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Abstract. Thompson sampling is one of the most effective strategies to
balance exploration-exploitation trade-off. It has been applied in a vari-
ety of domains and achieved remarkable success. Thompson sampling
makes decisions in a noisy but stationary environment by accumulat-
ing uncertain information over time to improve prediction accuracy. In
highly dynamic domains, however, the environment undergoes frequent
and unpredictable changes. Making decisions in such an environment
should rely on current information. Therefore, standard Thompson sam-
pling may perform poorly in these domains. Here we present a collabora-
tive Thompson sampling algorithm to apply the exploration-exploitation
strategy to highly dynamic settings. The algorithm takes collaborative
effects into account by dynamically clustering users into groups, and
the feedback of all users in the same group will help to estimate the
expected reward in the current context to find the optimal choice. Incor-
porating collaborative effects into Thompson sampling allows to capture
real-time changes of the environment and adjust decision making strat-
egy accordingly. We compare our algorithm with standard Thompson
sampling algorithms on two real-world datasets. Our algorithm shows
accelerated convergence and improved prediction performance in collab-
orative environments. We also provide a regret analysis of our algorithm
on a non-contextual model.

Keywords: Thompson sampling · Bandits · Collaborative effect ·
Dynamic clustering

1 Introduction

Thompson sampling has received considerable attention in recent years due to
its capability of balancing exploration-exploitation trade-off. The exploration-
exploitation trade-off often occurs in online learning problems, where the algo-
rithm tries to balance between exploiting current information to maximize imme-
diate reward and exploring new information that may improve future perfor-
mance. Theoretical analysis [3,17] and empirical results [6,7,14] revealed that
Thompson sampling represents one of the most promising approaches to tackle
this problem. It has been successfully applied in a variety of applications, includ-
ing revenue management [11], Markov decision process [13,23] and recommen-
dation systems [18,20].
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While Thompson sampling is good at balancing exploration-exploitation
tradeoff, it may perform poorly in highly dynamic and large-scale applications.
In a stationary system, Thompson sampling is an effective and efficient method
[24]. Each round, the algorithm applies probability matching heuristic and selects
item corresponding to its probability of being optimal. This randomized manner
[6] allows Thompson Sampling to continuously explore all possible candidates to
accumulate information and explicit the optimal choice in the current context at
the same time. However, in nonstationary settings, the environment undergoes
frequent and unpredictable changes [12]. In this case, accumulated information
of previous rounds becomes irrelevant to future performance. These issues also
arise in large-scale settings where it is almost impossible to explore all the items
to find the optimal choice. Thus, inferencing the expected reward of items based
on a few observations will result in high variance and low accuracy. These draw-
backs hinder the practical deployment of Thompson sampling in highly dynamic
and large-scale domains [24].

One promising method to address these problems is to leverage on the collab-
orative effects. The collaborative effects often represent the potential connections
between different users and different items in a real-world application. Although
integrating collaborative effects into bandit settings has been reported in a series
of works [21,22,29], little attention has been paid to incorporating collaboration
into Thompson sampling. Previous works focus on applying the collaborative
effects to LinUCB [9], a well-studied deterministic contextual bandit algorithm.
They use feedback of all users in the same cluster to build a group vector as an
estimator of the user vector. The selected item is then determined with upper
confidence bound by the group vector. However, we cannot directly apply this
strategy to Thompson sampling. Thompson sampling uses a Bayesian heuristic
[6], it maintains and updates a posterior distribution of user vector. The distribu-
tion of the group vector is not an ideal estimator of the user vector, because it is
much more concentrated than the user vector due to the abundance of feedback.
Thus, directly applying this strategy will limit the exploration of Thompson
sampling and lead to suboptimal performance.

This paper presents a collaborative Thompson sampling algorithm. The algo-
rithm works under the assumption that the feedback of the user can be used to
build an unbiased estimator of reward with high variance at the beginning, while
the feedback of other users in the same cluster can be a biased estimator of reward
with low variance. Combining these estimators to approximate reward may lead
to improved prediction accuracy and accelerated convergence. This assumption
has been illustrated in previous research [19] on standard statistical problems
where the combined estimator outperforms the initial estimators in most cases.
In our algorithm, the reward of items is estimated by a compound of both user
preference and collaborative information. Specifically, the population of users
is dynamically partitioned into clusters based on their similarity. The expected
reward is a linear combination of two estimators, the collaborative estimator and
the personal estimator. The collaborative estimator is constructed and shared
by all users in the same cluster, while the personal estimator is constructed
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independently by each user. The combination of these two estimators generates
a more sophisticated estimator of rewards, which lead to accelerated convergence
and improved prediction performance.

We demonstrate that sharing collaborative information among similar users
can not only improve the prediction performance of the algorithm but also help to
find the optimal item efficiently. We compare our algorithm to standard Thomp-
son sampling algorithm on two real-world datasets. The experimental results
show that our algorithm outperforms standard Thompson sampling methods in
terms of both prediction accuracy and convergence rate in collaborative environ-
ments. We also provide a regret analysis in a standard non-contextual setting.

2 Related Work

Thompson sampling was first proposed in 1933 [27] and has drawn much atten-
tion since 2010 [7,26]. It is proved by a series of theoretical analysis [3,17] and
empirical evaluations [6,7,14] to be among the most effective bandit policies to
tackle complex online problems. Adaptations of Thompson sampling have now
been successfully applied in a wide variety of domains, including marketing [25],
online advertising [1,15] and recommendation system [18].

Beyond the general settings of Thompson sampling, our work is also closely
related to collaborative approaches with dynamic clustering. Clustering at user
side or item side to provide collaborative information in bandit settings has been
studied in a series of previous works. The work [22] incorporates online clustering
into contextual bandit settings to divide users into groups and customizes the
bandits to each group. The paper [5] also relies on clustering at the user side,
with a constraint condition that once a user consumes an item, the item cannot
be recommended to the same user again. The goal of their work is to maximize
the number of consumed items recommended to users over time. In [29], the
authors developed a collaborative contextual bandit algorithm, in which the
adjacency graph is leveraged to share contexts and payoffs among neighboring
users. In [21], the authors proposed COFIBA as an extension of [29], in which
clustering is performed at both user and item side. They also used sparse graph
representation to avoid expensive computation. The most similar work to ours
is [8]. In this paper, the authors proposed an online collaborative algorithm
to learn the underlying parameters of users and items. They defined the prior
distribution of both the user vectors and the item vectors. At each round, the
algorithm samples from the posterior distribution of both the user vector and
the item vector. The expected reward of item is computed by logistic function
with the product of user vector and item vector. Item with the highest expected
reward will be selected. After observing the feedback, the posterior distributions
of both user vector and item vector are updated with online gradient descent.

Our work shares the same assumption that collaborative effects can be lever-
aged to share information across users. In our work, we use a compound of both
collaborative effects and personal preference to help the users to estimate the
expected reward with a few observations.
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3 Learning Model

We assume the user preference is parameterized by an unknown vector μi ∈ R
d

for each user i ∈ U , where i = 1, 2, 3, ..., n is the set of n users. We follow the
settings of standard bandit problem. The parameter ui of user i determines the
payoff of item j ∈ C with contextual vector xj . Formally, the payoff value ri,j is
given by a function f and a random variable ε:

ri,j = f(μi, xj) + εi,j (1)

Where i is the index of the user, j is the index of the item and ε is a zero-
mean and bounded random noise. We assume that for any fixed user vector μi

and contextual vector xj , f(μi, xj) is the expected payoff observed by user i for
item j.

We model the learning process as a sequential decision problem with T
rounds: at each round t = 1, 2, 3..., T , for each user i, the algorithm is pro-
vided with the set of candidate contents Ct. The contextual information of each
content is represent by a vector xj for j = 1, 2, ..., |Ct|. Our task is to select an
item ĵt

i from the candidate pool Ct and recommend to the user i. After that,
we will observe the user feedback rt

ĵi
. When the user feedback is the behavior

whether the selected item is clicked, the payoff is binary. The user feedback is
used to evaluate the prediction performance of our algorithm in empirical eval-
uation, which is represented as the click-through rate 1/(nT )

∑T
t=1

∑n
i=1 rt

ĵi
of

recommended items over T rounds. The goal of our algorithm is to maximize
the click-through rate of the selected items.

For theoretical analysis, the most popular performance measure is the total
expected regret. Regret is defined as the gap of reward between the selected item
and the optimal item. Total expected regret is formally defined as:

E(R(T )) =
n∑

i=1

T∑

t=1

E[(r∗
i − rt

ĵi
)] (2)

where r∗
i is the reward of the optimal item for user i, and rt

ĵi
is the reward of

the chosen item ĵt
i at round t.

4 Collaborative Thompson Sampling Algorithm

In the learning model, since we do not know the true value of user vector μ∗,
we maintain a posterior distribution over the user vector P (μ|·). The posterior
distribution is approximated by a multivariate Gaussian distribution [24] with
the diagonal covariance matrix in linear and logistic Thompson sampling algo-
rithms. If we want to exploit the immediate reward, we would choose for user i
the item j that maximizes E[ri,j |i, j] =

∫
E[ri,j |i, j, μi,j ]P (μi,j |·)dμi,j . However,

to balance the exploration-exploitation trade-off, Thompson Sampling (TS) uses



Collaborative Thompson Sampling 21

the probability matching heuristic and chooses for user i an item j according to
its probability of being optimal. i.e., with probability [8]:

∫

I
[
E[ri,j |i, j, μi,j ] = max

j′∈C
E[ri,j′ |i, j′, μi,j′ ]

]
P (μi,j |·)dμi,j (3)

The I[·] is the indicator function. Its value is 1 if the condition holds.
The E donates expectation of rewards in the current context, and the integral
denotes expectation over the posterior distribution of user vector. In Thomp-
son sampling, this integral can be estimated by drawing a sample μ̃i,j from
its posterior distribution P (μi,j |·), and calculating its expected reward with
E[ri,j |μi,j ] = f(μ̃i,j , xj) as described in the previous section. The algorithm will
choose the item with the largest expected reward. The posterior distribution is
then updated according to the feedback of the user (clicked or not). Intuitively,
In stationary and infinite time-horizon settings, the algorithm accumulates more
information about user preference over time and the posterior distribution of user
vector will concentrate around its true μ∗. The optimal choice will be selected
with high probability.

The major problem of Thompson sampling is that it has to estimate the
expected reward E(ri,j |μi,j) on the fly. As described in previous section, the
feedback ri,j is determined by user vector μi,j , contextual vector xj and a ran-
dom variable ε. Although we assume that the expectation of random variable ε is
zero, the variance might be large when we try to estimate E(ri,j |μi,j) with a few
observations. In order to reduce the variance, standard Thompson sampling algo-
rithm has to repeatedly select the same item for users to observe their feedback.
Since it runs independent instance for each user, the algorithm converges slowly
and is inaccurate in the first few rounds. Accurately estimating the expected
reward E(ri,j |μi,j) in the current context will help to boost the prediction per-
formance and speed up convergence. To address this problem, we leverage on
the collaborative effects. We assume that users may have similar preference and
similar behavior, this indicates that the feedback of one user can be used to
estimate the feedback of similar users. In other words, the feedback of users in
the same cluster can be used to estimate the expected reward E(ri,j |μi,j) in the
current context. The expected reward is the compound of two different estima-
tors, the personal estimator E[ri,j |μi,j ] and a collaborative estimator E[ri,j |Gs].
where Gs is the cluster that user i belongs to.

The personal estimator E[ri,j |μi,j ] estimates the reward by user vector μi,j

which is trained by the user’s previous feedback; it is an unbiased estimator of
r∗
i,j . However, it suffers from sparsity of training data. The collaborative estima-

tor E[ri,j |Gi], on the other hand, is based on the feedback of similar users in the
same cluster and is a direct approximation of reward with low variance. But it
is a biased estimator of reward r∗

i,j since user behavior may not be compatible
with cluster behavior.

In our algorithm, both the personal estimator and the collaborative estimator
are leveraged to estimate the reward of items in the current context. As a result,
collaboration among users can not only capture additional information embed-
ded in user similarity but also help to deal with the data sparsity issues. Both of
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these effects lead to an improvement of prediction performance and accelerated
convergence.

4.1 Algorithm Description

In this section, we use logistic regression as an example to describe our algorithm.
Our algorithm stores and updates a posterior distribution P (μi,j |Dt) of user
vector μi,j for user i ∈ U and item j ∈ C at round t. We assume the prior of
μ is a multivariate Gaussian distribution. Due to conjugacy property of normal
distribution [24], its posterior distribution P (μi,j |Dt) remains normal after any
number of rounds. More specifically, if the prior of μi,j at round t is given
by N (μ̂i,j(t), Si,j(t)), the posterior distribution at round t + 1 is N (μ̂i,j(t +
1), Si,j(t + 1)).

Our assumption is that the expected reward πi,j , given contextual vector
xj and user vector μi,j is determined by the logistic function πi,j = 1/(1 +
exp (−μT

i,jxj)). And user feedback ri,j is drawn from a Bernoulli distribution
parameterized by πi,j : ri,j ∼ Bernoulli(πi,j).

As the closed form analysis of logistic regression in Bayesian inference is
intractable, we then utilize the Laplace approximation [28] to approximate
the posterior distribution of μi,j with a Gaussian distribution N (ui,j |ûi,j , Si,j),
where ûi,j is the mode and Si,j is the Hessian matrix [4,8]. We update μ̂t+1

i,ĵ
with

online gradient descent μ̂t+1

i,ĵ
← μ̂t

i,ĵ
− ηt∇t

ui,ĵ
, where

∇t
ui,ĵ

= St−1
ui,ĵ

−1
(μ̂t

i,ĵ
− μ̂t−1

i,ĵ
) + (πt

i,ĵ
− rt

i,ĵ
)xt

ĵ
(4)

xt
ĵ

is the contextual vector of the selected item and rt
i,ĵ

is the observed reward

and η is the learning rate. We also need to update St
ui,ĵ

−1:

St+1
ui,ĵ

−1
= St

ui,ĵ

−1 + πt
i,ĵ

(1 − πt
i,ĵ

)xt
ĵ
xt

ĵ

T (5)

Our algorithm also maintains and updates clusters over users U to approxi-
mate the expected rewards of items. This algorithm takes the simple viewpoint
that clustering over users is determined by the similarity of their feedback. Each
user i maintains a vector li and records his click-through rate of all items. If user
i and user j are in the same cluster, then ||li − lj ||22 < λ, while if i and j are
in different clusters then ||li − lj ||22 > λ. The clusters are initialized as follows:
We first randomly select k items and recommend those items to all users i ∈ U ,
the feedback of users on these items can be used to partition users into 2k clus-
ters. The users with the same feedback are grouped into the same cluster. Each
cluster maintains its click-through rate of all items as a vector lg for g ∈ |Gt|.
We denote by |Gt| the number of distinct partitions of users U , and work under
the assumption that |G| is significantly smaller than |U|. The clusters Gt record
the current partition of users U by the similarity of feedback. The clusters are
updated each round to estimate the true partition of users.
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Algorithm 1. Collaborative Logistic Thompson Sampling
Input:

Set of users U = 1, 2, 3, ..., n;
Set of contents C = 1, 2, 3, ..., m;
Set of contextual vectors x1, x2, x3..., xm

Hyper-parameter β
Init:

μ1
i,j = 0 ∈ R

d and S1
i,j = I ∈ Rd×d

Prior distribution of user vector μi,j ∼ N (μ1
i,j , S

1
i,j

−1
)

Initialize user clusters:
Random select k items and recommend them to all users
for each i ∈ U do

Suppose user feedback for all k items are ri,1, ri,2, ..., ri,k
The cluster id of user i is

∑j=k−1
0 2j ∗ ri,j+1

end for
Recommend contents and update parameters:
for t = 1, 2, 3..., T do

for each i ∈ U do
Sampling μ̃t

i,j from distribution N (μ̂t
i,j , S

t
i,j

−1
)

Determine the cluster this user belongs to: ĝt
i = arg maxg∈G ||lti − ltg||22

for each m ∈ C do
Compute personal expected reward πt

i,j = 1/(1 + exp(μ̃tT
i,jxj))

Compute the compound of cluster expected reward and personal
expected reward: E[ri,j,t|i, j, μi,j , G] = βltĝ,j + (1 − β)πt

i,j

end for
Set ĵt = arg maxj∈C E[ri,j,t|i, j, μi,j , G]
Recommend content ĵt to user i and observe payoff rt

i,ĵ

Update μ̂t
i,ĵ

, St
i,ĵ

−1
and the posterior distribution as follows:

∇t
u
i,ĵ

= St−1

i,ĵ

−1
(μ̂t

i,ĵ
− μ̂t−1

i,ĵ
) + (πt

iĵ
− rt

i,ĵ
)xt

ĵ

μ̂t+1

i,ĵ
← μ̂t

i,ĵ
− ηt∇t

u
i,ĵ

St+1

i,ĵ

−1
= St

i,ĵ

−1
+ πt

iĵ
(1 − πt

iĵ
)xt

ĵ
xt
ĵ

T

P (μi,ĵ |D(t)) = N (μ̂t+1

i,ĵ
, St+1

i,ĵ

−1
)

Update user click-through rate li
Update cluster click-through rate lbi,t

end for
end for

At each round t, collaborative Thompson sampling algorithm first draws a
sample μ̃i,t from posterior distribution P (μi,j |Dt) and construct the personal
estimator of reward πi,j = 1/(1 + exp(μ̃T

i,jxj)). Suppose that at current round
t, user i belongs to cluster ĝ, the click-through rate of items ltĝ,j represents the
expected reward in the cluster. The expected reward used in Thompson sampling
is a compound of personal estimator and collaborative estimator:

E[rt
i,j |i, j, μi,j ,G] = βltĝ,j + (1 − β)πt

i,j (6)
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The algorithm will select item ĵi = arg maxj E[rt
i,j |i, j, μi,j ,G] to recommend

to user i and observe the feedback rt
i,ĵ

. After observing the user feedback ri,ĵ ,
the algorithm will update the posterior distribution. The user will be assigned
to the closest clusters.

5 Regret Analysis

We consider the special case of two items in a non-contextual setting. There are n
users and each user has 2 items to select from. The true reward of item j for user
i is ui,j . The collaborative Thompson Sampling algorithm assumes that the prior
distribution of ui,j is Beta(1, 1). At round t, if the algorithm have observed Si,j

successes (reward = 1) and Fi,j failures (reward = 0), the posterior distribution
of μi,j will be Beta(Si,j + 1, Fi,j + 1). At round t, the collaborative Thompson
sampling algorithm samples μ̃i,j from the posterior distributions of each item,
and computes μ̂j = 1

n

∑n
i=1 μ̃i,j , the selected item for user i is determined by

ĵt = arg max
j

βμ̂j + (1 − β)μ̃i,j .

Theorem 1. If 0 ≤ |μ̄j − μi,j | ≤ γ for any i ∈ U and j ∈ C, where μ̄j =
1
n

∑n
i=1 μi,j, collaborative Thompson Sampling algorithm has expected regret:

E(R(T )) = O(
ln T

Δ
+

Δ(1 − β)2 ln T

(Δ + Δβ − 4γβ)2
+

Δ(1 − β)4

(Δ + Δβ − 4γβ)4
+ 18Δ) (7)

Proof. Our proof follows the outline of [2] and only considers one user. The
optimal item is the first item. Firstly, we assume that the second item has been
selected L = 24(ln T )/Δ2 times. The total expected regret before the algorithm
selects the second item again is ΔL, where Δ = u1 − u2. After the second item
has been selected for L times, the following events happen with high probability:
the posterior distribution of μ2 is tightly concentrated around its true value and
1
n

∑n
i=1 μ̃i,j is very close to μ̄j . Therefore, when we draw a sample μ̃2 from its

posterior distribution, the value of μ̃2 is roughly μ2. And the value of μ̂j =
1
n

∑n
i=1 μ̃i,j is roughly μ̄j . We then try to estimate how many times the second

item will be selected between two consecutive selections of the first item. The
selected item is determined by ĵt = arg maxj βμ̂j + (1 − β)μ̃j . With the above
approximations of μ̂j and μ̃j , we instead estimate how many times we need
to sample from the posterior distribution of μ1 until we get a sample μ̃1 that
satisfies μ̃1 > μ2 − β(Δ − 2γ)/(1 − β).

Using Lemma 6 of [2] for y = μ2 + Δ/2 − β(Δ − 2γ)/(1 − β) and Δ′ =
Δ+Δβ − 4γβ

1− β , we get a regret bound of:

E(R(T )) <
24 ln T

Δ
+

4Δ(1 − β)2 ln T

(Δ + Δβ − 4γβ)2
+

Δ(1 − β)4

(Δ + Δβ − 4γβ)4
+ 18Δ (8)

This regret bound gives us some insight into collaborative Thompson sam-
pling. Firstly, the performance of collaborative Thompson sampling depends on
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the strength of collaborative effects. If γ is large, it implies that the users have
very different preferences and the collaborative effects are very weak. Collab-
oration among users will result in poor performance in both convergence rate
and prediction accuracy. But if the users are carefully clustered and users in
the same cluster have similar preference, the algorithm will outperform stan-
dard Thompson sampling in terms of prediction and convergence. And also, the
optimal value of parameter β is closely related to the strength of collaborative
effects.

6 Experiment

To evaluate the performance of our collaborative Thompson Sampling algorithm,
we compared our algorithm to standard Thompson sampling algorithm on two
real-world large-scale datasets, the Yahoo! front page today module dataset and
the Avazu click-through dataset.

6.1 Dataset Description

Yahoo! The first dataset we used to evaluate our algorithm was the Yahoo!
front page today module dataset. This dataset was provided by Yahoo! in the
“ICML 2012 Exploration & Exploitation Challenge”. The dataset contains more
than 45 million user visits to the Today Module. The variables recorded in one
line are as follows: a timestamp, six user features, one recommended article
(id) and its payoff (0 or 1), candidate articles and their features. The recom-
mended article was selected uniformly at random from the candidate article
pool. It makes the dataset ideal for unbiased, offline evaluation of exploration-
exploitation approaches. Both the users and the articles are associated with a
six-dimension feature vector (including a constant feature), constructed using a
conjoint analysis with a bilinear model. More detailed description of how this
dataset was generated and how the features were extracted can be found in [10].

We preprocessed the Yahoo! dataset to evaluate our collaborative Thompson
Sampling algorithm. As the dataset only provides us with user features, we are
unable to identify the users by their id. Instead, we performed K-means clustering
over visits based on the similarity of user features and summarized their click-
through rate of all articles. Each visit was assigned to a cluster, and these clusters
were treated as users in our experiment. We then computed the click-through-
rate of all articles in a cluster. If an article were never recommended to any user
in this cluster, the click-through rate of this article is set to mean of CTR of all
visits. In our experiment, if article j is recommended to a cluster i, the payoff
ri,j is drawn from a Bernoulli distribution: ri,j ∼ Bernoulli(πi,j), where πi,j is
the click-through rate.

Avazu. The Avazu click-through rate dataset was presented by Avazu, which is
an international corporation specializing in cross-device advertising. The dataset
was provided for an online challenge to build and test models, which aim at
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predicting the click-through rate of mobile ads. What it contains was divided
into two parts, a training set, and a test set. There are over 40 million records
in the training set and approximately 4 million records in the test set. We used
the training set to build and evaluate our algorithm because we did not know
the payoff of the test data. Each line in the training set represents the event of
an ad impression on a website or a mobile application. The variables contained
in each line can be categorized as follows: id, timestamp, payoff(clicked or not),
banner position, three site variables, three app variables, five device variable,
and 9 anonymized categorical variables(C1, C14–C21). The payoff was one if it
was clicked, and 0 otherwise.

As ID represents a single ad impression, it cannot be used to identify an ad.
Instead, we identified the ads with their site variables (site id, site domain, site
category) if it is displayed on a website or app variables (app id, app domain,
app category) otherwise. We identified the users with the combination of device
variables (device id, device IP, device model and C19) rather than device id
because most device ids are the same (null). In the Avazu dataset, we had the
records of more than 1 million users and 20 thousand ads. However, not all
records can be used in the evaluation of our algorithm, as we wanted to compare
our algorithm to standard Thompson sampling algorithms in bandit settings
in which the goal is to minimize the regret in the long term. If the users were
provided with only a few ads, the performance would not be distinguishable
among algorithms. Most users only appeared once in the dataset and were not
suitable to evaluate our algorithm. In preprocessing, we eliminated the users
and ads with less than 1000 records. The number of users and ads end up being
544 and 81 respectively. We used the remaining more than 1 million records in
the experiments. However, we found that the dataset is quite sparse, most users
were only recommended with few ads. To address this problem, we added one
additional impression each ad to each user, and the reward was set to 0.13, which
is the mean click-through rate of the remaining impressions. We emphasize that
preprocessing did not provide any additional collaborative effects to the dataset,
so it can still be used to evaluate the performance of collaborative Thompson
sampling.

6.2 Algorithms

To the best of our knowledge, there were no previous works that focus on incor-
porating collaborative effects into Thompson sampling. To evaluate the predic-
tion performance of our algorithm, we applied collaboration to a set of standard
Thompson sampling algorithms.

Beta Thompson Sampling is a non-contextual bandit algorithm. The reward
of content j follows a Bernoulli distribution with mean θ. The mean reward of
each content is estimated using a Beta distribution because it is the conjugate
distribution of Bernoulli distribution.

Linear Thompson Sampling follows the settings of standard contextual linear
bandit. The vector parameter ui of user i determined the payoff of a content j ∈ C
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with contextual vector xj . Formally, the payoff value ri,j is computed by a linear
function and a random variable ε: ri,j = μT

i xj + εi,j

Logistic Thompson Sampling works under the assumption that given a con-
textual vector xj for content j, the probability that user i click content j is
given by 1/(1 + exp−uT

i,jxj), where ui,j is the user vector to be learned. We
used Laplace approximation to approximate the posterior distribution of user
vector ui,j .

All algorithms require parameter tuning to achieve the optimal performance.
There are shared parameters such as the exploration-exploitation tradeoff param-
eter, the learning rate of rewards. There are also private parameters of each
algorithm such as the number of clusters in our algorithm. We tuned standard
Thompson sampling algorithm to find the optimal combination of the shared
parameter with grid search. The shared parameters were used in both collabo-
rative Thompson sampling and standard Thompson sampling. We then tuned
collaborative Thompson sampling to determine their private parameters based
on the shared parameters.

6.3 Results

All experiments are aimed at comparing the prediction performance of collabo-
rative Thompson sampling (CTS) and standard Thompson sampling (STS). The
shared parameters were determined by standard Thompson sampling via grid
search and were used by both CTS and STS. This gives rise to reliable estimation
of the actual effect of collaboration under the same experimental conditions.

6.4 Yahoo! Dataset

In this experiment, click-through rate (CTR) was used to evaluate the perfor-
mance of all Thompson sampling algorithms. CTR was computed in every 200
rounds for each algorithm. We also used the CTR to show the trend of learning
procedure.

Performance Comparison. The results on the Yahoo! webscope dataset are
presented in Fig. 1. We plotted click-through rate (CTR) of recent 200 rounds
(left) and CTR of all rounds (right). The results of standard Thompson sampling
are shown with the dotted line and the results of corresponding collaborative
Thompson sampling are shown with the full line in the same color.

As we can see, all collaborative Thompson sampling algorithms outperformed
corresponding standard Thompson sampling algorithms that do not take collab-
orative effects into account. All CTSs achieved higher prediction accuracy and
accelerated convergence compared to STSs. The results revealed that the ability
of CTS to share collaborative information among users allows it to provide an
accurate estimation of expected rewards and balance exploration-exploitation
trade-off at both the personal level and the system level.

In Fig. 1, We can conclude that collaborative Thompson sampling outper-
formed standard Thompson sampling in terms of CTR. In these simulations,
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Fig. 1. Plots on the Yahoo! dataset reporting click-through rate (CTR) of all impres-
sions over time, i.e., the fraction of the recommended articles get clicked. Left: CTR in
200 rounds; Right: CTR in all previous rounds (Color figure online)

the performance of Beta TS and Logistic TS was asymptotical to collaborative
Thompson sampling. Their CTR of 200 rounds (left) was about the same value
with collaborative approaches after 10000 rounds of training and the gap of
CTR (right) between CTS and STS was closing over time. These results can be
concluded that the collaborative effects accelerate the convergence of Thompson
sampling without harming its prediction performance. This finding was con-
sistent with our prediction in regret analysis. For Linear Thompson sampling,
the collaborative Thompson sampling consistently achieved better click-through
rate. It revealed that incorporating collaborative in a linear setting may help to
improve the prediction performance as well.

The CTR of the first relatively small fraction of rounds showed the perfor-
mance of these algorithms in a cold-start regime. It is shown in Fig. 1 that col-
laborative Thompson sampling algorithms converge much faster than standard
Thompson sampling algorithms. They were able to locate the optimal choice in
fewer rounds. Thus, CTSs are more suitable to address the cold start problem.
In highly dynamic environments, this property of CTS allows it to accurately
estimate the expected rewards of new items and adapt to dynamic changes of
environment. Therefore, it is reasonable to expect that our algorithm will per-
form well in highly dynamic systems with strong collaborative effects such as
news recommendation, where new contents regularly become available for the
recommendation and the value of news changes over time.

Note that Linear Thompson sampling (blue) performed poorly in terms of
click-through rate compared to other algorithms. A possible explanation is that
linear TS maintains one user vector for each user to estimate the expected reward
of all contents to share knowledge among contents. While the other algorithms
maintain independent parameter for each content. The knowledge learned from
different contents may conflict with each other. Although Linear Thompson sam-
pling did not perform well in this experiment, they have some advantage over
other algorithms. For example, Linear TS converged much faster than Beta TS.
Another advantage of Linear Thompson sampling is it is easy to implement
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because it does not require to approximate the complex distribution of parame-
ters used in logistic regression or sample from the beta distribution.

6.5 Avazu Dataset

In this experiment, regret was used to evaluate the performance of all Thompson
sampling algorithms. Regret is the most popular measure in the multi-armed
bandit problem. It is defined as the gap of reward between the optimal item
and the selected item. Regret was computed in every 100 rounds to show the
current performance of algorithms. We also used the total regret to show the
performance of our algorithm in the long run.

Fig. 2. Plots on the Avazu dataset reporting regret over time. Left: average regret of
last 100 rounds; Right: total regret

Performance Comparison. The results on the Avazu dataset are summarized
in Fig. 2. We plotted regret of recent 100 rounds (left) and cumulated regret
of all rounds (right). The results of standard Thompson sampling were shown
with the dotted line, and the results of corresponding collaborative Thompson
sampling were shown with the full line in the same color.

As we can see, applying collaborative effects to three standard Thompson
sampling algorithms in Avazu dataset revealed different effects. For Linear TS
model (blue lines), collaborative Thompson sampling outperformed standard
algorithm on both prediction accuracy and convergence rate. Collaborative TS
has lower regret in each round and lower total regrets. For Logistic TS model
(green lines), the collaborative Thompson sampling also provided slight per-
formance improvement in terms of total regret. These results indicated that
applying collaborative effects to contextual settings is profitable in this dataset.
However, for the Beta TS model (red lines), collaborative TS did not outperform
standard TS. The standard TS converged faster with lower total regret. It indi-
cated that utilizing collaborative in a non-contextual model in this dataset may
harm its performance. These effects might result from the sparsity of data. In
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Avazu dataset, the ads were identified by their website and application domains
rather than their id or contents. Thus many different ads were treated as one.
Therefore, users may be recommended thousands of ads impressions without
knowing what kind of ads they are. The sparsity of data weakened the collab-
orative effects among users and ads. Thus collaborative Thompson sampling
cannot provide improved performance and accelerated convergence.

These different performances of collaborative TS resulted from the strength of
the collaborative effects of these datasets. Although Avazu and Yahoo! dataset
are both generated by real online web applications, they are different in the
strength of collaborative effects. Firstly, Avazu dataset records the click on ad
impressions via mobile apps or websites. The ads are identified by website domain
or mobile domain rather than their id. It means that different ads may be identi-
fied as the same one in this dataset. In Yahoo! dataset, the articles are identified
by their id. Therefore, the collaborative effects of the same article are much
stronger. Secondly, for Yahoo! dataset, it is reasonable to predict that certain
articles such as breaking news will draw much attention from all users and it
is natural to expect that the true value of news can be estimated by feedback
of other users. But users may not have the similar preference for ads in Avazu
dataset. Thirdly, the Avazu dataset is quite sparse. The users are often recom-
mended with the same ads for thousands of times and no other ads are ever
recommended. The sparsity of data weakens the collaboratives effect embedded
in the dataset. As our algorithm exploits the collaborative effects of the data,
it is reasonable that our algorithm exhibited more significant effects in Yahoo!
dataset than Avazu dataset.

To summarize, collaborative TS significantly outperforms standard TS in
strong collaborative environments. It is especially effective in the cold-start
period. Utilizing the collaborative effects in Thompson sampling results in accel-
erated convergence and improved prediction accuracy. It makes the algorithm
more suitable for dynamic applications with strong collaborative effects. On
the other hand, in weak collaborative environments, collaborative TS can still
exploit the collaborative effects to improve the prediction accuracy and lower the
regret. But in these domains, the users should be carefully clustered to exploit
the collaborative information.

7 Conclusion

We introduced collaborative Thompson sampling algorithm. The algorithm
exploits collaborative effects to accelerate convergence and improve prediction
performance. It works under the assumption that users can be partitioned into
groups based on their similarity and users in the same cluster can collaborate to
accurately estimate the expected reward of items with a few observations. We
carried out empirical experiments on two real-world datasets comparing our algo-
rithm with standard Thompson sampling algorithms. The experiments showed
that our algorithm outperformed standard Thompson sampling algorithm in
terms of efficiency and prediction accuracy in collaborative environments. Thus,
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the algorithm is more suitable for dynamic applications with strong collaborative
effects. We also provided a theoretical analysis of its total expected regret.

Our algorithm can adapt to any Thompson sampling algorithms and cluster-
ing technique in a collaborative environment. One direction of the experimental
research is to develop a robust dynamic clustering algorithm to exploit collab-
orative effects. Another line of theoretical research would be providing regret
analysis of collaborative Thompson sampling on contextual settings.
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