of adjacent points kNN on the per-
formance of the algorithm. As can be seen, for Fast-ABOD, the CPU time increases
exponentially with the increase of kNN, while the growth of LOF is relatively flat
(Fig. 2(a), (b)).

Compared with Fast ABOD, LB-ABOD maintained 100% precision at fewer
proximity points, which corresponded to several times the CPU time of FAST-ABOD
under the same conditions (Fig. 2(a)); at that time, LB-ABOD had a CPU time of

(a) CPU Time --- kNN

(b) Precision --- kNN

Fig. 2. Influence of kNN on algorithm performance (N = 1000, D = 50, TopK = 20)
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2217.6 s, 78 times that of Fast ABOD (28.45 s). This is because when the kNN is
relatively small, the LB-ABOF calculated by each object is negative, and there is no
object in the candidate column whose LB-ABOF is greater than that of the object in the
result column. At this point, the ABOF value of each object needs to be computed, and
LB-ABOD degenerates into ABOD algorithm, so its running time is longer. When the
kNN increases to 60% of the data set size, the run time of LB-ABOD drops sharply,
and then the CPU time continues to increase with the increase of the kNN, and the CPU
time of LB-ABOD is less than that of Fast ABOD under the same conditions (Fig. 2
(a)). This is because, when the LB-ABOF value of each object is positive, the cor-
rection process starts to work: the algorithm terminates when the largest ABOF in the
result column is less than the smallest LB-ABOF in the candidate column. KNN
continues to grow, and the LB-ABOF computing time of each object increases, so its
CPU time continues to grow.

From the above discussion, the value of kNN is very important for LB-ABOD:
kNN is too small, the operation efficiency of the algorithm is too low (ABOD); kNN is
too large, while increasing the operation time will reduce the accuracy (Fig. 2(b)).
Therefore, in practical applications, it is necessary to find a suitable balance between
CPU time and accuracy, that is, the “balance point” of the minimum CPU time of LB-
ABOD in Fig. 2(a). This needs to be analyzed according to the characteristics of
different data sets. In this section, it is more appropriate for kNN to take about 60% of
the dataset scale.

Figure 3 shows the relationship between algorithm accuracy and kNN, where
Fig. 3(c) is a partial amplification of Fig. 3(b). Obviously, when the number of adjacent
points is too small, it will seriously affect the accuracy of LOF; with the increase of the
number of adjacent points, the precision of LOF increases gradually; when the number
of adjacent points increases to a certain degree (in this case, kNN = N/40 = 25), the
precision of LOF reaches 100%, and then it remains unchanged at this level.

Compared with LOF, the precision of Fast ABOD fluctuates greatly. When the
number of adjacent points is small, the precision increases with the increase of kNN.
When kNN reaches a certain size (kNN = 50), the precision decreases; then, with the
increase of kNN, the precision increases gradually (Fig. 3(b), (c)). The above situation
is more evident in the higher dimensional data set (Fig. 3(d)).

There are many reasons for the instability of the above-mentioned Fast ABOD
precision: when the number of adjacent points is small (kNN = N/200 = 5), the pre-
cision is low because of the small number of samples compared; when the number of
adjacent points is large (kNN = N/2 = 500), the Fast ABOD approximates to the
ABOD algorithm, so the precision is high.

Considering the case shown in Fig. 4, it shows the effect of different proximity
values on the results of Fast ABOD detection in a two-dimensional plane. When the
number of kNN is small (kNN = 6), point P is an outlier relative to its proximity
(Fig. 4(a)); however, as the number of proximities increases, the proximity of point P
appears in all directions around it, and then P is no longer an outlier relative to its
proximity (Fig. 4(b)). This also explains why the precision of Fast ABOD in Figs. 3, 4
and 5 increases first and then decreases as the number of near points (kNN) increases. It
can be seen that another disadvantage of Fast ABOD is that it is sensitive to the number
of adjacent points, and the algorithm is unstable.
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(b) Precision—kNN (N=1000, D=20)

(c) Precision—kNN (N=1000, D=20)
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Fig. 3. The relationship between kNN and Fast ABOD or LOF performance
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5.2 Influence of Top K on Algorithm Accuracy

Let N = 1000, in which there are 20 outliers; data dimension D = 20; for LB-ABOD,
take the number of near points kNN = 650; for Fast ABOD, LOF, kNN = 100, get the
relationship between topK and algorithm precision, recall, F-Score as shown in
Table 2.

Figure 5 is an intuitive display of Table 2. When topK is less than the number of
outliers in the data set (topK < Outlier = 20), the precision of FAT ABOD and LOF is
100%, and the recall and F-Score are increased with the increase of topK. For LB-
ABOD, the precision of F-Score is decreased with the increase of topK. When topK is
greater than Outlier, for LOF, because it has found all the outliers, the increase of topK

(d) Precision—kNN (N=1000, D=50)
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Fig. 3. (continued)

(a)  kNN=6 (b) kNN=14

Fig. 4. The influence of the proximity points on the two-dimensional plane to the determination
of outliers
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is meaningless (recall = 1 and remains unchanged), but leads to the decrease of pre-
cision; for Fast ABOD, for LB-ABOD, the precision is gradually increased, but the
increase of precision is far less than the decrease of recall. In general, its F-Score is
decreasing. In summary, to detect outliers in the most efficient and accurate way (i.e.
when F-Score is maximum), the size of topK must be equal to the number of real
outliers in the data set.

6 Conclusion

The main work of this paper is to compare the application of different anomaly
detection algorithms in anomaly data detection of power Internet of Things. Its data is
mainly the data of electric power sensor network. Our goal is to improve the running
time and efficiency of the algorithm on the basis of obtaining a suitable algorithm. It
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Fig. 5. The influence of topK on F-Score

Table 2. Influence of topK on algorithm accuracy (N = 1000, D = 20, Outlier = 20)

topK Accuracy

LB-ABOD Fast ABOD LOF/ABOD
P R F P R F P R F

10 1 0.5 0.67 1 0.5 0.67 1 0.5 0.67
15 0.67 0.5 0.57 1 0.75 0.86 1 0.75 0.86
20 0.5 0.5 0.5 0.85 0.85 0.85 1 1 1
25 0.44 0.55 0.49 0.72 0.9 0.8 0.8 1 0.89
30 0.37 0.55 0.44 0.6 0.9 0.72 0.67 1 0.8
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can adapt to the high-dimensional data acquired by the system. After our algorithm
implementation, the CPU time of ABOD increases exponentially with the size of data
set N, and the dimension increases linearly. The algorithm has high accuracy, but its
time complexity is too high to be suitable for practical application. FAST ABOD and
LB-ABOD are the improvements of ABOD algorithm, showing good results. The CPU
time of LOF is approximately linear to data size N, and has a linear relationship with
data dimension D. It can achieve very high accuracy only by taking fewer proximity
points, and the ratio of CPU time to dimensionality remains unchanged, and it can still
maintain very high accuracy in high-dimensional data.
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