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Abstract. Non-negative matrix factorization (NMF) has been intro-
duced as an efficient way to reduce the complexity of data compress and
its ability of extracting highly-interpretable parts from data sets, and it
has also been applied to various fields, such as recommendations, image
analysis, and text clustering. However, as the size of the matrix increases,
the processing speed of non-negative matrix factorization algorithm is
very slow. To solve this problem, this paper proposes a parallel algorithm
based on GPU for NMF in Spark platform, which makes full use of the
advantages of in-memory computation mode and GPU Single-Instruction
Multiple-data Streams mode. The new GPU-accelerated NMF on Spark
platform is evaluated in a 4-nodes Spark heterogeneous cluster using
Google Compute Engine by configuring each node a NVIDIA K80 GPU
card, and experimental results indicate that it is competitive in terms of
computational time against the existing solutions on a variety of matrix
orders. It can achieve a high speed-up, and also can effectively deal with
the non-negative decomposition of higher-order matrices, which greatly
improves the computational efficiency.
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1 Introduction

Non-negative matrix factorization is a matrix decomposition approach which
decomposes a non-negative matrix into two low-rank matrices constrained to
have nonnegative elements [4,5]. This results in a reduced representation of the
original data that can be seen either as a feature extraction or as a dimensional-
ity reduction technique. The widespread usage of the NMF is due to its ability of
providing new insights and relevant information about the complex latent rela-
tionships in experimental data sets. Since Lee and Seung’s Nature paper [4,5],
NMF has been extensively studied and has a great deal of applications in science
and engineering. It has become an important mathematical method in machine
learning and data mining, and has been widely used in feature extraction, image
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analysis, recommendation systems, pattern recognition, signal analysis, bioin-
formatics and etc. [6–8]. Unlike other factorization methods (e.g., PCA, ICA,
SVD, VQ, etc.), NMF can be interpreted as a parts-based representation of
the data because only additive combinations are allowed. In contrast to PCA
and ICA, NMF is strictly required that the entries of both resulting matrices
are non-negative. Such a constraint is very meaningful in many applications, in
which the data representation is purely additive, for instance, the user ratings
of e-commerce websites are usually non-negative values, and image pixels are
non-negative values.

The main problem of NMF is that the original matrix is usually high-order
matrix, which makes the computational complexity very high. Therefore, the
parallel algorithm of NMF gradually attracts more attentions, and some parallel
NMF algorithms have been proposed. Although the parallelization of NMF can
improve the computational efficiency to a certain extent, parallel algorithms
should be matched to the machine hardware architecture, and should have strong
scalability, that is, the ability to effectively utilize increased processor resources.

Accelerating HPC applications is currently under extensive research using
new hardware technologies such as the recent Central Processing Units (CPUs)
that are getting multiple processor cores for parallel computing, Graphics
Processing Units (GPUs) that process huge data blocks in parallel, hybrid
CPUs/GPUs computing that is a very common solution for HPC. GPUs are
getting more attention than other HPC accelerators due to their high computa-
tion power, strong performance, functionality and low price. The modern GPU
is not only a powerful graphic engine, but also a highly parallel programmable
processor featuring peak arithmetic and memory bandwidth [10]. They are now
used to accelerate graphics and some general applications with high data paral-
lelism (GPGPU) due to the availability of Application Programming Interfaces
(APIs), such as Compute Unified Device Architecture (CUDA) and Open Com-
puting Language (OpenCL).

Spark is a distributed in-memory computation framework which was pro-
posed by AMPLab of University of California at Berkeley in 2009, and is based on
a framework of processing large amounts of data in memory [12,13]. It supports
four programming languages, Scala, Java, Python, and R. Resilient Distributed
Datasets (RDD) is a new concept proposed by Spark for data collections. RDD
can support coarse-grained write operations [11]. Spark caches a particular RDD
into memory, and the next operation can read directly from memory. The data is
not written to disk, saving a lot of disk I/O overhead. Experimental performance
evaluation confirmed that Spark’s performance has increased by dozens or even
100 times compared to Hadoop, which relies on MapReduce model [1] and data
being stored in a distributed file system called HDFS, rather than in memory.

Currently, some parallel approaches for non-negative matrix factorization
have been proposed, for example, high performance approaches using mes-
sage passing interface [2], GPU-accelerated approaches [3,9], and Hadoop-based
MapReduce approaches [6,7], etc. These approaches mainly utilize the multi-
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core characteristics of the system, and there is still the potential to improve
performance by utilizing memory, CPU and GPU resources together.

This paper proposes a Spark-based in-memory computing model and a GPU-
based acceleration model to develop scalable NMF parallel algorithm, which
takes advantages of both GPU and in-memory computing, to obtain a highly
scalable parallel NMF algorithm. The algorithm can be automatically extended
to support the processing of large-dimensional non-negative matrices, so that
the algorithm can easily adapt to Internet big data processing.

The rest of the paper is organized as follows. Section 2 introduces the mathe-
matical fundamental of NMF. Section 3 describes the general parallel principle of
NMF. Section 4 describes the architecture of GPU-accelerated Spark platform.
Section 5 presents GPU-accelerated NMF on Spark. Section 6 presents perfor-
mance evaluation results, which is followed by the final section concludes the
whole paper.

2 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) seeks to approximate a non-negative
n × m matrix V (in this context, a matrix is called non-negative if all of its
elements are non-negative) by a product V ≈ WH of non-negative matrices W
and H of dimensions n × r and r × m, respectively, with a given and typically
low maximal rank r. Usually, r is chosen to satisfy r � min{m,n} such that
WH can be thought of as a compressed form of the original data. It forms the
basis of unsupervised learning and data reduction algorithms with applications
to image recognition, speech recognition, data mining and collaborative filtering,
etc.

NMF is able to represent a large input dataset as the linear combination
of a reduced collection of elements named factors. In this way, W contains the
reduced set of r factors, and H stores the coefficient of the linear combination
of such factors that rebuilds V . NMF iteratively modifies W and H until their
product approximates to V . Such modifications, composed by matrix products
and other algebraic operations, are derived from minimizing a cost function that
describes the distance between WH and V . Lee and Seung presented two NMF
algorithms based on multiplicative update rules whose objective functions are
Square of Euclidean Distance (SED) and Generalized Kullback-Leibler Diver-
gence (GKLD), respectively:
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1
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Then, the objective of NMF is converted to optimize the following: min
W,H

E(V ||WH) or min
W,H

D(V ||WH), and s.t. W,H ≥ 0,
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i=1

wij = 1 1 ≤ j ≤ r.
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For the purpose of this paper, we define SED as the objective function, so
we have min(‖V − WH‖2F ), which leads to the updating rules for matrices H
and W :

hij = hij
(WTV )ij

(WTWH)ij
(3)

wij = wij
(V HT )ij

(WHHT )ij
. (4)

3 Parallel Non-negative Matrix Factorization

Before describing our experimental study, we briefly introduce the main existing
parallel techniques of NMF. By analyzing Eqs. (1) and (2), we can get the basic
principle of iteration calculation of NMF in parallel manner. Matrix operations
are performed in blocks. The block-based parallel updating rules for matrices
H and W over multi-processes has shown in Fig. 1, and the size of bm can be
adjusted according to the hardware configurations. At the time of initialization,
initial W and H are produced. As you see, the size of matrix W is n×r, the size
of the matrix block Vj is n × bm, and the size of the matrix block Hj is r × bm,
and finally the updated matrix block Hj is obtained. As shown in Fig. 1(b), the
new matrix H is used to compute the new matrix block Wi, and so on. Matrix
H and W are updated alternatively.

It can be seen from the analysis, the original matrix V is equivalent to a read-
only variable, which is shared among all processes. With the iteration, matrix
W and H need to be synchronized among all processes. The algorithm works by
iteratively all-gathering the entire matrix H or W to each processor and then
performing the Local Update Computations to update the Wi or Hj .

Fig. 1. Block-based parallel updating rules for matrices H and W over multi-processes.
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4 Architecture of GPU-accelerated Spark Platform

4.1 Spark

Conceptually, Apache Spark is an open-source in-memory data analytics cluster
computing framework. As a MapReduce-like cluster computing engine, Spark
also possesses good characteristics such as scalability, fault tolerance as MapRe-
duce does. The main abstraction of Spark is resilient distributed datasets
(RDDs), which make Spark be well qualified to process iterative jobs, including
PageRank algorithm, K-means algorithm and etc. RDDs are unique to Spark
and thus differentiate Spark from conventional MapReduce engines. In addition,
on the basis of RDDs, applications on Spark can keep data in memory across
queries and reconstruct automatically data lost during failures. RDD is a read-
only data collection, which can be either a file stored in an external storage
system, such as HDFS, or a derived dataset generated by other RDDs. RDDs
store much information, such as its partitions, and a set of dependencies on par-
ent RDDs called lineage. With the help of the lineage, Spark recovers the lost
data quickly and effectively. Spark shows great performance in processing itera-
tive computation because it can reuse intermediate results, keep data in memory
across multiple parallel operations.

4.2 Introduction to Architecture

Modern GPUs are now capable of general computing. Due to the popularity of
the CUDA on Nvidia GPUs, which can be considered as a C/C++ extension, we
will mostly follow CUDA terminologies to introduce GPU computing. Current
generations of GPUs are used as accelerators of CPUs and data are transferred
between CPUs and GPUs through PCI-E buses. NVIDIA GPU programming
is generally supported by the NVIDIA CUDA environment. A program on the
host (CPU) can call a GPU to execute CUDA functions called kernel.

GPU is a multi-core processor designed to parallelizable computational inten-
sive tasks. It has very high computational processing power and data throughput.
In scientific research and practical applications, the parallelizable computing task
modules with less logical processing in the system are often transplanted to the
GPU for execution, and a large execution performance improvement can usually
be achieved.

However, Spark cluster will slow down when processing extremely large-scale
data sets, especially when the node number is not very high. At the same time,
more and more developers use GPUs for parallel computing to obtain high
throughput and performance. Combing Spark with GPU, the mixed architec-
ture is quickly becoming an emerging technology, which embeds the GPU into
Spark, implements CPU/GPU integration, and builds an efficient heterogeneous
parallel system.

In the CPU/GPU heterogeneous parallel cluster, the CUDA-based GPU
acceleration technology is used, and the Spark computing tasks are accelerated
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by GPU. The basic idea is that part of operations of the Spark RDD are trans-
ferred to the GPU cores. GPU code execution flows are: (1) copy data from main
memory to GPU global memory; (2) GPU is driven by CPU instructions; (3)
GPU parallel processing in each core; (4) GPU returns results to main mem-
ory. According to this idea and combined with Spark workflow, the GPU code
is encapsulated, and then the data is transmitted between Spark Worker and
GPU. The basic principle of Spark-GPU fusion is shown in Fig. 2.

Fig. 2. Architecture of GPU-accelerated Spark platform.

From the perspective of programming language, since the GPU program
is usually developed in C/C++ language, and the Spark platform uses Java
language for program develop, Java’s JNI (Java Native Interface) technology
provides a solution to bridge the GPU and Spark, through code encapsulation
to implement interfaces for the Worker to call. Several JNI tools for GPU pro-
gramming can be used. For example, JCuda1 is a development kit that provides
bindings to the CUDA runtime, which currently includes multiple packages such
as JCublas, JCufft, JCurand, JCusparse, JCusolver, JCudpp, JNpp, and JCudnn
etc. It is convenient to write GPU programs in Java language. User-defined other
GPU programs written in C/C++ can also be called after being packaged into
Java functions.

For the developers, a bidirectional transmission channel between the main
memory and the GPU global memory should be established. If the operation of
the RDD is transferred to the GPU core, high-speed data transmission between
the main memory and the GPU global memory is required, which is also imple-
mented by function encapsulations, as is demostrated in Fig. 2.

1 http://www.jcuda.org.

http://www.jcuda.org
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5 GPU-accelerated NMF on Spark

5.1 GPU-accelerated NMF

As we demostrated the matrix iterative process in Eqs. (3), (4) and Fig. 1, the
main principle of GPU-based parallel NMF is presented in Fig. 3. The basic
idea of GPU-based parallel NMF is to design several kernel functions to imple-
ment update rules for matrix H and W . H and W are blockwise transferred. In
Fig. 3, circled operations denote CUDA kernels, and “.*” and “./” denote point-
wise matrix operations, multiplication and division, respectively. Most of the
matrix operations can be implemented using the library of Cublas and Cusparse,
together with two self-defined operations, dot multiplication and dot division. In
order to reduce the programming difficulty, JNI technology is used to transfer
the CUDA programs to Java function encapsulations, which are called by Spark
executors.

5.2 GPU-accelerated NMF on Spark

Spark has advantages in iterative computing, and GPU has advantages in numer-
ical calculation of vectors and matrices. In the Spark-GPU fusion platform, fast
memory read and write, combined with GPU acceleration, can play their respec-
tive advantages to improve performance. NMF calculation is started and con-
trolled by Spark driver. The Workers calculate the parallel tasks iterately in
a distributed manner. Workers are optimized with the highest speed using the
GPU device and running the GPU kernel functions to complete the task. All
intermediate results are written to the memory in each iteration, and exchanged
among the Workers, and sent to the GPU global memory. Until the iterations
are terminated, the tasks are completed and the results are written to HDFS.

The whole algorithm is described in Algorithm 1. The matrix V is broad-
casted to all executors, and each worker obtains the corresponding matrix block
Wi or Hj from RDD. In the Spark platform, after the Action operator is trig-
gered, all accumulated operators form a directed acyclic graph. Task is splitted
into different stages based on different dependencies between RDDs. One stage
consists of a series of function execution pipelines. The stages of GPU-accelerated
NMF through RDD are listed as follows:

– Stage 1: Read and convert matrix W and H, perform mapPartition function
to update H blocks;

– Stage 2: Splice all blocks of H after one iteration through perform a collect
operation;

– Stage 3: Read and convert matrix W and H, perform mapPartition function
to update W blocks;

– Stage 4: Splice all blocks of W after one iteration through perform a collect
operation, and prepare for the next iteration.
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Then, iteratively preform the above four stages. The method of caching data
in memory is much faster than in file system for each iteration. When the conver-
gence condition is reached, the matrices updating is terminated, and the results
are then written to HDFS.

Algorithm 1. GPU-accelerated NMF on Spark
Input: Original matrix Vn×m, low rank r and iteration times iter
Input: Context of Spark Environment sc
Input: Number of executors en and number of data partitions pn
Input: Data collection of matrix elements dcM and dcH for matrices M and H
Input: Data collection in the form of RDD rddM and rddH for matrices M and H
Output: Matrices Wn×r and Hr×m after decomposition

1. generate initial W , H by random
2. dcW ← W,dcH ← H
3. broadcast V
4. for k=1: iter do
5. rddH ← sc.parallelize(dcH, pn)
6. //update H
7. call rddH.mapPartition(mapH)
8. function mapH(data, result)
9. X ← gpu multiply(WT , V )
10. WW ← gpu multiply(WT ,W )
11. Y ← gpu multiply(WW,data)
12. data ← gpu dot multiply(data,X)
13. result ← gpu dot divide(data, Y )
14. return result
15. end function
16. dcH ← rddH.collect()
17. rddW ← sc.parallelize(dcW, pn)
18. //update W
19. call rddW.mapPartition(mapW)
20. function mapW(data, result)
21. X ← gpu multiply(V,HT )
22. WH ← gpu multiply(W,H)
23. Y ← gpu multiply(WH,HT )
24. data ← gpu dot multiply(data,X)
25. result ← gpu dot divide(data, Y )
26. return result
27. end function
28. dcW ← rddW.collect()
29. end for
30. W ← dcW,H ← dcH
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Fig. 3. GPU implementation of iteration.

6 Performance Evaluations

6.1 Experiment Configurations

For our experiments we have used four n1-standard-4 instances of Google Com-
pute Engine, and each instance is configured with 4 vGPU, 15 GB memory and
100 GB SSD hard disk in asia-east1 district. Each instance is also configured
with a NVIDIA K80 GPU with 2496 CUDA cores and 12 GB global memory. In
the 4-nodes cluster, 64 bits Ubuntu 16.04 LTS is installed, and other software
packages include Hadoop 2.7, Spark 2.3, JDK 1.8 and CUDA 9.0.

6.2 Algorithms for Comparison

Serial NMF. Serial NMF algorithm is performed in a single thread using CPU
only. According to the Eqs. (3) and (4), the method of alternately updating W
and H are used to obtain the decomposition results by performing multiple
iterations.
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GPU-based NMF. GPU-based NMF algorithm is also performed in a single
thread but with one GPU device support. As you see in Fig. 3, alternately updat-
ing W and H are accelerated by GPU, implemented using the library of Cublas
and Cusparse, together with two self-defined operations, dot multiplication and
dot division.

Spark-Based NMF Without GPU Support. For this algorithm, NMF is
computed in a Spark cluster, and each node has no GPU device. Similar to
Algorithm 1, in the two stages of rddH.mapPartition and rddW.mapPartition,
there is no GPU support for the updating of H and W , and only CPU for matrix
operations in each iteration.

6.3 Result Analysis

In the experiments, we conducted performance evaluations using four algorithms:
(i) Serial NMF, (ii) GPU-based NMF, (iii) Spark-based NMF without GPU
support, (iv) Spark-based NMF with GPU support which is proposed in this
paper and developed on Spark-GPU fusion platform. We designed three perfor-
mance comparisons to validate the proposed new algorithm. We select some typ-
ical matrix dimensions, and the low rank r is set to 10, the number of iterations
is 100.

Performance of GPU Speedup. We performed GPU-based NMF in a single
node, and we varied the matrix dimensions as you see in Fig. 4. We measured the
computation time, and then we also perform the serial NMF in the same node so

Fig. 4. Performance of GPU speedup.
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Fig. 5. Performance of NMF on Spark.

as to calculate the GPU speedup to validate the effective of GPU acceleration.
The speedup is defined as the ratio of the computation time of the single node
serial method to the computation time of the single node GPU method, that is,
Speedup = Tserial/Tgpu parallel. The speedup varies with matrix dimensions, and
we have obtained maximum speedup of 45x for GPU when compared with CPU.

Performance of NMF on Spark. In this evaluation, we started the Spark
cluster, and the number of worker nodes is varied from 1, 2, 3 to 4. We varied the
matrix dimensions from 800 * 800, 800 * 1600, 800 * 3200, 1600 * 1600, 800 * 6400
to 1600 * 3200, and measured the computation time of NMF in Spark platform,
and results are shown in Fig. 5. When the number of nodes is 4, we set the
number of Spark executors to 16, and as the increase of the matrix dimensions,
the advantages of 4 nodes are becoming more and more obvious. Compared with
3 nodes Spark platform, the computation time of 4 nodes saves about 50% of
the time.

Performance of NMF on Spark with GPU Support. In the last evalua-
tion, we started the Spark cluster, the number of nodes is 4, and we varied the
matrix dimensions from 6400 * 6400, 3200 * 25600, 6400 * 12800 to 6400 * 25600,
and compared GPU support with Non-GPU support. As can be seen from Fig. 6,
in the 4-node Spark platform, the computation time of NMF with GPU is smaller
than without GPU. When the size of matrix is 6400 * 25600, NMF on Spark with
GPU support saves about 10.8% of the time. NMF on GPU-accelerated Spark
platform obviously shows execution efficiency.

Due to the mathematical fundamental of NMF and the blockwise-based par-
allel principle, there are frequent data distributions and data collections among
all executors, the communication cost is very high for the NMF on Spark. How-
ever, compared with data distributions and data collections, the execution of
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Fig. 6. Performance of NMF on Spark with GPU support.

mapPartition function takes much less time due to the GPU acceleration. From
the perspective of time analysis, communication and data exchange are the bot-
tlenecks of NMF parallel algorithm. NMF on GPU-accelerated Spark platform
still has great potential for improvement.

7 Conclusion

This paper implements the GPU-accelerated parallel NMF algorithm on Spark
platform. Through the performance evaluations, experimental results proved
that the combination of Spark-based in-memory computing and GPU has higher
execution efficiency. In the heterogeneous CPU/GPU cluster, nodes have large
memory resources and GPU multi-core resources, the advantages of distributed
storage between nodes and data sharing within nodes should be utilized. This
model can effectively improve the parallel computing performance in multi-cores
environment. It is an efficient and feasible parallel programming strategy. It can
support the processing of ultra-large-scale high-dimensional non-negative matrix
factorization, and will further expand the application fields of non-negative
matrix factorization. However, the GPU-accelerated NMF algorithm on Spark
platform designed in this paper still needs to be improved. First, some improve-
ments can be made to overlap calculations and data transmissions; Second, some
optimizations can also be made for non-negative factorization of sparse matrices.
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