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Abstract. Network Function Virtualization (NFV) has become a hot technol-
ogy since it provides the flexible management of network functions and efficient
sharing of network resources. Network resources in NVF require an appropriate
management strategy which often manifests as a difficult online decision making
task. Resource management in NFV can be thought of as a process of virtualized
network functions (VNFs) selection or deployment. This paper proposes a
single-hop VNFs selection strategy to realize network resource management.
For satisfying quality requirements of different network services, this strategy is
based on the results of traffic classification which utilizes Multi-Grained Cas-
cade Forest (gcForest) to distinguish user behaviors on the internet. In the order
of VNFs, a network is divided into several layers where each arrived packet
needs to queue. The scheduler of each layer selects a layer which hosts the next
VNF for the packets in the queue. Experiments prove that the proposed traffic
classification method increases the precision by 7.7% and improves the real-time
performance. The model of VNFs selection reduces network congestion com-
pared to traditional single-hop scheduling models. Moreover, the number of
packets which fail to reach target node in time drops 30% to 50% using the
proposed strategy compared to the strategy without the section of traffic
classification.

Keywords: NFV � Traffic classification � Resource management �
VNFs selection

1 Introduction

The quality of service (QoS) requirements of users rise rapidly such as lower latency,
lower packet loss rate and so on. For this reason, networks not only need to enhance
bandwidth and capacity, but also require a better scheduling strategy of resources. By
separating network functions from traditional hardware, NFV is expected to manage
network functions and share network resources more flexibly. Application of NFV has
become extensive because more customized network scale and lower capital expen-
diture are obtained by this technique. In NFV, virtualized network functions (VNFs)
which control the creation, configuration, monitor, operation and security of network
functions are implemented in software components running on commodity hardware.
Services are realized by VNFs in a specific order denominated Service Function Chain
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(SFC). In detail, a traffic packet needs to traverse the nodes which host the VNFs in a
specific SFC sequentially. As a result, the strategy of resource management is equal to
the strategy of selection and deployment of VNFs.

State-of-the-art efforts about network resource management in NFV are limited to
optimizing the algorithms in the interior of network for the purpose that all packets
arrive the target node as soon as possible [1–3]. To different kinds of traffic packets, the
efforts do not realize the QoS requirements are distinguishing. For example, there is a
high demand of online video applications for traffic transmission delay, otherwise it
will seriously affect the normal use of network services. By contrast, users do not have
urgent requirements of delay when they use File Transfer Protocol (FTP) applications,
they need lower packet loss rate instead. Under the existing strategies, significant
resources may be occupied by traffic packets of FTP instead of video streaming so that
users have bad QoS when watching videos. From this issue, it is natural to think about
classifying traffic before scheduling network resource. Then resource scheduling
problem is considered to be a combinatorial optimization problem. If a packet can be
classified before being transmitted, the delay and packet loss rate requirements of this
kind of traffic packet are obtained. Thus the network resource management strategy can
exploit the requirements to improve user QoS.

This paper proposes a single-hop selection strategy of VNFs based on traffic
classification to schedule network resources in NFV. As the premise of VNFs selection,
traffic classification needs to identify the transmission priority of different packets
accurately. There have been extensive researches of traffic classification, but they were
limited in several specific applications [4–6] or unencrypted packets [7, 8]. In order to
distinguish user QoS requirements of different network services, we classify the traffic
data according to the user behavior. This categorization achieves covering majority of
traffic packets in actual network instead of a few applications. Features of classification
are calculated by the arrival times, number and lengths of packets to investigate the
differences among user behavior. Unlike traditional features, these selected features can
be obtained even the packets are encrypted. As for algorithms of classification, this
paper tries deep neural network (DNN) to classify traffic data due to some advantages
of multi-layer neural network models in the field of data classification. Besides, a new
algorithm called Multi-Grained Cascade Forest (gcForest) [9] which is presented as an
alternative to DNN is also employed. In the tasks of giving features, gcForest often
obtains better results than DNN.

The proposed VNFs selection strategy divides the network into several layers
according to the order of VNFs in SFC. In each layer, each arrived packet needs to
queue. Then the packet will be transmitted to a next VNF layer which is selected by the
scheduler. VNF layers are selected according to the results of traffic classification with
joint consideration of the network real-time bandwidth and computing resources.
Experiments prove that the traffic classification method gets higher precision than
previous work [10] and improves real-time performance of resource management.
Meanwhile, simulation results demonstrate that the VNFs selection strategy reduces the
number of packets which fail to meet the QoS requirement under different degrees of
network congestion.
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2 Related Work

2.1 Traffic Classification

Traffic classification is a hot issue in academic all the time. Instead of many methods
based on the port numbers or the payload data of traffic packets in history, more and
more researches employ algorithms of machine learning in the last decade. Williams
et al. [4] extracted 22 practical flow features for use within IP traffic classification and
employed five algorithms of machine learning to classify traffic. Dong et al. [5] selected
four flow features for traffic classification and obtained the accuracy up to 95%. But
these features only worked well in classifying six kinds of video traffic which the
authors selected. Since previous studies only worked offline, Bernaille et al. [7] pro-
posed a method to classify traffic online by observing the first five packets of each TCP
connection. But limitation is that the method classifies only several specific TCP
applications. Shi et al. [8] realized accurate classification of several kinds of protocol
traffic data by means of complex methods to extract features from traffic flows and
remove the irrelevant and redundant features later on. Anderson et al. [11] aimed at
overcoming two limitations of detection of malicious network traffic: inaccurate ground
truth and highly non-stationary data distribution. An enhanced feature set is presented
based on the information of Transport Layer Statistics (TLS) sessions.

Most of existing methods to classify traffic employed the statistics algorithms of
machine learning like KNN, SVM, decision tree and so on. Some of the latest studies
[6, 12] started to utilize some algorithms of deep learning to classify traffic. However,
these studies trained features which were still extracted beforehand so they did not take
advantage of the ability of neural network models to extract optimal features. Conse-
quently, these studies do not archive overwhelming advantages over the previous ones.

2.2 Network Resource Management in NFV

Purposes of most existing network resource management strategies is to reduce the
number of equipment or improve QoS. Tseng et al. [13] carried out several sets of
experiments to prove that selecting suitable discontinuous reception parameters can
effectively reduce power consumption of nodes. Joe et al. [14] proposed an algorithm of
network selection based on Analytic Hierarchy Process (AHP) for predicting power
consumption of terminal equipment in the network. Senouci et al. [15] selected suitable
network interfaces in a dynamically changing network by utilizing Technique for Order
Preference by Similarity to an Ideal Solution (TOPSIS). Park et al. [16] introduced game
theory into the field of resource management and proved that different applications can
share effective bandwidth by cooperative game. According to whether traffic packets are
sensitive to latency or not, Afzal et al. [17] divided them into two classes for scheduling.

In NFV, some studies proposed optimized scheduling algorithms of typical unicast
issue by focusing on computing resources of nodes [18] and bandwidth resources of
edges [19]. Sun et al. [1] presented a framework which enables network function work
in parallel and it reduced latency greatly for real world service chains. More and more
studies started to focus on the impact of VNFs on scheduling resources of network.
Taleb et al. [2] calculated loss when a VNF breaks down by estimating the number of
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active/idle user equipment and proposed a network architecture enabled by service
resilience-aware mechanisms. For minimizing latency of end-to-end service, Chantre
et al. [3] employed the particle swarm optimization technique to solve the redundancy
allocation problems. Mestres et al. [20] initiated experiments to prove different VNFs
have different curves of resource consumption with the increase of network data even
in the same network. Kar et al. [21] tried to solve the problem that optimizing energy-
cost with capacity and delay as constraints so that a dynamic placement of SFC
heuristic solution was proposed. Gu et al. [22] proposed an algorithm of placement of
VNFs for reducing the communication cost with joint consideration of network flow
balancing and predetermined network service semantics.

As mentioned above, most of methods to classify traffic are limited to several
applications or protocols. Many features of classification are difficult to be extracted
from message format information of traffic packets since more and more packets are
encrypted. In NFV, many studies about scheduling resources did not realize that QoS
requirements of traffic packets are different. Thus, they never thought of utilizing traffic
classification technology to identify the transmission priority of different packets.

3 Architecture Overview

In NFV, VNFs need to be deployed in a specific SFC sequentially (e.g. network address
translation function requires postprocessing after firewall function). Therefore, selecting
and deploying VNFs already become the methods to schedule resources in NFV. For
satisfying QoS requirements of different traffic packets better in existing networks, this
paper proposes a selection strategy of VNFs based on traffic classification in NFV instead
of a strategyof theVNFsplacement.However, actual networks are complexbecause some
nodeshost oneormoreVNFswhile theothers donot.Even the sameVNFmaybehosted in
different nodes. Thus this strategy adopts a fine-gained single-hop mode to cope with
complex and variable actual NFV networks.We combine a section of traffic classification
at the source node of the network with a section of VNFs selection in the interior of the
network. The premise of employing this VNFs selection strategy is that all the VNFs we
need are already deployed according to the order in SFC. That is to say, there is at least one
pathwhich satisfies the SFC from the source node to the destination node. The architecture
of this system is shown in Fig. 1 and described as follows.

Fig. 1. Illustration of the single-hop selection strategy of VNFs based on traffic classification
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Firstly, packets arriving at the source node are sampled and the features of them are
extracted and transmitted to an associated server which has a trained model of traffic
classification inside. This model distinguishes traffic packets into 8 classes according to
user behavior characteristics and QoS requirements, i.e. Browsing, Chat, Audio-
streaming, Video-streaming, Email, VoIP, P2P and FTP. These 8 classes are not
limited to several specific applications or protocols so that they cover majority of traffic
packets in actual networks. This classification coverage is the basis of resource
management.

Secondly, the model classifies the input packets and verifies transmission
requirements like delay and packet loss rate. According to the classification results, the
Differentiated Services Code Point (DSCP) field of every packet is modified as a label.

After being labeled, flow information of the packets is recorded, such as their five-
tuple (source IP address, destination IP address, source port number, destination port
number, protocol). Then if a new packet which has the same five-tuple is transmitted to
the source node, it is labeled as previous ones of this flow and scheduled in this
network directly without additional need to be classified.

We emphasize that the transmission time Ti of packet i is obtained by adding the
delay time De of each edge e and the waiting time Wn on each node n. Let the set Ei

represents the set of edges and the set Ni represents the set of nodes which are in the
path of packet i passing. During the transmission process, packet i is always checked
whether it can continue to be transmitted according to the time t. Thus we have the
objective function and the constraint function:

Ti ¼
X

e2Ei
De þ

X
n2Ni

Wn ð1Þ

t� si þ di ð2Þ

where si is the start time of the transmission and di is the longest transmission time
obtained by the QoS requirement. The scheduler of each layer verifies the priority of
transmission of each arrived packet by the label in DSCP field. Then this scheduler
selects a layer which hosts the next VNF for the packet. The selection process is
repeated until the packet reaches the target node.

4 Methodology

4.1 Traffic Classification

On account of that the features selected by many methods only work well in a specific
network environment, we extract some features which are calculated by the information
of number, lengths and arrival times of packets instead of traditional message format
information like protocol and port number. These features can be extracted regardless
of whether traffic packets are encrypted. More importantly, traffic classification can
identify traffic packets from different applications as the same class by the features. For
example, skype and facebook are different applications but both have the VoIP function
to generate two-way traffic packets which have short inter arrival times and similar
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lengths. As a contrast, traffic packets of FTP also have short inter arrival times, but
lengths of packets sent forwards are much bigger than packets sent backwards.
According to experiments, this paper sets 5 s as the length of flows. The flows consist
of two-way traffic packets that have the same five-tuple. Lashkari et al. [10] classified
traffic packets by 23 flow features which only based on time. Table 1 exhibits 13
features which we select from these 23 features. Furthermore, considering the band-
width requirement in the field of resource management and the differences in user
behavior, we extract 18 flow features based on number and lengths of packets and show
them in Table 2.

In order to find an optimal classification algorithm, not only common machine
learning algorithms such as decision tree, random forest, KNN and SVM, we also
employ DNN and gcForest using the same dataset. Compared to common machine
learning algorithms, DNN and gcForest performs better in experiments. Therefore, the
principles of the two algorithms are elaborated as follows.

Deep Neural Network (DNN). The DNN is especially the neural network with fully
connected layers. DNN is an algorithm of supervised learning, which utilizes the fitting
function to realize the classification of input data. Each neural node of DNN learns a
linear function according to the weight w and the bias b:

z ¼
Xn
i¼1

wixi þ b ð3Þ

Table 1. Features based on time

Basic data Features

Packets sent forwards Inter arrival time (mean, min, max, std)
Packets sent backwards Inter arrival time (mean, min, max, std)
Packets sent in either direction Inter arrival time (mean, min, max, std)
Flows Duration

Table 2. Features based on number and lengths of packets

Basic data Features

Packets sent forwards Length (mean, min, max, std), bytes and number per
second

Packets sent backwards Length (mean, min, max, std), bytes and number per
second

Packets sent in either direction Length (mean, min, max, std)
Packets sent forwards and packets
sent backwards

Ratio of the number of bytes per second, ratio of the
number per second
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where n is the number of inputs that the neural node receives and x is the value of the
corresponding input. Then the result z is input into an activation function for learning
nonlinear data better. The activation function we select is Rectified Linear Unit
(ReLU):

ReLU zð Þ ¼ z; z[ 0
0; z� 0

�
ð4Þ

Neural network layers of DNN are divided into three kinds: input layer, hidden
layer and output layer. Input layer is used to receive data input to the neural network.
Hidden layers can have multiple layers to enhance expressive power of this model.
Generally, neural networks with more hidden layers and neural nodes are able to fit
more complicated functions. Output layer has multiple output nodes to output predicted
results that match the classes of input data. The experiments use five layers to build the
model.

The training process of DNN constantly adjusts weight and bias of each neural
node to fit the classification function that meets input data better. The evaluation
indicator of performance is loss function which we select is cross-entropy cost
function:

C ¼ � 1
n

Xn
i¼1

y ln aþð1� yÞ lnð1� aÞ ð5Þ

where y is the expected output result and a is the label. Labels are input into the model
with training data as actual output results. Besides, n is the number of outputs and C is
the result of loss. Therefore, loss function indicates the gap between predicted results
and the actual results. As for optimization function, we select Adaptive Moment
Estimation (Adam) to reduce the value of this loss function for obtaining optimal
hyper-parameters. Learning rate determines the speed of modifying the parameter to the
better value and has a great impact on the performance of neural network. The learning
rate we selected is 0.001.

Fig. 2. Architecture of gcForest (Color figure online)
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Multi-grained Cascade Forest (gcForest). Multi-Grained Cascade Forest is the
improved model of Random Forest [23], which is proposed as an alternative to deep
neural networks because its performance is highly competitive in a broad range of
tasks. The structure of gcForest is shown in Fig. 2.

The gcForest model consists of two parts: the multi-grained scanning and the
cascade forest structure. In the part of multi-grained scanning, sliding windows are
used to scan all raw features for forming feature vectors. These feature vectors are used
to train completely-random tree forests and random forests to obtain class vectors
which are concatenated as transformed features. Random forests contain trees which
are generated by choosing the one with the best gini value from some randomly
selected features for split. And completely-random tree forests consist of regular
decision trees. In the part of cascade forest structure, each level composed of different
decision tree forests to encourage the diversity which is important to ensemble con-
struction. For example, each level in this structure consists of two random forests
(black) and two completely-random tree forests (blue) in Fig. 2. Each level receives
information from the preceding level and processes the information by their own
forests. Then this level outputs its results to the next level.

Compared to deep neural networks which rely on hyper-parameter tuning, gcForest
is much easier to train. In many cases, it works well even using almost same setting of
hyper-parameters. The training process of this algorithm is efficient, and users can
control training cost according to computational resources available. Moreover, the
greatest advantage of gcForest is that the algorithm can obtain a good result in the case
of small-scale training data.

4.2 VNFs Selection Strategy

Figure 3 presents an example network in NFV to explain the mechanism of the VNFs
selection strategy. A circle with a text represents a node which hosts a VNF and a circle
with no text represents a node which only transmits traffic packets. The red and blue
lines respectively represent a path which satisfies the order of VNFs in SFC from the
source node to the target node. A circle of black dotted lines represents a node which is

Fig. 3. An example network in NFV. Traffic messages pass through some nodes following the
order in SFC from the source node 0 to the target node 9. (Color figure online)
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passed through by the both paths. It can be seen that node 0 is the source node and node
9 is the target node.

SFC Layered (SFCL) Model. Considering the characteristic of NFV and the coop-
eration with traffic classification, a network is divided into layers according to the order
of VNFs in SFC. As shown in Fig. 3, traffic packets which are transmitted from source
node 0 to target node 9 need to follow the order of VNF1, VNF2 and VNF3 because of
the requirement of SFC. Therefore, the network is divided into 5 layers: the source
layer, the VNF1 layer, the VNF2 layer, the VNF3 layer and the target layer.
Accordingly, the Path1 is divided into node 0, node 1, node 4, node 7, node 9 and the
Path2 is divided into node 0, node 2, node 4, node 5, node 8, node 9. What worth
mentioning is that node 5 and note 8 are in the same layer in Path2.

Each layer in the network is regarded as an instance object which is represented by
a seven-tuple: {U, N, X, B, C, K, M}. In the seven-tuple, U represents the set of all
upper layers of this layer, N represents the set of all next layers of this layer, and
X represents the order number of this layer in the path. Besides, B represents the free
bandwidth set of edges which connect this layer with its next layers. C represents the
congestion degree set of next layers, that is, the numbers of messages waiting to be
transmitted in these next layers. Last, K represents a switch that controls this layer
whether receives a message from upper layers, M represents the set of messages
waiting to be transmitted in the layer. Particularly, an object which has the same index
in N, B, C put into correspondence with the same next layer object.

Each message in the network is regarded as an instance object which is represents
by a five-tuple: {D, S, E, P, R}. In the five-tuple, D represents the traffic packet carried
by the message, S represents the time when the message enters the network, and
E represents the longest transmission time obtained by the result of traffic classification.
In addition, P represents the transmission priority of the message, and R represents the
probability that the message is transmitted to the next layer which has the best con-
gestion condition.

Scheduling in a Single Layer. Figure 4 shows the scheduling process in a single
layer. When a layer receives a message from its upper layer, it first checks whether the
time at the moment has exceeded the sum of S and E of the message or not. If the time
is exceeded, it means that the message does not reach the target layer within the time
delay allowed and it is discarded directly, otherwise the message is put in M of the
layer. Then messages of M are sorted by the values of their transmission priorities
(P) so that the message which has the largest P is transmitted to one of the next layers.
The value of P of message m in layer l is represented by (6).

Pm ¼ P0 þ a(Em + Sm � t)� b(L� Xl) ð6Þ

where P0 is the initial transmission priority as the result of traffic classification and t is
the time at the moment. L is the number of layers in this network. The values of a and b
are determined by conditions of the network so that the scheduler can consider the
possibility of this message successfully reaching the target layer in time. If N of the
layer has several next layers, each next layer n calculates its own selection priority
called SP using (7) in the light of its free bandwidth bn and congestion degree cn.
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Fig. 4. Scheduling process in a single layer

SP ¼ cbn + dcn ð7Þ

where c and d are weights of free bandwidth and congestion degree, and their values are
determined through experiments. Then the next layers are ranked from high to low
according to the values of their SPs. At this time, R of the message is the probability
that it being transmitted to the next layer which has the largest SP. Random selection is
made according to the 0-1 distribution that matches the value of R. The distribution
function of the calculated result x is:

Pfx ¼ kg ¼ pð1� pÞk; ðk ¼ 0; 1Þ ð8Þ

where p equals to the value of R. Thus the probability of different selection results is:

Pfx ¼ 0g ¼ R ð9Þ

Pfx ¼ 1g ¼ 1� R ð10Þ

If x equals 0, the message will be transmitted to this next layer, otherwise the
scheduler will continue to make the random selection to decide whether to transmit this
message to the next one in the rank of next layers. By that analogy, if only the last next
layer is left, the message is transmitted to this remaining next layer directly.

Considering the interference problem in the process of transmitting messages, it is
necessary to ensure that each layer receives only one message from its upper layers at any
time.Upper layers of the same layer aremutually called interferential layers.After anupper
layer of this layer transmits a message to the layer, the switch K is turned off so that
interferential layers of the upper layer are banned from transmittingmessages to this layer.
When the messages are sorted out, K is turned on and the layer continues to receive
messages. For example, the layer contains node 1 and the layer contains node 2 are
interferential layers because they are both upper layers of the layer contains node 4 in
Fig. 3.
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5 Experiment and Simulation

5.1 Traffic Classification

We carry out experiments about traffic classification using packets of an open dataset
[10]. Firstly, we analyze the impact of lengths of traffic flows on traffic classification.
To evaluate the classification performance of different algorithms, we use two metrics:
precision (PR) and recall (RC). In [10], authors carried out experiments and obtained
the results that 15 s is the optimal length and the highest classification precision is
84.1%. Table 3 exhibits the performance of each algorithm under different lengths of
the flows. In addition to SVM, the remaining algorithms get high precisions. The
results show that 15 s is also the optimal length, but the performance is close under the
same algorithm when employing the new features. Thus traffic classification is no
longer restricted by the lengths of flows. Considering the real-time performance of
network resource management, we choose 5 s as the length of flow without reducing
much classification precision. And the gcForest is the optimal algorithm for traffic
classification by these new flow features according to the results in Table 3.

Figure 5 indicates the performance of the six algorithms under different feature sets.
We select three feature sets which are shown in Table 4. It can be seen that the
precision of classification obtained by feature set1 is 10% lower than the precision of
classification obtained by feature set2. These results prove that when the flows are
short, it is correct to add the flow features based on number and lengths of packets to
the feature set of classification. At the same time, they also show that the precisions of
different feature sets from gcForest is highest. Therefore, gcForest is the best classi-
fication algorithm even the feature set changes.

Table 3. Results of length selection in experiments

gcForest Random forest Decision tree
PR RC PR RC PR RC

5 s 0.9179 0.9164 0.9043 0.9083 0.8839 0.8880
10 s 0.9161 0.9134 0.9069 0.9110 0.8870 0.8914
15 s 0.9190 0.9167 0.9072 0.9119 0.8860 0.8896
20 s 0.9213 0.9205 0.9061 0.9097 0.8858 0.8871

KNN SVM DNN
PR RC PR RC PR RC

5 s 0.8906 0.8959 0.7594 0.7186 0.8868 0.8830
10 s 0.8866 0.8901 0.7980 0.7272 0.8872 0.8834
15 s 0.8856 0.8919 0.7938 0.7153 0.8836 0.8822
20 s 0.8889 0.8930 0.7555 0.7171 0.8966 0.8933
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Figure 6(a) and (b) exhibit the test precisions and recalls of all kinds of traffic. The
results show that gcForest and DNN obtain the best performance of recognizing each
class of traffic. SVM recognizes several classes of traffic accurately but its overall
performance is worse than gcForest. The performance of the traffic classification is
satisfactory except some packets originally belong to Chat are wrongly identified as
Browsing traffic because some online chat applications run in browsers. Accordingly,
the division of traffic classes remains to be optimized.

Fig. 5. Precision of different algorithms using different features

Table 4. Different features set

Feature set Description

Feature set1 Features only based on time
Feature set2 Features based on lengths and number of packets
Feature set3 All features

(a) Precision (b) Recall

Fig. 6. Precision and recall of different kinds of traffic
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As for the extra workload of the model with the section of traffic classification, we
carry out experiments to evaluate the its impact on real time data transmission. We
randomly select 1000 flows from the traffic dataset and measure the total testing time of
feature calculation and prediction in the trained classification models. Each flow lasts
for 5 s, consisting of the two-way traffic packets which have the same five-tuple. The
testing times and precisions of the six trained classification models are shown in Fig. 7.
It can be seen that the models classify traffic data quickly and four of them only spend
less than 100 ms on 1000 flows. Thus in actual networks, the classification time of a
flow is negligible. The proposed scheduling model is feasible due to the section of
traffic classification has little impact on real time data transmission.

5.2 VNFs Selection

Considering the diversity and complexity of real networks, we select three networks
with different topology: Net1, Net2 and Net3. The networks respectively contain 15,
30, 45 nodes and these three all have some nodes to host VNFs. Two nodes of each
network are selected as the source node and the target node. In all three networks, there
are several paths which have different bandwidth and congestion from the source node
to the target node. And the nodes of these paths are guaranteed to satisfy the order of
VNF in SFC. We put data into the source nodes of these networks to simulate the
selection process of VNFs.

ATSA [24] and CR-SLF [25] are single-hop models of resource management and
they both schedule resources according to the longest transmission time of messages,
so they are comparable to SFCL. Differently, SFCL is proposed for working based on
the results of traffic classification and it takes the bandwidth and congestion of network
into consideration. We made experiments to compare the scheduling performance of
the three models in each network. In different network, first we evaluate the length of
paths and set longest transmission times of different traffic classes to ensure that all
packets have chance to reach the target node. For realizing better user QoS, longest
transmission times (LTT) of class with higher transmission priority is shorter. In
general, the 8 classes of traffic packets are sorted according to the priority of

Fig. 7. The testing times and precisions of these classification models using 1000 flows
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transmission as a specified order, i.e. VoIP, Video-streaming, Audio-streaming, Chat,
Browsing, Email, P2P, FTP. Then the parameters of the model are modified by the
topology of each network, such as the coefficients in (6) and (7). Finally, we change
speed of data input to cause different degrees of congestion in networks and count the
number of packets successfully reached the target node in unit time.

Figure 8(a), (b) and (c) respectively indicate the comparison of scheduling per-
formance obtained by different models in Net1, Net2 and Net3. Experimental message
set consists of the 8 classes of messages, each class with 1000 messages. SFCL model
works without the section of traffic classification in these experiments. The unlabeled
messages are input to the networks in random order. The evaluation indicator of
scheduling performance is the Task Unfinished Ratio (TUR). TUR is defined as the
ratio of the number of packets that fail to reach the target node before their LTT.
The x-axis denotes the speed of data input, namely, the number of messages input per
second. And the y-axis denotes that TURs obtained by three models in each network.
According to the results, SFCL without section of traffic classification can greatly
reduce the TUR compared to the traditional single-hop scheduling models in different
network congestion conditions.

(a) TUR in Net1                                                           (b) TUR in Net2

(c) TUR in Net3

Fig. 8. TURs in different networks under different models
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The comparisons of the scheduling performance of SFCL model whether to add the
section of traffic classification in Net1, Net2 and Net3 are respectively shown in Fig. 9
(a), (b) and (c). Experimental message set is same as before but the messages are
labeled after the messages pass through a trained model for classification. Then some
parameters of messages are changed for differentiated scheduling, such as transmission
priorities. According to the results, TRUs of SFCL decrease by 30% to 50% in different
networks after classifying the input traffic packets. Therefore, adding the section of
traffic classification is helpful to reduce the TRU and improves user QoS though
sometimes the process of classification takes a little time.

6 Conclusion

In this paper, a VNFs selection strategy is proposed to address the problem of
scheduling network resources in NFV. The proposed strategy based on a method of
traffic classification. This method leverages some flow features based on times, lengths

(a) TUR in Net1                                                           (b) TUR in Net2

(c) TUR in Net3

Fig. 9. TURs obtained by adding traffic classification process
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and number of packets to classify different user behaviors on the internet. Results show
that the method of classification is no longer restricted by the lengths of flows so that
the real-time performance of the resource scheduling strategy is improved. Further-
more, resource management strategy can schedule traffic packets from different user
behavior to improve QoS since the method obtains high precision of classification. The
gcForest algorithm performs better than other classification algorithms in this task.

The VNFs selection model SFCL proposed by this paper divides the network into
layers according to the order of VNFs in SFC. The scheduler of each layer selects a
next layer for messages with joint consideration of transmission priority and network
congestion. Experiments prove that SFCL can reduce the network congestion effec-
tively compared with the traditional single-hop scheduling models. After adding the
section of traffic classification, the number of packets that fail to reach the target node
before longest transmission time is reduced by 30% to 50%.
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