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Abstract. Message dissemination problem have attracted great atten-
tion in vehicular ad hoc networks (VANETs). One important task is to
find a set of relay nodes to maximize the number of successful delivery
messages. In this paper, we investigate the message dissemination prob-
lem and propose a new method that aims at selecting optimal nodes as
the collaborative nodes to distribute message. Firstly, we analyze the real
vehicle traces and find its sociality by extracting contacts and using com-
munity detecting approach. Secondly, we propose community collabora-
tion degree to measure the collaborative possibility of message delivery
in the whole community. Moreover, we use Markov chains to infer future
community collaboration degree. Thirdly, we design a community col-
laboration (CC) algorithm for selecting the optimal collaborative nodes.
We compare our algorithm with other methods. The simulation results
show that our algorithm performance is better than other methods.

Keywords: Message disseminations · VANETs ·
Community collaboration degree

1 Introduction

With the development of vehicular ad hoc networks (VANETs), there are more
and more message dissemination applications in VANETs. Message dissemina-
tion problem is a difficult problem in VANETs, as it is hard to find a set of nodes
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to maximize message deliver ratio. Moreover, it is also an interesting problem as
the messages are timely disseminated based on designed scheme in VANETs.

Due to the delay and opportunity of VANETs, data forwarding between
nodes plays an important role in which the information exchange between nodes
in the network. The routing schemes have been widely investigated [1]. Some
papers consider sociality-based routing, others consider geographic-based rout-
ing. Generally speaking, geographical routing considers hot spots, but ignores the
internal correlation between nodes. Although messages is easy to disseminated
in hot areas, it is hard to diffuse in non-hot areas, resulting in low forwarding
efficiency in some areas. Sociality-based forwarding is concerned about the nodes
correlation compared with geographical routing. It takes the contacts between
nodes as the link, and measures the probability, frequency of contact, etc. These
factors determine which nodes are suitable as forwarding nodes. In this paper,
we present a new message forwarding scheme that help forward messages to a
destination. Our scheme exploits the vehicles moving pattern based on vehicular
sociability.

In order to study the rule of nodes in community, we analyze the real taxis his-
tory trace and construct the contact graph. Further, we characterize the contact
of nodes. Based on our analyses, we formulate two definitions: delivery proba-
bility and community collaboration degree. The delivery probability measures
the possibility of a node forwarding messages to another node. The commu-
nity collaboration degree measures a node’s contribution to the community. Our
scheme has several advantages as compared with existing approach. First, in our
scheme, the delivery probability of nodes considers two factors: direct delivery
and indirect delivery. Whether a node chooses to deliver directly messages or
indirectly messages depends on the direct delivery probability and the indirect
delivery probability. Second, in previous papers, only the contact between nodes
is considered, but we present the community collaboration degree to measure
the relationship between a community and its nodes.

The contributions of this paper are as follow:

– We formulate the message dissemination problem in VANETs, which selects
the optimal collaborative nodes based on delivery probability and community
collaboration degree, and prove it to be a NP-hard problem.

– Our paper analyzes real vehicle traces and exploits the sociability of vehicles.
On the basis of the delivery probability, we also consider the relationship
between the total number of forwarding messages in a community and the
number of messages which are forwarded by a node.

– We purpose an scheme based on delivery probability and community collab-
oration degree, for solving the message dissemination problem in VANETs,
which predicts delivery probability and community collaboration degree by
utilizing the Markov model in the next slot to select a set of nodes to forward
messages. Based on the purposed scheme, we design the CC algorithm to mea-
sure those nodes with high delivery probability and community collaboration
degree, and then choose the optimal nodes as the collaborative nodes.
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– We perform experiments to validate the effectiveness of our scheme and other
methods. The experimental results show that our scheme has better perfor-
mance than prophet in terms of delivery ratio, average delay and delivery
cost.

The remainder of this paper is organized as follows. Section 2 gives the related
work. Section 3 describes the system and defines the problem. Section 4 investi-
gates vehicular sociality. In Sect. 5, we design the scheme based on community
collaboration degree. Section 6 describes performance evaluation. Finally, we give
our conclusion and outline the directions for future work in Sect. 7.

2 Related Work

Message dissemination is a key component of vehicular ad hoc networks
(VANETs). Many schemes have been developed for VANETs, which are dif-
ferent in their protocols characteristics, frame of network [1]. There are many
protocols investigated in previous literature [2–4]. The epidemic is used to relay
messages by flooding or restricted flooding [5]. FirstContact [3] is a single-copy
routing protocol, which consumes only a little buffer and delivery cost. However,
forwarding only one copy may cause messages transmission failure, so the per-
formance of this protocol in delivery ratio and delay will be worse than multiple
copy protocols. Baiocchi et al. [4] presented an analytical model to evaluate the
performance of the distributed beaconless dissemination protocols in VANETs.
However, the beaconless protocols may produce occurrence of duplicated mes-
sage transmissions.

Recently, there are some researches based on social structure [6–13]. In [11],
authors presented SimBet, an algorithm for forwarding data in delay-tolerant
MANETs based on the node’s centrality to choose the next forwarding node.
They predicted the delivery by estimating the centrality of the node. They have
demonstrated through real trace data that SimBet had better delivery perfor-
mance compared with epidemic. Also, SimBet achieves the goal that finding a
route due to the low connectivity of the sending and receiving nodes. In [12],
it introduced a centralized heuristic algorithm to learn delivery probability of
different paths and choose the best path. Instead of [12], the work of [13] focused
on buffer management and messages schedule. The later the message is created,
the higher priority it gets. In contrast, our strategy does not focus on buffer man-
agement, but we consider buffer size in the simulation experiment. Besides the
delivery probability, we also consider the proportion of node forwarding numbers
in the overall forwarding numbers of the community.

Moreover, the game theory based routing protocol is also emerging. There
have been many articles published on the theory. Abdelkader et al. [14] proposed
a distributed game theoretic approach that computes a node utility function to
achieve fair cooperation. Compared with other DTN protocols in performance,
this approach shows that fairness among the nodes is improved, and delivery cost
is reduced. Cai et al. [15] presented an efficient incentive compatible routing pro-
tocol (ICRP) with multiple copies for two-hop DTNs based on the algorithmic
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game theory. The protocol considered the behaviors of selfish nodes that did not
forward other nodes’ messages and rely on the nodes to forward its own mes-
sages. Besides, the optimal sequential stopping rule and Vickrey Clarke Groves
auction strategy are also adopted for selecting optimal relay nodes. Further,
they proposed the realistic probability model to find the optimal stopping time
threshold and optimizes selection of relay nodes.

In addition, we have noticed some interesting studies [16–21] about message
dissemination. He et al. [19] first proposed a store-and-forward framework with
extra storage to solve the scalability and high-mobility issues. Then he proposes
an optimal link strategy based on the dependence of the delay components.
The experimental results show performance of the proposed solution is much
higher in delivery ratio compared with the state-of-the-art solutions. Li et al.
[20] presented an scheme to ensure the minimal budget to deliver the message
to the vehicle in a given geographical area and a given a piece of a message.
Further, they considered to utilize the optimal RSUs to forward the message
based on the proposed quadtree model. Bi et al. [21] proposed an urban multi-
hop broadcast protocol which aimed at delivering emergency messages so that
lowering transmission delay and reducing message redundancy.

Although, there are plenty of different approaches in message dissemination,
most of them are probably limited to a specific traffic scenarios including the
topological structure of street, vehicle speed, etc. Our work aims to propose the
message dissemination problem and design a scheme about how to select the
optimal collaborative nodes, which is independent of specific scenarios. Com-
pared with [5,22], our scheme considers the proportion of forwarding numbers
of a node in the whole community besides delivery probability. Then, we utilize
Markov chains to infer the future nodes forwarding states.

3 System Description and Problem Definition

3.1 System Description

In the traditional urban vehicular network, infrastructures are often used as
relay nodes for message dissemination because it has larger coverage and longer
service time. However, it is difficult to deploy them on a large scale due to its
high price and deployment costs. Besides, the dissemination effect is not ideal
since it is hard to move flexibly when it is built, which results in a large coverage
blind area throughout the network. By using the short-distance communication
technology of on-board equipment such as Bluetooth and WiFi, vehicles can
become “mobile infrastructures” to accomplish dynamic transmission. Although
they only have a small transmission range and short working cycle, they can rely
on quantity advantage to compensate for the coverage blindness caused by the
infrastructures to some extent.

In urban environment, we can divide dynamic nodes into potential collabo-
rative nodes and high quality collaborative nodes according to whether they are
willing to participate in forwarding messages. In general, potential collaborative
nodes such as pedestrians, shared bikes, private cars, often request to other nodes
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for forwarding its own data in buffer but do not always forward data from other
nodes for privacy reasons. High quality collaborative nodes are voluntary to for-
ward messages and have a wide range of movement than pedestrians, private
cars or shared bikes. These public vehicles cannot refuse to provide forwarding
services for privacy reasons. Nevertheless, the number of such high quality col-
laborative nodes is significantly smaller than the former. Therefore, the research
focuses on the potential collaborative nodes.

We assume that there is a potential collaborative node i, if it helps forward
the message of node a, then i becomes the collaborative node of node a. How-
ever, potential collaborative nodes may be less likely to forward messages for
their own reasons and just send their own requests to other nodes. In order to
allow more potential collaborative nodes to participate in the forwarding service,
we consider to give the nodes that are willing to be collaborative nodes a certain
reward to inspire more potential collaborative nodes to participate in the for-
warding service. The main advantages of utilizing potential collaborative nodes
for message dissemination lies in two aspects. On the one hand, it effectively
reduces the deployment and forwarding costs compared with fixed infrastruc-
tures. On the other hand, it can increase the likelihood of successful messages
delivery based on its high mobility.

3.2 Problem Definition

We consider disseminating message within a given budget. Due to the time to
live of messages, it is of great importance to be timely forwarded before they are
out-of-date. We define our message dissemination problem as follows:

Definition 1. In the case of giving the budget B and reward r for inspiring
vehicles to disseminate messages in VANETs, how to choose the optimal poten-
tial collaborative nodes so that the number of successful delivery messages is
maximized?

The formulation of above problem is shown as follows:

maxD(x) =
n∑

i=1

(xi ∗ mi) (1)

subject to

n∑

i=1

(xi ∗ ri) ≤ B (2)

xi ∈ {0, 1}, 1 ≤ i ≤ n (3)

where n represents the total number of nodes in the network. xi indicates whether
the node is the collaborative node. If xi = 1, it indicates that this node is the
destination. Otherwise, it is not. mi represents the number of messages that
destination has received. Constraint (2) denotes that the total rewards should
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be less than the given budget B, where ri represents the reward for inspiring
node i to be a collaborative node.

Our message dissemination problem can be modeled as the budgeted maxi-
mum coverage problem [23]. We have the following theorem to prove it,

Theorem 1. The message dissemination problem is NP-hard

Proof. We can construct the contact graph G(N,E) from the known traces of
vehicles, where N is the set of nodes and E is the set of edges. Each node in the
network represents a vehicle and each edge indicates that there is at least one
communication within the period of time. We assume that C = {c1, c2, ..., cn}
indicates potential collaborative nodes set with correlative rewards {ri}n

i=1, n =
|N |. Similarly, M = {m1,m2, ...,mn} indicates a set with correlative the number
of received messages. Our goal is to find a set C

′ ⊆ C, such that the number
of successful delivery messages are maximized and rewards does not exceed a
given budget B. Accordingly, we reduce the message dissemination problem to
a budgeted maximum coverage problem, which is a classical NP-hard problem.

4 Scaling Vehicular Sociality

In order to understand the pattern of vehicular mobility and design message
dissemination schemes, it is of great importance for us to study historical data
in terms of frequency of contacts. After obtaining the messages to be forwarded
(which can be implemented by V2V or V2R communication), the vehicle con-
tinues to drive along its own path. When two vehicles encounter within the
communication range, they can contact with each other but not for long. The
sociality between vehicles can be found in a large number of such short and
frequent contacts.

4.1 Observation of Hot Spots

We collect the GPS trace of taxis in Shanghai, which is collected between Feb. 1
and Feb. 7, 2007. Due to the interference and loss of wireless signals, we amend
the drifted GPS data. Figure 1 is the heat map formed in different time periods
after processing the GPS data of 4,316 taxis. As can be seen from the figure,
the heat of the whole area is relatively low at 8 a.m., because the majority
of office workers travel during this period. At 12 o’clock, the heat increased
significantly, and there was a trend that the dispersed heat areas are linked
together. Obviously, present vehicle activity is more frequent than 8 o’clock.
By 22 o’clock, the heat has dropped compared with 12 o’clock. After analyzing
the vehicle trajectory for 7 days, we find that the movement pattern of vehicles
presents a concentration and periodicity. On the whole, the areas with large
traffic flow are concentrated in Jing ’An district, Xuhui district, Putuo district,
Hongkou district, Pudong new area and Minhang district.
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(a) Taxi hot spots at 8 a.m.
on Feb. 1, 2007

(b) Taxi hot spots at 12 a.m.
on Feb. 1, 2007

(c) Taxi hot spots at 22 p.m.
on Feb. 1, 2007

(d) Taxi hot spots at 8 a.m.
on Feb. 3, 2007

(e) Taxi hot spots at 12 a.m.
on Feb. 3, 2007

(f) Taxi hot spots at 22 a.m.
on Feb. 3, 2007

Fig. 1. Observation of hot spots in Shanghai

4.2 Constructing Social Structures

We use the Shanghai taxi data set including GPS data on Feb. 20, 2007. This
information includes the following fields: ID, TaxiID, Longitude, Latitude, Speed,
Angle, DateTime, status, etc. The granularity of reports is one minute for taxies
with passengers and about 15 s for vacant ones.

We first extracted effective V2V communication, as known as contact based
on literature [24] and generated the contact graph accordingly. Many literatures
have put forward different opinions on the weight of the edge of contact graph.
For example, the age of last the contact frequency [25], contact [26], contact ratio
[8]. We choose vehicle contact frequency as the weight measurement method of
the edge. For the contact graph, each node in the network represents a vehicle,
and each edge represents the contact frequency between two vehicles. Then, we
get social structure by using fast unfolding algorithm [27] find community and
calculate the corresponding modularity [28] defined as

Q =
1

2m
[
∑

ij

Ai,j − kikj

2m
]δ(ci, cj) (4)

where m is the total number of edges. If there is an edge between node i and j,
Ai,j is the weight of edge between node i and j. Otherwise, Ai,j = 0. ki and kj

are the degrees of node i and j, respectively. ci and cj are the community where
node i and node j belong, respectively. If ci is equal to cj , δ(ci, cj) = 1 and zero
otherwise.
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Figure 2a illustrates a contact graph using Shanghai taxi trace on Feb. 20,
2007, which contains 1127 vehicles. Obviously, there is a clear community struc-
ture. The modularity is 0.845. Figure 2b shows the community distribution on
Feb. 21, 2007. The modularity is 0.85. Obviously, the relationship of some com-
munities is pretty close. These nodes of close communities should naturally
become relay nodes for forwarding messages. Besides, we observe that although
different vehicles had different trajectories, vehicles present a stable community
relationship.

(a) Community distribution of
1127 taxis on Feb. 20, 2007.

(b) Community distribution of
1152 taxis on Feb. 21, 2007.

Fig. 2. Contact graph extracted from Shanghai taxi trace.

4.3 Analyzing Centrality on Social Structures

Through the collected data and the above community analysis, we obtain the
degree distribution of Shanghai taxi in Fig. 3a and calculate the average degree of
contact graph. The result is 21.514. Then, we plot the Cumulative Distribution
Function (CDF) of degree centrality and closeness centrality in Fig. 3b and c.

It can be seen that node degrees are almost concentrated within 30, which
is illustrated from CDF of degree in Fig. 3b and c as well. For any one of these
vehicles, it is almost impossible to meet more than one third of the vehicles in a
day. Besides, we have some significant findings from Fig. 3b and c. First, both the
degree centrality and closeness centrality are effective metrics that distinguish
part of vehicles with centrality. Second, in vehicle degree centrality graph, the
curve that vehicle degree is more than 30 flattens out and grows slowly. That
means the proportion of vehicles whose degree is more than 30 is much less than
that within 30. A similar case can be confirmed from vehicle closeness centrality
graph.
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Fig. 3. Degree distribution and CDFs of degree, closeness in contact graph constructed
from GPS data of Shanghai taxis.

5 Community Collaboration Scheme Design

From the above analysis, we can see that the node movement has sociality. A
pair of nodes that have met are likely to meet again in the future. In this section,
we study the delivery probability between nodes and the contribution of nodes to
the community, and predict future delivery probability and contribution changes
by using Markov chain models.

Using potential collaborative nodes as the relay nodes of message dissemi-
nation has two advantages. First, the high dynamic of vehicle movement makes
the selection of relay node flexible and changeable. Although, the average delay
by infrastructure is lower than V2V or V2R (if there are enough infrastructures
deployed), the total budget will greatly increase. Moreover, since the infrastruc-
ture is located in a fixed location, V2R communication should be ensured for the
data transmission of the “last kilometer” if there are places where data cannot
be delivered directly. Second, the vehicles, as mobile nodes, keep moving and
contact with more vehicles, which will naturally spread data more rapidly. In
contrast, infrastructure can only provide data with vehicles passing through its
range due to its fixed location.

5.1 Delivery Probability and Community Collaboration Degree

Although, there were many studies based on degrees and closeness, these studies
are based on a fact that all the nodes in a network is voluntary to open its
own on-board equipment for other nodes for forwarding messages. However, it
is unrealistic. Many vehicles do not want to participate in forwarding messages
for privacy reasons. For dynamic networks, we denote the number of contacts
between node a and node b as Ea(b), where a or b represents anyone of nodes.
Therefore, we get the total number of contacts as follows:

N =
∑

a∈Ω

∑

b∈μa

Ea(b) (5)
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where μa denotes the set of contact of node a, Ω denotes the all nodes in the
network. In the opportunity network, the node carrying the messages has two
ways to deliver the messages to the destination, one is direct delivery and another
is indirect delivery. For a and b, we have the definition:

Definition 2. Direct Delivery Probability: The probability that node a deliv-
ers messages directly to node b, denoted by DDa(b).

It is calculated as:

DDa(b) =
Ea(b)

N
(6)

Definition 3. Indirect Delivery Probability: The probability that node a
delivers messages by relay nodes to node b, denoted by IDa(b).

It is calculated as:

IDa(b) =
∑

k∈μa,k �=b

(
Ek(b)

N
· Ea(k)

Ea
) (7)

Ea =
∑

i,j∈μa,i �=j

Ei(j) (8)

Fig. 4. Messages delivery process.

Here, we give a example. As shown in Fig. 4, we assume that node a
encounters node b and node d, node a is going to deliver messages to node
e. The total number of encounters between node a and other nodes is N =
Ea(e) + Eb(c) + Ec(e) + Ed(e) = 100. For node a delivering messages to node e,
we have two ways: direct delivery and indirect delivery. If delivered directly, its
delivery probability is DDa(e) = 0.05. We observed that if node a delivers the
message to b and b indirectly delivers the message to e, its delivery probability
IDa(e) = max{IDb(e) = 0.35 ∗ 0.4,DDd(e) = 0.2} was higher than DDa(e).
Intuitively, node a is more likely to forward messages to d rather than to b or
directly delivering.

Definition 4. Delivery Probability: The ratio of the number of contacts
between a and b to N, denoted by Pa(b).
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Given any two nodes, they are affected by both the direct delivery probability
and the indirect delivery probability. Here we define the delivery probability of
node a to node b:

Pa(b) = αDDa(b) + (1 − α)IDa(b), 0 < α < 1 (9)

This probability determines whether the node is significantly affected by the
direct delivery probability or the indirect delivery probability. When a node
carrying messages encounters multiple nodes and these nodes are qualified for
forwarding messages, it is natural to select a node with a high delivery prob-
ability as the collaborative nodes. However, the following scenario may occur:
We assume that node a encounters node b, c and d, and these three encountered
nodes are qualified for forwarding. If the delivery probabilities of the three nodes
are Ea(b) > Ea(c) > Ea(d). We should give priority to node b as the collabora-
tive node based on delivery probability. Nevertheless, if node b does not forward
or rarely forward messages from other nodes before compared with node c and
d, the number of messages forwarded by node b is relatively small compared
with the total number of messages forwarded by the whole community. In other
words, node b contributes less to community in forwarding messages. Besides,
the vehicle will forward messages from multiple nodes on the way, it may be
better to select c or d from the perspective of the whole community. In order to
study the above situation, we have the following definitions.

Definition 5. Node Request Numbers: The number of messages that node
a wants node b to forward, denoted by Qa(b).

Definition 6. Node Forwarding Numbers: The number of messages that
node a forwards messages from request of node b, denoted by Ra(b).

Based on Definitions 5 and 6, we have a conclusion that if two nodes forward
messages for each other, we think that these two nodes are collaborative. If
anyone of them only sends the request and does not forward messages from
another node, we think such selfish node should not have priority in forwarding
data. Further, we get define the community collaboration degree to measure the
importance that a node to the whole community.

Definition 7. Community Collaboration Degree: The total node forward-
ing numbers of a node a to any node b in a community divided by the sum of the
node request numbers and node forwarding numbers, denoted by CSa.

CSa =

∑
b∈μa

Qa(b)
∑

b∈μa
(Ra(b) + Qa(b))

(10)

Intuitively, if a node has a high community collaboration degree, this node
forward more messages from other nodes than. We should regard it as a collab-
orative node.



Exploiting Sociality for Collaborative Message Dissemination in VANETs 377

5.2 Inferring Future Delivery Probability and Community
Collaboration Degree

As we study how to select the optimal collaborative node in potential collabo-
rative nodes set, we prefer to estimate the delivery probability and community
collaboration degree utilizing Markov chain model. In Markov chain model, the
current state of the process only depends on a certain number of previous values
of the process, which is the order of the process. In order to capture the com-
munity collaboration degree dynamics in the network, we divide time into slot
of equal length δ. It is great important that measuring the length of δ. If δ is
relatively short, we can observe the community collaboration degree dynamics
between consecutive time slots but at the same time more random factors would
involve in the observations which makes it hard to capture the correlations of
community collaboration degree. If δ is relatively long, we find it stable, but lose
the dynamics.

For each node i, we examine the number of contacts of each node in a series
of contact graphs like Fig. 2 and get a sequence of the number of contacts. After
discretizing continuous measures, we get a finite state space of contacts named
as Θc. Let any state s ∈ Θc and m ∈ Θk

c , where k is the number of order and
m = {m1,m2, ...,mk}. We denote nc

ms as the number of times that state m equals
to state s in a given sequence and nc

m as the number of times that state m is
observed. Therefore, we get the estimation of the state transition probability of
contacts when state m = {m1,m2, ...,mk} transfers to state {m2,m3, ...,mk, s}
as follows:

pc
ms =

nc
ms

nc
m

, nc
m > 0 (11)

Besides, we get a series of requests and forwarding and conduct the state
transition probability of requests and forwarding. We denote any state s′ ∈ Θq

and m′ ∈ Θk
q , where Θq is the finite state space of requests. Also, Θr is the finite

state space of forwarding, any state s′′ ∈ Θr and m′′ ∈ Θk
r . nq

m′s′ is the number
of times that state m′ equals to state s′ in a given sequence of requests and nq

m′

is the number of times that state m is observed. Also, nr
m′′s′′ is the number of

times that state m′′ equals to state s′′ in a given sequence of forwarding and
nr

m′′ is the number of times that state m′′ is observed in the sequence.

pq
m′s′ =

nq
m′s′

nq
m′

, nq
m′ > 0 (12)

pr
m′′s′′ =

nr
m′′s′′

nr
m′′

, nr
m′′ > 0 (13)

For any node i in the network, we have the estimated number of contacts in
the next slot as follows:

E′
i(j) =

∑

s∈Θ

pc
ms · s (14)
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Besides, the estimated number of requests and forwarding calculate as follows:

Q′
i(j) =

∑

s′∈Θq

pq
m′s′ · s′ (15)

R′
i(j) =

∑

s′′∈Θr

pr
m′′s′′ · s′′ (16)

5.3 Choosing the Collaborative Nodes

The collaborative message dissemination problem has been proven to be NP-hard
in Sect. 3. Therefore, we give our community collaboration (CC) algorithm based
on greedy heuristics. Algorithm 1 shows our Community Collaboration (CC)
Algorithm. Given the information, our scheme greedily selects the collaborative
nodes with the higher delivery probability and the community collaboration
degree. Specifically, when a node carrying messages meets one or more nodes,
we compare the delivery probability between it and the destination and the
delivery probability between the encountered node and the destination. If the
delivery probability of the encountered node is higher than itself, then we further
compare their community collaboration degree. Here, we consider two types of
collaborative nodes. For potential collaborative nodes, we believe that they will
provide forwarding services by giving certain rewards.

Algorithm 1. Community Collaboration (CC) Algorithm
Input: All nodes set Ω, Request list Ri of node i, Contact set Ci of node i
Output: Forwarding set G = {G1, G2, ..., Gn}, n = |Ω|
1: Begin
2: G = Ø
3: while Ω �= Ø do
4: node i transmit NCTi to nodes it encounters and request NCT
5: select node i from Ω and node j from Ci

6: for any destination node k in request list Ri do
7: if Pi(k) < Pj(k) then
8: if CSi < CSj then
9: Inform node i to add j to candidate set Gi(k)

10: if node i received NCTj from j then
11: Gi(k) = Gi(k)

⋃
j

12: Ω = Ω \ {j}
13: for destination k in request Ri do
14: select max(Pi(k)/CSi) node in Gi(k)
15: Gi(k) = Gi(k)

⋂
max(Pi(k)/CSi)node

16: Gi = Gi ∪ Gi(k)

17: return Gi

18: End
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For high quality collaborative nodes, we believe that these public vehicles
cannot refuse to provide forwarding services for privacy reasons. Therefore, we
do not pay more attention to high quality collaborative nodes.

To implement our algorithm, we use two tables, node contact table (NCT)
and request list table. Node contact table saves updateId field, the list of contact
nodes, contact numbers, forwarding numbers, request numbers and request list
table saves destinations, data, isForwarded field and keepingTime field. When the
node a carrying message meets node b, a sends its contact table and request list
table to b. After receiving the contact table of a, b will calculate which messages
are appropriate to forward to itself and inform node a. Node a will update the
records of corresponding node after receiving it. When the node contact table
changes, the updateId field for the node that corresponds to the changed node is
updated. New record will override the previous record. When two nodes exchange
table information, if the updateId of the same node is different, the record behind
the timestamp should be adopted.

Fig. 5. Cross-community forwarding.

Our algorithm starts with the meeting of two nodes. As shown in Fig. 5, Ca

and Cb denotes two communities. Assuming that there are only two communities
and node a encounters node b, α = 0.5. it starts timing when sending its own
NCT to node b and waits for receiving NCT from node b. The total number of
contacts N = Ea(c)+Ea(d)+Ea(e)+Ea(g)+Eb(f)+Eb(g)+Eb(h) = 55. If node
a will deliver messages to node g, the direct delivery probability between node
a and node g is DDa(g) = Ea(g)/N = 0.055 and indirect delivery probability
IDa(g) = Eb(g)/N = 0.364. Pa(g) = 0.055 ∗ 0.5 + 0.364 ∗ 0.5 = 0.21 and
Pb(g) = 0.5 ∗ DDb(g) + 0.5 ∗ IDb(g) = 0.5 ∗ 0.36 + 0 = 0.18. Therefore, node a
has a higher delivery probability than node a, and node a should deliver directly
it to node g instead of forwarding the data to node b. If Pa(g) < Pb(g), we
check how many source nodes of messages in the request list of nodes a and b
are themselves, which is the number of requests. And the number of messages
forwarded by the node itself, that is, the forwarding amount. If the community
collaboration degree of node b is higher than that of node a, then node b will
send its own NCT. It will stop the calculation if the update of its own NCT
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has not finished within the contact threshold. If node a receives NCTb from the
node b, it will update its own NCT . Then, each destination in the request list
is forwarded accordingly.

6 Performance Evaluation

We use the Opportunistic Network Environment (ONE) simulator [29], an effec-
tive tool developed by Java. This simulator can simulate the movement of nodes
and can evaluate various network parameters. It is designed for Delay Toler-
ant Networks (DTNs), and also suitable for VANETs. The performance of our
scheme is measured and compared with other two schemes: Epidemic [5] and
Prophet [22].

6.1 Simulation Setup

In our experiment, we adopt the city of Helsinki as simulation scenario, which
is a rectangle of size 5 ∗ 4 km2. Nodes move according to the Shortest Path
Map Based Movement model, map-based movement model that uses Dijkstra’s
algorithm to find shortest paths between two random map nodes. Though the
working day movement model [30] is best for simulating the movement pattern
of vehicles, since it simulates the real activities of human being such as working
at office, sleeping at home and visiting some places. In fact, compared with the
working day movement model, the Shortest Path Map Based Movement model
dilute the influence of node movement pattern with time. In turn, we can observe
the nodes forwarding in a long time. Considering the simulation time, we have
omitted the differences of day and night. The simulation run lasts for 10 h and
messages are created after the first 2 h. In order to avoid accidental factors,
each simulation is repeated 5 times with random nodes. Other parameters are
specified in the Table 1. Here, the participation rate represents the maximum
proportion of collaborative nodes in the network. It means that the ratio of the
number of collaborative nodes and the total number of nodes should not exceed
that value.

We compare our CC algorithm with Epidemic [5], Prophet [22]. The epidemic
scheme indicates that random pair-wise exchanges of messages ensure eventual
message delivery among mobile nodes in the range of communication. The goal
of epidemic is to maximize message delivery ratio and minimize message delay.
The prophet generates a delivery predictability sequence from history traces.
That can calculate how likely it can relay a message to the destination. The
metrics used to compare above schemes are listed as follows:

– Delivery Ratio: The ratio of messages successfully delivered to destination
to all messages generated.

– Average Delay: The average duration that each message is successfully
delivered.

– Delivery Cost: The ratio of the total number of message packets in a network
to the number of source packets created.
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Table 1. Simulation setting

Network area 5 * 4 km2

Simulation time 10 h

Transmit speed 2 Mbps

Transmission range 200 m

Number of node 240

Package size 50 KB ∼ 1 MB

Messages TTL 1 h

Participation rate 0.8

α 0.5

6.2 Impact of the Number of Vehicles

We first show that how the number of vehicles impacts the performance of the
different schemes. As shown in Fig. 6a, as the number of vehicles increases, the
delivery ratio of three schemes grows smoothly. The epidemic has the highest
delivery ratio in three schemes. This is because the main idea of epidemic is that
a node will forward messages from them when it meets other nodes. This scheme
can get the higher delivery ratio than other schemes, but the loss packet rate
will increase due to network congestion, resource exhaustion and other reasons
when the number of copies reaches a certain number. Our scheme is higher than
prophet in delivery ratio. Figure 6b show that the average delay lowers as the
number of vehicles. The CC algorithm is 6% lower than prophet in delivery delay.
Compared with prophet, our scheme not only considers the delivery probability,
but also considers the contribution of a node to the community. As for Fig. 6c, we
can see that a message which is successfully forwarded requires multiple copies.
Our scheme is 7% lower than prophet in delivery cost.

Fig. 6. Impact of the number of vehicles.
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6.3 Impact of Message Time to Live

Figure 7 shows that how the message time to live impacts the performance of the
different schemes. As shown in Fig. 7a, the epidemic has the highest delivery ratio
in three schemes. Compared with prophet, our algorithm is higher than prophet
in delivery ratio. This is because the effective preservation period of messages
becomes longer as the increase of TTL, so that there are more opportunities
to contact other nodes, which naturally increases the chance of forwarding. In
Fig. 7b, our algorithm is 7% lower than prophet in delivery delay. Although our
algorithm is less than epidemic, which takes the method of forwarding messages
as soon as a node encounters another. As a result, there exist a large number of
copies in the network and they waste cache resources. That may cause network
congestion. As for delivery cost, our algorithm is 8% lower than prophet and
also lower than epidemic in Fig. 7c.

Fig. 7. Impact of the message time to live.

Fig. 8. Impact of the participation ratio.
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6.4 Impact of Participation Ratio

Figure 8 shows the participation rate to change the number of collaborative nodes
in the network and compare the changes of three metrics. In Fig. 8a, we can see
that the delivery ratio increases as the participation rate increases. When the
participation rate reach 1.0, the delivery ratio reaches a maximum. Because
there is no privacy node in the network at maximal participation rate. All nodes
voluntarily forward messages from other nodes with rewards. Our algorithm has
higher delivery ratio compared with prophet, although it is lower than epidemic.
Figure 8b show the average delay of three schemes. Our algorithm is 8% higher
than prophet. The epidemic has the lowest delay, because its forwarding strategy
like flooding that sacrifices space for time. Also, Fig. 8c show that delivery cost of
three schemes increase as the participation rate increases. Our algorithm is 9%
higher than prophet. If there are many potential collaborative nodes, the delivery
ratio of the whole network is relatively low, and there are fewer forwarding nodes,
so delivery cost is relatively low. When the participation rate increases, there
are fewer potential collaborative nodes and higher forwarding frequency, so the
delivery cost increases.

7 Conclusion

In this paper, we study the message forwarding based on community collabo-
ration degree in VANETs. We find that there is a clear social structure within
the network by analyzing the real traces of taxis. That inspires us to combine
the community into scheme. Firstly, we define the delivery probability including
direct delivery probability and indirect delivery probability and community col-
laborative nodes. Secondly, we purpose our CC algorithm to improve the delivery
ratio and lower the delivery delay and delivery cost. The results show effective-
ness of our methods under different environments. As a future work, we will
study how to choose collaborative nodes in a hybrid vehicular networks.
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29. Keränen, A., Ott, J., Kärkkäinen, T.: The one simulator for DTN protocol eval-
uation. In: International Conference on Simulation Tools and Techniques, p. 55
(2009)

30. Ekman, F., Karvo, J.: Working day movement model. In: ACM SIGMOBILE Work-
shop on Mobility Models, pp. 33–40 (2008)


	Exploiting Sociality for Collaborative Message Dissemination in VANETs
	1 Introduction
	2 Related Work
	3 System Description and Problem Definition
	3.1 System Description
	3.2 Problem Definition

	4 Scaling Vehicular Sociality
	4.1 Observation of Hot Spots
	4.2 Constructing Social Structures
	4.3 Analyzing Centrality on Social Structures

	5 Community Collaboration Scheme Design
	5.1 Delivery Probability and Community Collaboration Degree
	5.2 Inferring Future Delivery Probability and Community Collaboration Degree
	5.3 Choosing the Collaborative Nodes

	6 Performance Evaluation
	6.1 Simulation Setup
	6.2 Impact of the Number of Vehicles
	6.3 Impact of Message Time to Live
	6.4 Impact of Participation Ratio

	7 Conclusion
	References




