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Abstract. The geographical location of dynamic IP addresses is impor-
tant for network security applications. The delay-based or topology-
based measurement method and the association-analysis-based method
improve the median estimation accuracy, but are still affected by the
limited precision (about 799 m) and the longer response time (tens of
seconds), which cannot meet the location-aware applications of high-
precise and real-time location requirements, especially the position of
dynamic IP addresses. In this paper, we propose a novel approach for
dynamic IP geolocation based on Bayesian Linear Regression, namely,
GeoBLR, which exploits geolocation resources fundamentally different
from existing ones. We exploit the location data that users would like to
share in location sharing services for accurate and real-time geolocation
of dynamic IP addresses. Experimental results show that compared to
existing geolocation techniques, GeoBLR achieves (1) a median estima-
tion error of 239 m and (2) a mean response time of 270ms, which are
valuable for accurate location-aware network security applications.

Keywords: Network security · Dynamic IP geolocation ·
Machine learning · Bayesian Linear Regression

1 Introduction

The ability to accurately identify the geographic of location of an internet IP
address has significant implications for network security analysts (e.g. credit card
fraud protection), security event forensics and law enforcement [13]. A striking
amount of malicious activities have been reported from dynamic IP addresses
space, such as spamming, botnets, etc. [18]. Consequently, The dynamic IP geolo-
cation has become increasingly important in finding and preventing fast growing
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network attacks, which can help law enforcement organizations and government
agencies to identify the location information or network attack resources of crim-
inals.

The dynamic IP geolocation is a challenging task because of insufficient
labelled training data. The variability of the dynamic IP addresses and the
excessive size of the dynamic IP addresses network make the task even harder.
It is far more challenging to determine an dynamic IP address with fine-grained
granularity without information from the Internet Service Provider (ISP).

In this paper, we study the geographic location of dynamic IP addresses,
especially, focus on the dynamic behavior of IP addresses assignment [32]. There
are two-fold reasons for geolocation inaccuracy. First, the adjustment period of
dynamic IP addresses is ephemeral, assignment through DHCP protocol. As a
result, the same place have observed different IP addresses, even if the observa-
tion interval is continuous within a span of 10 to 120 min. Second, the dynamic
IP addresses for the same place are itinerant—similar IP addresses will be ran-
domly assigned to the same place in consecutive period of time. In other words,
dynamic IP addresses do not embed fine-grained information on the device with
used one. Consequently, the positioning of dynamic IP addresses and the posi-
tioning of devices are intrinsically two different problem.

In existing work towards IP geolocation, Database-driven approaches typ-
ically build a database whose geolocation information come from the Whois
database [1], DNS [27], user contributions [4], etc. These databases are compiled
by combining data from different sources. Database-driven geolocations [1,2,4–
7,27] are fast response time. Whereas, such IP/location mappings are very
coarse-grained and usually achieve a city-level precision in most cases. Delay
measurement based geolocation approaches such as GeoGet [21], Octant [31]
and SLG [30], they have (1) high deployment cost, and (2) long response time,
which cannot meet the real-time requirement of dynamic IP addresses. Statis-
tical and data mining approaches [9,14,33] are implemented by applying kernel
density estimation to delay measurement and using maximum likelihood esti-
mation to distance from landmark. The main purpose of the machine learning
approach (GeoCop [29]) is to improve the accuracy and robustness of existing
geolocation methods. HG-SOM [17] is an advanced approach for an accurate
and self-optimization model for IP geolocation, including identification of opti-
mized Landmark positions. Moreover, the selection of correlated data and the
estimated target location requires a sophisticated strategy to identify the cor-
rect position. These approaches also cannot meet the demand of fine-grained
granularity.

Briefly, our approach, referred to as GeoBLR, is based on the fact that most
of the IP addresses allocated to the home broadband access adopt dynamic
IP address access technology. In this scenario, user end-hosts (such as mobile-
phones, pads, laptops, etc.) access the network using wireless technology. The
geographical location provided by the APP applications is used as a measure-
ment landmark. Since the distance between the user’s mobile phone and the IP
access point (AP) is within the coverage of the wireless network, the geographical
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location within the range may be used as the geographic location of the access
IP in the current time period.

The method includes the three phases: First, based on the observation that
users are willing to share in location-sharing services by their Global Positioning
System (GPS) units, we cluster the location fingerprint at various time periods
respectively. Then estimate the candidate landmarks of each IP address. After
this phase, we obtain the mappings from each individual IP address to its loca-
tion candidates. Secondly, we use Bayesian Inference to calculate the maximum
posterior probability of candidate multiple landmarks of dynamic IP address,
select the geographical location with the highest probability, according to the
semantics of the scenario. Next, We use Bayesian Linear Regression to optimiza-
tion parameters, and correct the trusted landmark database. Finally, based on
the mappings obtained from the first two phase, we design an classification model
to estimate the mappings from dynamic IP addresses to geographical locations.

Our contribution in this paper is three-fold:

– We propose a novel approach to locate dynamic IP addresses that we call
GeoBLR. The proposed approach has strong adaptive ability to data, can
repeatedly use experimental data, and effectively prevent over-fitting, which
can meet the demand of high-precision and real-time positioning.

– We use the largest convex polygon to cover the location area as the candi-
date set of landmarks, instead of adopting the center point of the k-means
clustering algorithm, which is consistent with the real IP access scenario.

– We give a formal definition of dynamic IP address geolocation, adding the
time attribute to the location description, which is more closer to the real
network environment.

The paper is organized as follows: in Sect. 2 discusses related work. Section 3
gives definitions and relevant problem statements. Section 4 explains our algo-
rithm in detail, including mathematical proof, feature extraction and analysis
process. Section 5 describes the dataset and presents experimental results and
comparative analysis. Finally, draws the conclusions in Sect. 6.

2 Related Work

To evaluate performance of the GeoBLR algorithm, we compare against current
relevant geolocation approaches.

Database-Driven Geolocation. These approaches try to establish a database with
large number of IP/location mapping records, whose geolocation resources come
from the Whois database [1], DNS [27], postal addresses from the website [26],
user registration records [28]. Such as MaxMind [6], IP2Location [5], Neustar [7]
and Digital Element [2]. We will compare geolocation accuracy with both the
Maxmind database [6] or the IP2Location database [5]. Both of these databases
are commercially available IP lookup packages. Unfortunately, these databases
are hard to maintain and keep up-to-date, especially, since it cannot take into
consideration dynamic IP assignment.
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Data-Mining-Based Geolocation. These approaches try to discover the relation-
ship between location and IP addresses from location-share applications, web-
sites, query-logs and so on. One of the latest data mining-based geolocation
technique—Checkin-Geo [24]—can achieve the median error distance to 799 m,
which is very prominent. It first obtain that relationship data of “User ↔
Home/office Locations” from the application of some mobile phone application,
then obtain the data of “User ↔ Home/office IPs” from the corresponding PC
application program, and finally obtains the rule of user activity by machine
learning method, and establishes the relationship of “IP ↔ Location” to achieve
the target IP location. However, The data resources on which such technologies
depend are usually only abundant in a few metropolitan areas and the public
cannot access these resources due to privacy concerns. Besides, data mining-
based technologies such as [16] are difficult to cover most IP addresses, so they
are mapping IP address blocks to the one landmark in order to increase the cov-
erage of IP addresses, which may result in larger positioning errors according to
[15]. As compared with previous data-mining-based technologies, Structon [16]
uses a new approach to obtaining IP geolocation from the website. In particular,
it builds a Geo-IP lookup table and extracts location information using regular
expression technique from each page from a large crawler crawling database.
Since Structon does not combine delay-based measurement algorithm with the
landmarks discovered, it can achieve city-level coarser geolocation granularity.
Dan et al. [12] use query-logs-based technology to improve the accuracy of IP
address location. It is a supplement and enhancement to the existing IP geoloca-
tion database. The main challenges by this technology are: (1) extracting explicit
location information in the logs, (2) the query logs are a large scale and belong
to CPU-intensive calculation, (3) for a given IP range, multiple candidate land-
marks are extracted from the query logs, (4) the metropolises with large influence
need to be modified to the surrounding small towns.

Statistical-Based Geolocation. Recent relevant approaches (e.g., [9,14,33]) that
find the maximum likelihood probability of geographic location with respect to
observed delay-distance measurements. While the construction of the probabil-
ity distributions varies, e.g., nonparametric kernel density estimators in [14,33],
parametric log-normal distributions in [9]) etc., All three methods assume con-
ditional independence between measurements, in order to efficiently calculate
the geographic location using the maximum likelihood probability. Spotter [33]
leverage a probabilistic approach based on a statistical analysis of the relation-
ship between network delay and geographic distance. [14] regards IP geolocation
as classification problem based on machine learning, which makes it possible to
incorporate other location information into the framework.

Wireless-Based Geolocation. These wireless-based approaches use GPS, WiFi,
cellular and other wireless positioning systems as the source. The GPS-
based geolocation method is widely used in mobile phones, computers and
various embedded systems. The cellular and WiFi-based location algorithms
include Google’s My Location [3] and Skyhook [8]. In particular, cellular-based
geolocation provides users an estimated location through triangulation, while
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Wi-Fi-based geolocation uses Wi-Fi access point as targeted location. These
methods require the user’s permission to share their locations.

Crowdsourcing-Based Geolocation. These Crowdsourcing-based approaches col-
lect and process data based on crowd-sourcing principles. Ciavarrini et al. [10,11]
proposed a method based on the crowd-sourcing principle to use the GPS posi-
tioning module in the mobile phone as a landmark. (1) Using the mobile phone
as a landmark, its built-in GPS unit has a self-positioning function, (2) Con-
sidering the wireless connection in the delay-distance model, (3) Participating
in the crowdsourced device through the Portolan platform, not only from the
research institutions, it also comes to the real application environment. They also
discussed the effects of four different delay-distance models on IP address loca-
tion errors. Lee et al. [20] propose an IP address database construction method
based on location-labelled Internet broadband performance measurement tool,
and provide an IP geolocation database based on South Korea’s 7-year Inter-
net broadband performance data, which shows fine-grained granularity but only
limited to South Korea.

All of the previously mentioned approaches rely on delay-based or topology-
based measurements [23,34,35] and a lot of data analysis [22,25], and most
methodologies do not take into account the dynamic IP addresses. In such sce-
narios, the measurement process is neither stable nor reliable. Therefore, this
paper presents a novel approach, GeoBLR, which uses the location information
shared by the user to solve the physical location of dynamic IP addresses and
achieves the purpose of (1) a negligible response time and (2) a smaller than
existing approaches of median estimation error.

3 Problem Statement

In this section, we present the definitions of relevant concepts and the formalized
description of the problem.

Definition 1. (Location Fingerprint). It is location information containing the
spatial location description generated by the mobile device using GPS, cellular
and Wi-Fi. A typical location fingerprint ω is a tuple (t, lat, lng, co, c, as), where
t is time, lat is latitude, lng is longitude, co is the coordinate system where the
latitude and longitude is located, c is the city where it is located, and as is the
acquisition method of the location fingerprint (GPS, cellular, Wi-Fi) etc.

Definition 2. (Active dynamic IP addresses set P). We define all the dynamic
IP address of the broadband access user, does not include the private IP address
dynamically allocated within the Network Address Translation (NAT) and the IP
address used for the mobile phone.

Definition 3. (The landmark set L). It is a geographical location set. A typical
geographic location l is a tuple (lat, lng, co, des, r, c, p, n), where lat is latitude,
lng is longitude, and co is the coordinate system in which the latitude and longi-
tude is located, des is the semantic description of the location (may be the specific
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building name, or the location description relative to the POI point, or the unit
name), r is the community (street level), and c is the city. p is the province or
state in which it is located, and n is the country in which it is located.

Definition 4. (The coverage area of the largest convex polygon ζ). It is the
polygon area covered by the set C of the observed location fingerprints ωt in a
corresponding coordinate system within a period of time t. Its area should cover
the C.

The area (ζ) is a convex polygon, not a circular area formed by the largest
diameter in the set C. The convex polygon is more computationally efficient
than the area covered by the circular area, and the acquisition of the covered
building is more representative than the circular area.

Problem. The geolocation of dynamic IP addresses, given the IP address in
the active dynamic IP addresses set P, finds that there may be multiple differ-
ent dynamic IP addresses in the corresponding geographical location �t (�t ∈ ζ)
within the time t, and the same IP address may also correspond to different �t

in different time periods t.

4 Bayesian Linear Regression-Based Location

Compared with active measurement, passive data acquisition can effectively
reduce the cost of data acquisition, it also introduces some new problems, such
as (1) the data “jitter” caused by the hybrid WLAN access and the heterogene-
ity of the terminal mobile phone. The offset of location fingerprint caused by
different operations system, application and driver; (2) data collection depends
on the active participation of users, there is regional imbalance, some areas are
data intensive, and some areas are sparse. These factors objectively cause mea-
surement errors in IP geolocation. In addition, the configuration strategies of
different ISPs, the heterogeneity and diversity of broadband access networks
also cause the “last half mile” problem.

In problems where we have limited data or have some prior knowledge that
we want to use in our model, the Bayesian Linear Regression approach can
both incorporate prior information and show our uncertainty. Bayesian Linear
Regression reflects the Bayesian framework: we form an initial estimate and
improve our estimate. And as we gather more evidence, our model becomes less
wrong. Bayesian reasoning is a natural extension of our intuition.

Since the maximum likelihood estimation always makes the model too com-
plicated to produce a phenomenon of over-fitting, Bayesian Linear Regression
can not only solve the over-fitting problem in the maximum likelihood estima-
tion, but also it could make better use of the data sample fully. The training
model can effectively and accurately determine the complexity of the model.

Base on the above analysis, the processing flow of our algorithm is shown in
Fig. 1. This process can be divided into three phases, which are preprocessing
phase, calibration phase and geolocation phase. The complete GeoBLR geoloca-
tion methodology is presented in Algorithm 1.
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Fig. 1. Flow chart of the proposed GeoBLR geolocation process.

Algorithm 1. GeoBLR Geolocation Algorithm
Input:

A set of N record information generated by m mobile devices,

T =
{

TD1
1 , TD2

2 , ..., TDm
m

}
, where TDi

i = {s1, s2, ..., sDi}
Output:

The mapping between dynamic IP addresses and landmarks, P ←→ L
1: cluster location fingerprints C from set T , then deriving the convex polygon region

ζ from C;
2: construct a landmark dataset L from the convex polygon area ζ,

L = {�1, �2, ..., �k, ...�n}, (n ≥ 3);
3: for each IP ∈ P do
4: train parameters [β1, β0] using Bayesian linear regression on the data set T to

maximize the probability of Eq. (8);
5: obtain the maximum value of posterior probability using Eq. (2),

associate IP↔ �;
6: end for
7: given an IP and observed location fingerprint ω;
8: if IP ∈ P and ω ∈ L then
9: return � ←− ω;

10: end if
11: if (IP ∈ P and ω /∈ L) or (IP /∈ P and ω ∈ L) then
12: update the L and P;
13: return � ←− ω;
14: end if
15: if IP /∈ P and ω /∈ L then
16: enter other procedure to process;
17: end if
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4.1 Preprocessing Phase

In the preprocessing phase, data is aggregated by source IP addresses. In the
same IP address, the data is divided into multiple time series according to time
t. In the same time period, multiple identical mobile device information will
appear, and the device information needs to be similarly measurement. We use
the bottom-up hierarchical clustering model (DBSCAN algorithm) to compare
the device IDs of N records, and the clusters that successfully clustered will enter
the next stage. Eventually, N records will be divided into m different devices.

Fig. 2. Mapping between location fingerprints and physical location landmarks.

For multiple records of the same device, the set Ti = {s1, s2, ..., sD} is the D
records generated by the mobile device i within the time t. We perform density-
based clustering on the location fingerprints of these D records, and select a
representative position record sj of the cluster center as the position fingerprint
of all the records of the D records. In this step, we mainly remove the abnormal
positioning fingerprint, which improves the validity of the data.

Time series data generated for m different mobile devices in time t, i.e.,{
TD1
1 , TD2

2 , ..., TDi
i , ..., TDm

m

}
, extract its location fingerprint set C and draw its

largest convex polygon area in the map ζ, the area of the convex polygon should
cover all locations of the fingerprint point set (ζ ⊇ C). As shown in Fig. 2.

A collection of location landmarks contained in a convex polygon region L,
L = {�1, �2, ..., �k, ...�n}, n is the number of landmarks (n ≥ 3). In this way, the
location fingerprint in the collected data is mapped to the physical location, and
a trusted database of location fingerprints will be constructed.

4.2 Calibration Phase

In the correction phase, the transformed position fingerprint and source IP
are mainly used as input of the positioning algorithm to process the location
inference. Considering high-precision and real-time, here we use Bayesian linear
regression algorithm, which is very suitable for passively acquired data for its
simplicity and high accuracy.
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P (�r|ω) =
P (ω|�r) P (�r)∑n
i=1 P (ω|�i) P (�i)

(1)

P (�r|ω) indicates the posterior probability of the occurrence of observing
fingerprint, then P (�r) indicates the prior possibility of a landmark. In the
calibration phase, the probability of landmark i and landmark j is not the
same (i �= j) according to the specific context semantics. We will assign a plu-
rality of landmarks in the convex polygon region according to the semantics:
P (�r) = ρr

m
n , which

∑
r∈n ρr = 1, ρ is the weight of the semantics. m is the

number of occurrences of the random position �r in n observations. the value of∑n
i=1 P (ω|�i) P (�i)) is usually 1, Therefore the estimated location �k is the one

obtaining the maximum value of the posterior probability.

�k = arg max
r

P (ω|�r) (2)

Supposing each location fingerprint ω = (o1, o2, ..., om) and it has M values, then
the P (ω|�r) =

∏
i∈M Poi|L (oi|�r), bring it into Eq. (2).

�k = arg max
r

P (ω|�r)

= arg max
r

∏
i∈M

Poi|L (oi|�r) ∝ ln

(
arg max

r

∏
i∈M

Poi|L (oi|�r)

)

= arg max
r

ln

( ∏
i∈M

Poi|L (oi|�r)

)

= arg max
r

∑
i∈M

lnPoi|L (oi|�r)

(3)

Assuming that the random variable at position � is Y, the position fingerprint
ω that can be observed is X, and the observed position fingerprint is a relatively
small-scale discrete point. We assume that Y is obtained from a normal distri-
bution and construct a Bayesian Linear Regression model is as follows:

yi = β1xi + β0 + εi (4)

y is the response variable, β’s are the weights (known as the model param-
eters), x’s are the values of the predictor variables, and ε is an error term rep-
resenting random sampling noise or the effect of variables not included in the
model, ε ∼ N

(
μ = 0, σ2

)
.
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The likelihood estimate of lnPoi|L (oi|�r) is:

P (Y |X,β1, β0) =
N∏

i=1

P (β1xi + β0 + εi|xi, β1, β0)

=
N∏

i=1

P (εi|xi, β1, β0) =
N∏

i=1

P (εi)

=
N∏

i=1

1√
2πσ

e
(εi−0)2

2σ2

=
N∏

i=1

1√
2πσ

e
(yi−(β1xi+β0))

2

2σ2

=
N∏

i=1

fo

(
xi|β1xi + β0, σ

2
)

(5)

Where fo() is a function as:

fo

(
xi|β1xi + β0, σ

2
)

=
1√
2πσ

e
(yi−(β1xi+β0))

2

2σ2 (6)

Here, the likelihood equation can be simplified to:

P (Y |X,β1, β0) =
N∏

i=1

fo

(
xi|β1xi + β0, σ

2
)

(7)

The parameters can be estimated from the sampled data, and the maximum
likelihood estimate is:

L̂ (β1, β0) = arg max
β1,β0

N∏
i=1

fo

(
xi|β1xi + β0, σ

2
)

∝ arg max
β1,β0

N∑
i=1

lnfo

(
xi|β1xi + β0, σ

2
)

(8)

In a small dataset we might like to express our estimate as a distribution
of possible values. This is where Bayesian Linear Regression comes in.

4.3 Geolocation Phase

In the geolocation phase, it is very important to be able to form a robust
and credible landmark database in the first two phases. The characteristics of
dynamic IP addresses are mainly two aspects: (1) the change period is random
and irregular, the time when an IP resides in a certain landmark is not fixed;
(2) there is a phenomenon of “itinerant”, that is, an IP will be repeated at the
same landmark position with a certain probability.
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In the first two phases, the geolocation of dynamic IP addresses can be cor-
rected for a certain time period t by collecting the time series characteristics of
the data in combination with the prior knowledge of the dynamic IP address.

During IP address geolocation, the IP address records that appear within a
period of time t are as follows:

(1) It is a new IP address, the location fingerprint is present, it may be the newly
assigned IP of the device in the landmark. Then the geographic location of
this IP address is the location of the landmark.

(2) It is a newly appearing IP address. If the location fingerprint is also newly
observed, it may be a building that is not in the landmark database. In the
pre-processing stage and the correction stage, the landmark corresponding to
the location fingerprint is added to the trusted landmark database. Continue
to observe the subsequent periods of t + 1 and t + 2, and if the IP address is
not a dynamic IP address, enter the positioning processing of other related
categories.

(3) It is a previously located IP address, and the location fingerprint has also
appeared, the corresponding landmark is the geographical location of the
current IP address.

(4) It is a previously located IP address, and the location fingerprint comes
out newly, the dynamic IP address may be obtained by the device in the
new landmark. We examine the location fingerprint associated with the IP
address in the current time window t, perform the first two phases. Process-
ing and adding the landmark to the landmark database, and the landmark
is the geographic location of the current IP address.

5 Experiments

5.1 Data Sets

In order to evaluate our proposed approach, we employ two datasets with
information from the Internet Service Provider (ISP), namely, GeoCN2018 and
GeoCC2018. These two datasets were collected based on the principle of crowd-
sourcing. In order to protect privacy and the legitimacy of research, the sensitive
information of user has been processed.

As of 2018, mobile apps (which hides the real name of the app) have over
750 million users. Each user is actually associated with several unique devices,
generally, which could be a smart-phone or tablet computer. In the study of this
paper, we collected one-month HTTP usage data from May 11, 2018 to June 11,
2018. The volume of our data set is approximately 1.4 TB.

Our one-month dataset covers more than 0.23 million (230,374) IP addresses,
The user location collected by Android apps includes two types: coarse-grained
location and fine-grained location. The coarse-grained granularity gives the city
information of the user, and the fine-grained granularity gives the latitude and
longitude coordinates.
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We divided 230,374 IP addresses into two data sets, GeoCN2018 in China,
GeoCC2018 outside China, The GeoCN2018 dataset contains approximately
760G. The GeoCC2018 database is smaller, with 440G data.

In our one-month data, including time, url, latitude and longitude, ac, Host,
User-Agent, city, device ID, etc. As shown in Table 1.

Table 1. Comparison datasets between GeoCN2018 and GeoCC2018.

Comparison GeoCN2018 GeoCC2018

Time range 3 consecutive weeks 3 consecutive weeks

IP addresses numbers 6,500 4,000

Dynamic IP addresses numbers 3,000 2,000

Android devices numbers 18,400 10,030

City numbers 1,500 700

latitude & longitude numbers 1,302,300 890,345

Coordinate system type WGS84/GCJ02/DB09 WGS84

Mobile apps numbers 10 6

AC type 2G/3G/LTE/Wi-Fi 3G/LTE/Wi-Fi

Labelled landmark numbers 806 713

Note: The latitude and longitude coordinates are generated by the app and are
not the original GPS coordinates, after the user opens the location sharing, if
the application accesses the network through Wi-Fi or a cellular (2G/3G/LTE),
the background positioning module periodically feeds back the user’s location
information to the application server. Therefore, it is necessary to calculate the
corresponding real physical position in combination with a specific coordinate
system and app, namely, GPS “drift” phenomenon.

We have taken a series of steps to protect the privacy of the users involved
in the dataset. First, all raw data collected for this study were kept in an ISP
data server. Second, our data collection and analysis pipelines were completely
managed by two ISP staff. Finally, the ISP staff have made the user identifiers
anonymous. The dataset only includes the statistics for the users covered during
our study.

5.2 Performance Criteria

– Error Distance: We use the error distance—the distance from the measured
location to the actual location—to quantitatively evaluate the accuracy of
the geolocation.

derror = |dmeasurement − dtruth|
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In consideration of the actual situation, it is difficult to collect dynamic IP
addresses with ground-truth locations. Compared with the existing IP geolo-
cation techniques, a dataset with hundreds of IP addresses as sample is fully
sufficient to evaluate their technical differences.

– Response Time: For dynamic IP geolocation, we use response time as an
indicator of the performance of the algorithm. For instance, the response
time of m dynamic IP addresses is t1, t1, ..., tm, then the mean response time
is defined as:

tRT =
1
m

m∑
i=1

ti

Considering the variability of dynamic IP addresses, response time is an
important factor affecting the accuracy of the geolocation algorithm. It usu-
ally takes hundreds of milliseconds to tens of seconds to locate a single IP
address.

5.3 Implementation Details

In this section, we describe the implementation details. The GeoBLR algorithm
have implemented in experimental tests. Figure 1 illustrates the algorithm pro-
cedure, which consists of four parts:

(1) Preprocessing engine. Implements our candidate landmarks selection strat-
egy described in Definition 4. using the coverage area of the largest convex
polygon to get a set of landmarks. Compared to the circular coverage area
of the largest diameter, it has lower computational complexity.

(2) Calibration engine. The GeoBLR algorithm is deployed on the calibration
engine. The aim of Bayesian Linear Regression is not to find the single
“best” value of the model parameters, but rather to determine the posterior
distribution for the model parameters. Here we can observe the two primary
benefits of Bayesian Linear Regression: (1) If we have domain knowledge,
or a guess for what the model parameters should be, we can include them
in our model, unlike in the frequentist approach which assumes everything
there is to know about the parameters comes from the data. If we don’t
have any estimates ahead of time, we can use non-informative priors for
the parameters such as a normal distribution. (2) The result of performing
Bayesian Linear Regression is a distribution of possible model parameters
based on the data and the prior. This allows us to quantify our uncertainty
about the model: if we have fewer data points, the posterior distribution will
be more spread out.

(3) Landmark database. It stores the landmarks we use, including their IP
addresses, location and status information. This database is constantly
changing, which means that we need to track the status of the landmarks,
and maintain the landmark database dynamically, clean up the landmarks
as reported many errors, as well as adding new � as landmarks (described
in Definition 3).
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(4) Geolocation engine. If a dynamic IP address is done with a fine-grained loca-
tion, Calibration Engine will check the corresponding landmark and update
it in Landmark database.

We also implement two state-of-the-art algorithm, namely, uCheckin and
GeoQL. The uCheckin is based on the partial implementation of the Checkin-
Geo [24] algorithm, which is mainly a complete-linkage hierarchical clustering
method [19]. Due to the lack of the login logs from PCs, we can only implement
the “checkin” from location-sharing. The GeoQL is based on the algorithmic idea
in the paper [12], it is an optimization algorithm based on heuristic rules from
the location information of the query logs. Corresponding to the coarse-grained
location information in our dataset, we can improve them using GeoQL.

We compare GeoBLR with IP2Location (download the latest database from
the webside), IP2Location is based on database-driven techniques and is also very
popular IP geolocation database. Primarily, we compare GeoBLR with uCheckin.
In addition, we also compare GeoBLR with GeoQL.

We split GeoCN2018 dataset into part-overlapping subsets of 1070, 895
and 743 dynamic IP addresses, for preprocessing, calibration and geolocation,
respectively. Compared to the GeoCN2018 dataset, the GeoCN2018 dataset are
reserved for preprocessing, calibration and geolocation, while each one sets con-
sists of 600 dynamic IP addresses.

On the GeoCN2018 dataset and GeoCC2018 dataset, we evaluated the error
distance distribution and response time of GeoQL, uCheckin and GeoBLR,
respectively.

5.4 Results

A. Error Distance
Table 2 gives the mean, median, max, std. and mode error distance of targets
in all the four algorithms. From the experimental results in Table 2, it can be
concluded that GeoBLR and uCheckin have higher precision than GeoQL and
IP2Location, GeoBLR has smaller standard deviation (std.) than uCheckin, and
on the denser GeoCN2018 dataset, the stability of GeoBLR experimental results
is more than that on the sparse GeoCN2018 dataset.

It is distinctly that IP2Location has the worst estimation precision. The
uCheckin has better precision and the GeoBLR has achieved the best precision.
We use the metric median error to further compare uCheckin and GeoBLR.
Since the mean error can be influenced by abnormal or large errors from few IP
addresses, the median error is widely used in geolocation systems. The median
errors of IP2Location, GeoQL, uCheckin and GeoBLR are 13,783 m, 2,700 m,
819 m, and 239 m, respectively. This indicates that GeoBLR achieves a median
estimation error with an order of magnitude smaller than uCheckin, GeoQL
and IP2Location in most cases. Figure 3a demonstrates the cumulative proba-
bility of the error distance from each individual testing IP in the GeoCN2018
dataset. Figure 3b shows the cumulative probability of the error distance from
each individual IP address in the GeoCC2018 dataset. It can be drawn from the
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Table 2. The results of 4 algorithms on datasets GeoCN2018 and GeoCC2018.

GeoCN2018 GeoBLR uCheckin GeoQL IP2Location

mean error distance 233.47 807.75 2,689.31 19,611.48

median error distance 232 808 2,690 19,688

max error distance 455 1,750 5,336 37,250

std error distance 80.47 282.71 884.55 6,566.98

mode error distance 230 871 1,789 15,105

GeoCC2018 GeoBLR uCheckin GeoQL IP2Location

mean error distance 311.94 801.87 2,701.61 16,828.46

median error distance 297 802 2,726.5 16,788

max error distance 849 1592 5,113 28,716

std error distance 179.92 237.68 893.87 3,843.54

mode error distance 222 859 1,839 18,825

(a) 743 IPs (b) 600 IPs

Fig. 3. The logarithm of the Error Distances for (a) The 743 IPs in GeoCN2018 Dataset
and (b) The 600 IPs in GeoCC2018 Dataset.

comparison of the curves in Fig. 3 that the error range of IP2Location is large, for
the dynamic IP address, its application is not significant because the granularity
is too coarse. Compared with GeoCC2018 dataset, The GeoCN2018 dataset has
a higher density and a more concentrated landmark set. The GeoCC2018 has a
lower density but a wider distribution. Our approach is sensitive to the distri-
bution and density of landmarks compared to other approaches (e.g. uCheckin
and GeoQL).

On the GeoCN2018 dataset, the error distance histograms of the three com-
parison algorithms GeoBLR, uCheckin, and GeoQL are shown in Fig. 4. The error
distance distributions of the three algorithms are approximately normal distri-
bution. Its parameter values are similar to calculated values. The error distance
of the algorithm GeoBLR is concentrated in the interval of 50–350 m, the algo-
rithm uCheckin is concentrated between 250–1250 m, and the algorithm GeoQL is
concentrated in the range of 900–4500 m. Experimental data shows that GeoBLR
implements fine-grained positioning compared to uCheckin and GeoQL.
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(a) GeoBLR (b) uCheckin (c) GeoQL

Fig. 4. The histogram of in GeoCN2018 of (a) GeoBLR, (b) uCheckin, (c) GeoQL.

B. Response Time
Obviously, GeoQL and IP2Location belong to the database-driven techniques
whose IP/Location mappings are precomputed and does not need any delay.
Consequently, the response time of GeoQL and IP2Location is negligible. On
the contrary, our experiments show that GeoBLR has a mean response time of
309 ms. The major computational overhead for GeoBLR comes from the calibra-
tion phase, where the computational complexity is large. Our experiments show
that the dynamic IP address changes from 1 min to 2 days, and in most cases
is 120 min, depending on the specific strategy of the ISP. Therefore, although
the response time of database-driven geolocation is negligible, but it is hard to
maintain and keep up-to-date frequently, which is not applicable to dynamic IP
geolocation. In the Fig. 5a, we observe the response time of 743 different dynamic
IP addresses on four different algorithms. Considering that GeoBLR algorithm
does not calculate all location fingerprints, therefore, the computational com-
plexity is lower than uCheckin.

(a) Response Time(ms) (b) Ratio

Fig. 5. (a) The logarithm of response time of GeoBLR in GeoCN2018 and (b) The
ratio between the median error by GeoBLR and the one by uCheckin.

C. Comparison
We use ratio between the median error achieved by the GeoBLR method and the
median error achieved by the uCheckin method to quantify the impact factors of
landmark density. When the number of landmarks is small, the performance of
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the two algorithms tend to be similar. On the contrary, as the number of land-
marks involved in the IP geolocation increases, the performance of the GeoBLR
method, with respect to the uCheckin method, increases as well. When the land-
mark density is too large, the performance improvement of the GeoBLR method
tends to be slow. As shown in Fig. 5b. In fact, Our algorithm relies more on
semantic of landmarks than on quantitative of ones.

(a) (b)

Fig. 6. (a) The scatter in GeoCN2018 dataset and (b) The scatter in GeoCC2018
dataset.

On the two different datasets GeoCN2018 and GeoCC2018, we also compared
the scatter plot of error distance between our proposed algorithm and the other
three algorithms (uChechin, GeoQL, IP2Location), as shown in Fig. 6. The algo-
rithms with large error distance distribution such as GeoQL and IP2Location
are affected by the distribution of landmarks, and the position of dynamic IP
addresses are more fluctuating, while the algorithm of smaller error distance
is more correlated (GeoBLR and uCheckin). The reason for our analysis is that
most of dynamic IP addresses only have one candidate landmark, the final result
of the algorithm GeoBLR and uCheckin tend to be consistent.

6 Conclusion

In this paper, we propose a dynamic IP geolocation method that is based on
Bayesian Linear Regression, introducing a time attribute to describe the dynamic
IP address in the location information, and using the largest convex polygon cov-
erage area to select the candidate landmarks. Our experimental results demon-
strate that our method achieves state-of-the-art results (1) error distance 50–
300 m, and (2) 100–350 ms response time, which can introduce regularization
into the estimation process and prevent the risk of over-fitting of data. It also
can be easily extended to leverage other types of information. We believe that
results achieved in this scenario are more representative of real-world operating
conditions.
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