
An Efficient Traffic Prediction Model Using
Deep Spatial-Temporal Network

Jie Xu1,2(&), Yong Zhang1,2, Yongzheng Jia3, and Chunxiao Xing1,2

1 Department of Computer Science and Technology, Tsinghua University,
Beijing, China

xuj15@mails.tsinghua.edu.cn,

{zhangyong05,xingcx}@tsinghua.edu.cn
2 Research Institute of Information Technology,

Beijing National Research Center for Information Science and Technology,
Beijing, China

3 Institute of Interdisciplinary Information Sciences, Tsinghua University,
Beijing, China

jiayz13@mails.tsinghua.edu.cn

Abstract. Recently years, traffic prediction has become an important and
challenging problem in smart urban traffic computing, which can be used for
government for road planning, detecting bottle-neck congestions roads, pollu-
tion emissions estimating and so on. However, former data mining algorithms
mainly address the problem by using the traditional mathematical or statistical
theories, and they were impossible to model the spatial and temporal relation-
ship simultaneously. To address these issues, we propose an end-to-end neural
network named C-LSTM to predict the traffic congestion at next time interval.
More specifically, the C-LSTM is based on CNN and LSTM to collectively
capture the spatial-temporal dependencies on the road network. Inspired by the
procedure of handling the image by CNN, the city-wide traffic maps are first
converted into a series of static images like the video frame and then are fed into
a deep learning architecture, in which CNN extracts the spatial characteristics,
and LSTM extracts the temporal characteristics. In addition, we also consider
some external factors to further improve the prediction accuracy. Extensive
experiments on reality Beijing transportation datasets demonstrate the superi-
ority of our method.
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1 Introduction

Road traffic prediction has become an interesting and challenging issue recently years,
which is very important for the government in city managing, such as road planning,
detecting the bottle-neck congestions roads, estimating the pollution emissions and so
on. However, traditional traffic prediction studies were mainly based on statistical
theory or mathematical theory, whose scalability and migration were poor, and they
also tended to ignore the dynamic changes of each road segment, thus neglect the
whole city-wide dependencies. Fortunately, with the great achievement of deep
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learning in computer vision and natural language processing domains [1, 2], numerous
researchers also implement the deep learning techniques to address the road trans-
portation problems [3, 4, 5, 6, 7], since the deep learning can theoretically model
complex nonlinear relationship. However, they have following disadvantages: In [7],
they simply divided the historical data into categories groups and then fused them
directly, lacking of theoretical proof for periods changes and an in-depth description for
the temporal characteristics. In [4], they did not consider the impact of external factors
(weather, Chinese festivals, etc.) on traffic flow, and the histories time sequences
trajectories were too small.

In this paper, we predict the road traffic at next interval by using convolutional
neural networks (CNN) and long short-term memory (LSTM) [8] to capture complex
spatial and temporal nonlinear correlation, that means given a set of historical traffic
data through a time period, the deep learning structure treats the traffic volume and flow
as pixel values within a series of image, and predicts the traffic image like a motion-
prediction issue. CNN and LSTM are applied to hierarchically learn the spatial-
temporal relationship. There are three characteristics in the traffic trajectories data [6,
7]. (1) Spatial characteristic. A road traffic conditions will affect the relative link road
traffic, for example, traffic accidents on overpasses may affect many connected roads
traffic. At the other hand, the residential areas traffic perhaps affects the corresponding
commercial areas traffic, the reverse is the same. (2) Temporal characteristic. Traffic
conditions vary greatly with seasonal changes, or from rush hour to midnight, or from
weekdays to weekend. (3) External factors, such as weather condition, time-of-day,
day-of-week and Chinese festivals which are proven to be promising impact factors. In
summary, the contributions of this work are summarized as follows:

First, in this paper, we illustrate how a road network traffic condition can be
transferred to a image-related heat map (in particular, CNN and LSTM related), which
is helpful for deep learning methods to describe the road traffic features.

Second, we propose an end-to-end combination model named C-LSTM which is
comprised of CNN and LSTM to sketch the road network traffic image characteristic.
CNN utilize the strengthen to capture the spatial characteristic, while LSTM capture the
temporal characteristic of traffic map. In order to make the model fully close to reality,
we fuse the external factor such as weather and time metal date, which can obvious
improve forecasting effectiveness.

Third, we conduct extensive experiments on real datasets, and results show the high
convergence rate and advancement of the our approach.

The rest of this paper is organized as follows: We propose the related work in
Sect. 2, then model the problem and illustrate our algorithm in Sect. 3. Experimental
results are discussed in Sect. 4. The conclusions are summarized in Sect. 5.

2 Related Work

There are some previously existing works on predicting time series movements [9]
based on the history trajectories, the approaches can be classified into mainly two
categories: traditional algorithms and deep learning algorithms.
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2.1 Traditional Prediction Algorithms

Shu et al. [2] proposed an adapted traffic prediction methods named FARMIMA, the
dependencies in the network traffic can be divided into two kinds, i.e., long-range and
short range dependence. They adjusted an indicator parameter named weight bias for
short and long range dependence by congregating on standard autoregressive integrated
moving average. Clark et al. [10] designed an intuitive method for forecasting the
traffic by using a pattern matching technique that exploited the three-dimensional
nature of the traffic state. The approach was a multivariate extension of nonparametric
regression and can be easily understood by the practitioners. However, they neither
took consideration of the main factors of traffic conditions, nor considered the inter-
action among different city-wide regions. Min et al. [11] proposed a framework which
took into account the spatial characteristics of a road network, that can reflect not only
the distance but also the average speed on the road segment, they also involved
incorporating weather, incident data, current or planned roadwork into the forecasting
model. However, all above algorithms fail to depict the spatial and temporal rela-
tionship simultaneously.

2.2 Deep Learning Algorithms

Recently, a series of studies applied CNN and LSTM to capture spatial and temporal
dependencies and achieved great success [3, 4, 5, 6, 12]. Ke et al. [6] proposed a one
end to end convolutional and multiple LSTM network named FCL-NET to address
these three dependencies for short-term passenger demand forecasting. The evidence
from benchmark models proved that spatial-temporal correlations in models can greatly
improve the predictive accuracy. Zhang et al. [7] introduced a deep learning methods
based on CNN named ST-ResNet for citywide crowd flows prediction. They divided
the historical data into three categories, i.e., closeness, period, trend data, which
depicted the denoting recent time, near history and distant history respectively. The
residual unit were applied for training super deep neural networks. Yu et al. [4]
designed a novel deep architecture with CNN and LSTM, namely, spatiotemporal
recurrent convolutional networks (SRCNs) for traffic prediction. They divided the road
network into many grids whose average velocity represented the each grid velocity in
specified timestamp, that can retain the fine-scale structure of a transportation network,
but they didn’t consider the extensive features. Wang et al. [3] proposed an end-to-end
deep learning framework named DeepTTE to estimate the travel time of the whole path
directly, in which the geographic information were integrated into the classical geo-
convolution, which was capable of capturing spatial correlation. Their method was
novel and worked well for depicting vehicle trajectories. Zhang et al. [14] presented a
deep spatial-temporal neural networks named FCN-rLSTM to sequentially count
vehicles from low quality videos on road network, that model connected fully con-
volutional neural networks (FCN) with LSTM in a residual learning fashion, and
enabled the processing to refine the feature representation and implement a novel end-
to-end trainable mapping from pixels to vehicle count.
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3 Traffic Prediction Based on Deep Learning

3.1 Preliminaries

Definition 1 Road network G = (V, E), which is used to model a road network, where
a vertex set V is associated with a geographical position, including the longitude and
latitude, a vertex set E is defined for the edges between two positions. The road
network is divided into multiple same size grids (e.g. 10 * 10 m), where the velocity in
each region is regarded as the same.

Definition 2: Average velocity Vt
ij is defined as the average ratio of travel distance to

travel time in i * j region according to the road links condition at specified timestamp t,
in our paper, the length of the time interval is set as 30 min.

Definition 3: Velocity heat map. Give a set of historical trajectories, we can treat the
velocity as pixel values in one grid, and mark different colors according to different
velocities. By doing so, the whole velocity heat map can be built based on the road
network and can be denoted as V(R, t) at time t. As in Fig. 1, the left figure represents
the whole traffic status, the different colors lines on the road represent different
velocities, the right figure represents how the velocity of each region is mapped and
colored in corresponding region.

Problem: Give a time series of historical road trajectories maps V(R, t − 3), V(R,
t − 2), V(R, t − 1), our goal is to predict the next V(R, t).

3.2 Framework of C-LSTM

Figure 2 presents the architecture of C-LSTM, which is comprised of three major
components [13]. For geographic problems, the key spirit is how to transform the
problem into a sequence of 2D image, i.e., velocity heat map, which is similar with the
video frame, the image itself has natural spatial and temporal attributes which is

Fig. 1. Velocity heat map
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associated with CNN and LSTM. The strength of CNN is to outline spatial charac-
teristic, on the other hand, for traffic information, intuitively, we can find that traffic
conditions vary with rush hours and midnight, weekdays and weekend, using RNN
(recurrent neural network) to describe temporal series characteristics has achieved great
success. In this paper, we utilize the CNN and LSTM to jointly predict traffic in a
residual fashion, such combination leverages the strengths of Resnet (Deep residual
network) [15] for pixel-level description and the strengths of LSTM for learning
temporal dependencies, we further aggregate the external components to describe the
influence of complex external factors.

Steps for Model: The trajectories data are divided into three groups according to time
axis, denoting as recent time, week period, and month period respectively. In theory,
shallow CNN can capture near-distance features, and deep CNN can capture far away
area information, thus each image characteristics can be exacted by a convolutional
neural network with the residual units [4, 16]. To predict the heat map V(R, t), then the
LSTM capture the temporal sequences, the output of each group of CNN is used as the
input of LSTM. Theoretically, more stacked LSTM layers can overcome the vanishing
gradient and exploding gradient problems [17], in our model, the LSTM model was
stacked by two to four layers.

For external component, the external factors are collected and organized at the same
time interval, such as weather, time of day, time of week, etc. External factors are first
transfer to binary vector and feed into full connected layers, whose output are fused
with the output of LSTM. Finally, the aggregation is mapped into one-dimensional
vector whose value is restrict within [−1, 1], by steadily narrowing the loss function to
convergence status.

3.3 Spatial Characteristics Captured by CNN

The convolution neural network (CNN) has achieved great success in extracting fea-
tures. In the road network structure, a snapshot of network traffic flow at specified time
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can be seen as a 2D image, the traffic conditions on a road not only affect the most
adjacent area, but also have potential impact on more distant regions. CNN is good at
processing image and video frame with both near distance and far away distance
correlations, the input for CNN is a tensor for sequence 2D heat map at a pixel level,
the value is converted from −1 to 1 with normalization technique.

In ours study, the deep convolution neural networks is firstly constructed to capture
the spatial relationships in the heat road traffic image. As in Fig. 2, we use zero padding
to the end of the boundaries of city. The regular transformation at each CNN layer is
defined as follows:

Ol
k ¼ f ðwl�1

k � Ol�1
k þ bl�1

k Þ ð1Þ

Where the f �ð Þ denotes an activation function and * denotes the convolutional
operation, which usually is a nonlinear activation function. The wl

k presents weight
parameters matrix, the Ol

k represents the output of the k filter for l-th layer, in our study,
the activation function is tanh (x).

From [7], near spatial dependencies can be seized by the shallow CNN, however,
since one convolutional layer can only figure out near characteristic because of the
limitation of kernel size, we need design deep CNN layers, e.g. 50 layers, to capture the
distance dependencies. However, it is also well-known that very deep convolutional
networks exposed a degraded problem, the accuracy becomes saturated and inaccurate,
and more deep layers may generated higher error.

In this paper, the residual method is employed to train the CNN. The Resnet take
advantage of a connection method named “shortcut connection”, and bottleneck
design, whose purpose is to reduce the number of calculations and parameters. As in
Fig. 3, shortcut connections are inserted with the plain network [15] by residual blocks.
The right figure is called “bottleneck building design”. To reduce the number of
parameters, the first 1 � 1 convolution reduces the 256-dimensional to 64-dimension,
and then recovers at the end through a 1 � 1 convolution with 64 filters. For plain
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Fig. 3. Residual unit
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network, it can be applied in networks of 34 layers or less as in left Fig. 3, and shortcut
for bottleneck design is usually implemented in deeper networks like 50/101/152.

The updating rule of our residual layer can be expressed as:

Xlþ 1
k ¼ Xl

k þFðXl
k; h

l
kÞ ð2Þ

Where F �ð Þ is the residual function as presented in Fig. 3. After convolution, max-
pooling is applied to select remarkable features, and fully connected layer is to generate
the class scores for different features at each interval t, the output features vector
X 2 R1000 is fed as the LSTM input.

3.4 Temporal Characteristics Captured by LSTM

Intuitively, for the road network velocity, such as the rush hour and midnight of the
day, the heat map shows a periodicity changes, similar phenomena occur in the time of
week and time of month. For example, 5 pm, on Monday in June, the traffic condition
is similar to 5 pm, on Monday in July.

The one of most successful model for handling time sequential is RNN (recurrent
neural network), which is a repeated structure and the output of a neuron can be used as
the input for the next neuron unit. The main components can be concluded as
st ¼ f Wst�1 þUxtð Þ, where the f(•) function is usually a nonlinear function and xt is
the input at time t. However, RNN can only process a certain length of sequence, if the
time interval is too large, there may be gradient disappearance or exploding gradient
problem, and the effectiveness becomes poor. Consequently, the LSTM based on
processing the long-term information method is introduced [18], which is a special
structural variant of RNN. The LSTM designs one forget gate, one input gate, and one
output gate. The gates record and pass the information through the units. In this way,
this gate can memorize the information that needs to be saved, or drop redundant and
irrelevant one. The structure parameters for all gates are same and shared through
whole steps.

At each time interval, LSTM takes time series Ct as an input, and then all infor-
mation is accumulated to memory cell, the architecture of LSTM is defined as follows:

ft ¼ dðWfhht�1 þWfxxt þ bf Þ ð3Þ

it ¼ dðWihht�1 þWixxt þ biÞ ð4Þ

eCt ¼ tanhðWChht�1 þWCxxt þ bCÞ ð5Þ

Ct ¼ ft � Ct�1 þ it � eCt ð6Þ

ot ¼ dðWohht�1 þWoxxt þ boÞ ð7Þ

ht ¼ ot � tanhðCtÞ ð8Þ
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Where the Wf , Wi, Wc, Wo are the weight parameters matrices and the bf , bi, bc, bo
are the biases values of the three gates, the d denotes the non-linear activation function.
In our case, the LSTM with CNN are combined to jointly learn traffic velocity heat map.

Furthermore, it has been shown that multiple stacked LSTM layers are more effi-
cient to increase the model capacity compared with a single LSTM layer. In our model,
the input sequence of the LSTM is the features (i.e. 1000 dimension) outputted by the
last layer of Resnet. For different temporal period, the number of time series is set 3, 3,
4 respectively. The three different CNN-LSTM units are integrated by using the fusion
methods as follows:

XLstm
t ¼ Wh1 � hht þWh2 � hdt þWh3 � hmt ð9Þ

Where the hhtþ 1; h
d
tþ 1; h

m
tþ 1 represent the hour dependencies, day dependencies,

week dependencies respectively, ○ is Hadamard product.

3.5 The Structure of External Factors

Traffic flows can be affected by many complex external factors, such as weather and
event. For instance, rainy days are usually more congested than usual, and road is more
prone to have high level crowd [19], etc. In our implementation, we mainly consider
weather condition, day-of-hour, time-of-week, and day-of-month. Note that these
property values cannot be directly fed into CNN, we embed the weather condition as
X 2 R16, time-of-hour as X 2 R24, day-of-week as X 2 R7, and day-of-month as X 2
R12 by using the hot coding to transform each categorical attribute into a vector, then
concatenate the individual vectors into a integrated vector, further feed them into a full
FC connection layer to reduce the dimension of spatial-temporal features [20]. The
output of LSTM is fused with the external component. The definition is formulated as
follows:

eYt ¼ rðWLstm � XLstm
t þWext � EextÞ ð10Þ

r �ð Þ is a sigmoid function defined as r xð Þ ¼ 1 ¼ 1þ e�xð Þ, WLstm and Wext are two
learnable parameter sets. For the actual value of traffic heat map at time interval t, we
also capture the feature using the same Resnet architecture, and then fed them into FC
layers, whose output is Yt, and the dimensions is equal to the XLstm

t . In this paper, recall
that our goal is to predict road congestion at the next time interval t, we need to reduce
the error between the actual value and the predicted value within a reasonable deviation
during training process, thus the loss function is defined as follows:

L hð Þ ¼ Yt � eYt

���� ð11Þ

Where h are all learnable parameters needed to be trained. We continuously adjust
the parameter sets by Tensorflow until loss function converges.
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4 Experiments and Discussions

4.1 Dataset

Datasets: We use two real historical data set [21] in Beijing road which contains about
330,000 vertices and 440,000 edges, the Taxi data, which contains about 180,000
trajectories generated by more than 7,000 public taxicabs, the Ucar data, which
contains about 480,000 trajectories generated by more than 5,000 public taxicabs.
Those abnormal records are first filtered out, and the map matching algorithm is
employed to locate the deviated GPS data to the road network, the vehicle velocity
maps are converted to a congestion heat map at every 15 min interval.

Meteorological data: We record the Beijing weather data from Beijing Meteoro-
logical Bureau to incorporate the impacts on the road traffic. The weather conditions are
divided into 16 types: normal days, rainy, sunny, snowy, overcast, cloudy, sleety,
Foggy etc. [22]. For example, we choose the following nine features, e.g. 2016-06-09,
the Chinese Dragon Boat Festival, 10 am, hourly temperature, rain, wind speed, as one
hot-encoded vector that denotes external factors.

4.2 Parameters Setting

Parameters setting: The parameters are described as follows. In the Resnet component,
first, the global road network is divided into small equal region with size 10 * 10 m,
the layers of Resnet is set as 32/50/101, with core kernel size 3 * 3, the dimensional of
time series Ct for LSTM is set as 1000. Our model is implemented with Python 2.0. We
adopt Adamax optimization algorithm to train the parameters, the learning rate is 0.1,
the weight of loss is 0.01. The embedding function converts the raw data to the range of
[0, 1] by using max-mix normalization, the formula is defined as follows:

Xnorm ¼ X � Xmin
Xmax� Xmin

ð12Þ

4.3 Baseline Algorithms

To demonstrate the validity of our model, we compare it with 6 baseline methods,
including:

ARIMA [2]: ARIMA means AutoRegressive Integrated Moving Average, which is
a class of statistical models and can captures a suite of different standard temporal
structures in time series data, leverage the dependency between an observation and
some number of lagged observations with a residual error.

GBDT: GBDT is a machine learning technique for regression, classification and
sorting tasks by ensemble multiple weak learners, usually decision trees. It belongs to
ensemble learning.

SRCNS: SRCNS is a spatiotemporal recurrent convolutional networks, which
inherit the advantages of deep convolutional neural networks (DCNNs) and the long
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short-term memory (LSTM) neural networks, the DCNN captures the spatial depen-
dencies, and LSTM captures the temporal dependencies.

DMVST-Net: DMVST-Net is a deep multi-view spatiotemporal network. To
model spatiotemporal relationships [5], they construct a region map based on the
similarity of demand patterns for modeling related but distant areas.

FCL-Net [6]: FCL-Net is a fusion convolutional long short-term memory network
to forecast an on-demand ride service, this model is stacked and fused by convolutional
operators, LSTM layers, multiple conv-LSTM layers. A tailored spatially random
forest is utilized to score the variables for feature selection.

ST-ResNet [7]: In ST-ResNet, the historical data was divided into three categories,
they leveraged the residual neural network framework to model the time tightness,
period and trend characteristics of crowd traffic respectively, and also added external
attribute information such as weather, time of day, time of month, time of week. In this
paper, the above algorithms are all implemented under the same equipment and
environment.

4.4 Evaluation Metric

In our study, the Mean Absolute Percentage Error (MAPE) and Root Mean Square
Error (RMSE) are employed as evaluation metric, the definitions are as follows:

MAPE ¼
Xn
t¼1

yt � ~yt
yt

���� ���� � 1n ð13Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
t¼1

ðyt � ~ytÞ2
s

ð14Þ

Where yt is the predictive value, the ~yt is the actual value. To verify the effec-
tiveness of C-LSTM, we compare it with several state-of-the-art methods, the results
are shown in Table 1.

Table 1. Performance comparisons

Model Taxi Ucar
MAPE RMSE MAPE RMSE

ARIMA 0.32 51 0.28 47.25
GBDT 0.278 43 0.257 39.41
SRCNS 0.243 39 0.214 35.47
DMVST-Net 0.196 28.74 0.176 24.19
FCL-Net 0.174 24.68 0.154 26.56
ST-ResNet 0.157 18.4 0.137 13.61
Ours 0.123 13.34 0.104 8.76
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From the Table 1, we can see that the MAPE and RMSE of the ARIMA perform
poor results(i.e., has a MAPE of 0.32 and RMSE of 51, respectively), which means that
the simple traditional prediction method cannot effectively describe the spatial-
temporal information. The effect of DMVST-Net and FCL-NET is similar, and
achieves better performance than ARIMA and GBDT, the comparison shows that deep
learning methods can work. The ST-ResNet shows a good performance, however, it
does not illustrate the time dependencies very well. Our algorithm significantly out-
performs above mentioned methods with the lowest MAPE (0.123% and 0.104%) and
RMSE (13.34 and 8.76) on two datasets, it verifies the superiority and feasibility of the
our approach, as our algorithm further exploits LSTM and takes account of the
influence of external factors.

4.5 Effectiveness of Resnet

In this section, we compare the model performances with different Resnet varieties,
the traditional AlexNet [23] network is used to replace the Resnet. We can observe that
the result of the replacement is not as well as Resnet. On the other hand, we compare
different Resnet variants with respect to different number of layers [15], i.e., 34/50/101.

The results are shown in Table 2, we can see that as the layers increases, the values of
MAPE and RMSE decay, the Resnet 101 decreases 36% and 22% for MAPE and
RMSE respectively comparing with Resnet 34 for Ucar dataset.

4.6 Effectiveness of LSTM

In our article, for different sequence length for LSTM, we mainly consider the number
of days in one week and the number of hours in one day. In fact, Multiple layers of
LSTM are added, such as Layers 3 and 4, to evaluate the effect. The results reveal that
the effect of the 3 and 4 layers are better than that 2 layers, but the increasing trend is
not obvious. In addition, we set d1; d2; d3ð Þ ¼ 3; 5; 7ð Þ, and h1; h2; h3; h4ð Þ ¼
2; 4; 8; 16ð Þ which indicates that traffic speeds are predicted from the previous (3, 5, 7)
days and (2, 4, 8,16) hours based on historical data by fixing the number of other two
LSTM hidden units components respectably. As in Table 3, we observe that the layers-
h-8 yields the lowest MAPE and RMSE, which demonstrates when the historical data
length goes larger, the prediction error decreases. However, for layers-h-16, it no

Table 2. Experimental results with different CNN variants

Model Taxi Ucar
MAPE RMSE MAPE RMSE

AlexNet 0.235 17.63 0.215 14.86
Resnet 34 0.176 15.89 0.164 11.34
Resmet 50 0.153 15.14 0.132 9.72
Resmet 101 0.123 13.34 0.104 8.76
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longer displays remarkable results, we find that it tends to overfit the training data and
thus exhibits the slightly degrades prediction performance.

4.7 Effectiveness of Attribute Component

In our article, we mainly leverage external influence conditions, but in fact, each
external condition is not always available at the same time. The whole external
information component is removed first, the rustles decrease nearly 30%. Second, we
choose frequently-used available external conditions as attribute information, excluding
partly uncommon factors such as temperature, wind speed, humidity, etc., the results
display that the prediction error increases, but the degree is not large, this finding
confirms that the weight of external factors are different.

5 Conclusions

In this paper, we propose a novel deep learning end-to-end model method based on
CNN and LSTM model for predicting the future traffic flow based on real historical
traffic data. The method inherits the strength of both CNN and LSTM, and transform
historical data into heat map firstly, then employ CNN to extract the spatial features,
further utilize LSTM to capture the temporal characteristic. To validate the effective-
ness of the proposed C-LSTM, six previous prediction approaches are exploited to
compare the results by extensive experiments in terms of RMSE and MAPE, the results
show that our method can effectively deal with spatiotemporal and spatial information,
and demonstrate the superiority of our methodologies.

The key spirit of this paper is how to transform the historical trajectories data on
road network into a heat map, and then take advantage of the deep learning method as
the domain of video frame research, which can be used for these similar types trans-
portation problem, such as taxi demand, traffic flow, POI (Point Of Interest) prediction
and so on. For future work, we plan to (1) add some other mechanisms, such as
attention mechanism, to improve the effectiveness in time sequence learning task,
(2) consider incorporating the road semantic information for deep learning model,

Table 3. Experimental results with different hidden units of LSTM.

Model Taxi Ucar
MAPE RMSE MAPE RMSE

Layers-d-3 0.139 16.78 0.121 11.34
Layers-d-5 0.135 15.67 0.116 10.67
Layers-d-7 0.127 14.32 0.112 9.87
Layers-h-2 0.153 16.89 0.137 13.24
Layers-h-4 0.147 14.78 0.119 10.14
Layers-h-8 0.123 13.34 0.104 8.76
Layers-h-16 0.148 15.64 0.121 10.24
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(3) apply machine learning to interdisciplinary areas such smart transportation and
economics disciplines.
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