
Capturing Domain Knowledge Through
Extensible Components

Erik Kline, Genevieve Bartlett(B), Geoff Lawler, Robert Story,
and Michael Elkins

Information Sciences Institute, University of Southern California, Los Angeles, USA
{ekline,bartlett,glawler,rstory,elkins}@isi.edu

http://www.isi.edu

Abstract. Recreating real-world network scenarios on testbeds is com-
mon in validating security solutions, but modeling networks correctly
requires a good deal of expertise in multiple domains. A testbed user
must understand the solution being validated, the real-world deployment
environments, in addition to understanding what features in these envi-
ronments matter and how to model these features correctly in a testbed.
As real-world scenarios and the security solutions we design become more
diverse and complex, it becomes less likely that the testbed user is able
to be a domain expert in their technology, a field expert in the deploy
environments for their technology, and an expert in how to model these
environments on the testbed. Without the proper expertise from multi-
ple domains, testbed users produce overly simplified and inappropriate
test environments, which do not provide adequate validation. To address
this pressing need to share domain knowledge in the testbed community,
we introduce our Extensible Components Framework for testbed net-
work modeling. Our framework enables multiple experts to contribute
to a complex network model without needing to explicitly collaborate
or translate between domains. The fundamental goal of our Extensible
Components is to capture the knowledge of domain experts and turn
this knowledge into off-the-shelf models that end-users can easily utilize
as first-class testbed objects. We demonstrate the design and use of our
Extensible Components Framework through implementing Click Modu-
lar Router [10] based Extensible Components on the DETER testbed,
and advocate that our framework can be applied to other environments.
We focus on wired network models, but outline how Extensible Com-
ponents can be used to model other types of networks such as wire-
less. (This material is based on research sponsored by DARPA under
agreement number HR0011-15-C-0096. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclu-
sions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Government.)

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

H. Gao et al. (Eds.): TridentCom 2018, LNICST 270, pp. 141–156, 2019.

https://doi.org/10.1007/978-3-030-12971-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12971-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-12971-2_9

142 E. Kline et al.

Keywords: Testbed validation · Network models ·
Knowledge capture · Network testbed · Testbed experimentation

1 Introduction

Validation of security and networking solutions requires creating and harnessing
complex scenarios and realizing those scenarios on a testbed infrastructure. A
testbed user must decide what aspects of a real-world environment play a role in
validation and determine how to map these real environment features into the
testbed environment correctly. Proper validation requires a deep understanding
and meaningful expertise across multiple domains [7]. Specifically, to perform
proper validation with today’s technology, a testbed user must maintain exper-
tise across three distinct domains: First, a testbed user must understand the
solution being validated. Second, she must understand the real-world environ-
ments where the solution will be deployed. Last, the user must understand what
features are relevant in these environments and how to model these features cor-
rectly in a testbed. As the real-world has grown increasingly more diverse and
complex, the burden on the testbed user has grown immensely. It has become
less and less likely that a testbed user can maintain being a domain expert in
her technology, a field expert in the deploy environments for her technology, and
an expert in how to model these environments on the testbed. In lieu of working
with field and modeling experts, testbed users often produce overly simplified
test environments, or use canned modeling approaches unsuitable for their exper-
iment which do not provide adequate realism for testing and validation.

Collaborating with field and modeling experts reduces the burden on the
testbed user while working towards more realistic testing scenarios, but such
a collaboration requires a good deal of effort to translate expertise between
domains. Ad-hoc translation between domains can be tedious and without struc-
tured knowledge capture, the time spent sharing expertise to build testbed models
has little pay-off beyond the initial effort. Low-effort knowledge capture to facili-
tate reuse, sharing and repeatability is thus a common goal in testbed validation.

In this paper, we describe our work to perform knowledge capture and domain
expertise translation in testbed network modeling for experimental validation.
We achieve this knowledge capture through a framework we call the Extensi-
ble Components Framework. A key feature of our Extensible Components is the
capture and dissemination of knowledge at three distinct levels—the model app-
roach, the model specification and how to composed this model into a larger
network model. Further, we treat Extensible Components as first-class testbed
objects. That is, the testbed understands what an Extensible Component is and
how to allocate and instantiate one given an experiment configuration. First-
class status for Extensible Component allows experimenters to easily deploy and
use complex models and scenarios without having to gain significant knowledge
on the components implementation, modeling approach or configuration.

We describe the three expert domains our Extensible Components Frame-
work brings together through knowledge capture (Sect. 2). We then discuss how

Capturing Domain Knowledge Through Extensible Components 143

to: create an Extensible Component (Sect. 3.1), extend the component by spec-
ifying resident models (Sect. 3.2), and how end-users easily use, combine and
share these models (Sect. 3.3). We follow with example components of a wired
network (Sect. 4.1) and wireless network (Sect. 4.2) and include a brief discus-
sion on our experiences with users and experts using our Extensible Components.
We close by discussing related work and how our Extensible Components Frame-
work can incorporate many existing tools. Our initial implementation and use
of our framework is freely available and currently implemented on the DETER
testbed [11]. We discuss the straightforward process of porting to other testbed
platforms in Sect. 3.4.

2 Extensible Components

The fundamental goal of our Extensible Components Framework is to be able
to capture the knowledge of domain experts and turn this knowledge into off-
the-shelf models that end-users can easily utilize.

Fig. 1. Extensible component overview

We capture and disseminate domain expertise from three distinct experts—
Modeling Experts, Field Experts and Users. A Modeling Expert builds tools
that accurately model a specific domain, providing the ability to model their
domain on a testbed to others. This ability to model is the core of an Extensible
Component. Field Experts then extend an Extensible Component by building
multiple specific models of their domain. Finally, users compose these specific
models to build aggregate networking models which they can experiment upon,
reuse and share with others. An overview of how this information is captured,
provided and shared is illustrated in Fig. 1 while the propagation of information
is shown in Fig. 2.

144 E. Kline et al.

Fig. 2. The three levels of knowledge capture and how knowledge propagates

2.1 Modeling Experts and Languages

The critical role of the Modeling Expert is to be able to provide others with
the ability to model their specific domain. Importantly, they understand the
techniques required to accurately model their domain within a set of given con-
straints while recognizing the artifacts these techniques may create. For example,
a Modeling Expert specializing in backbone networks understands what features
are important in modeling high capacity links, exchanges and routers, and under-
stands the limitations of his modeling approach and tools used to realize this
approach.

Different domains require different modeling techniques. A Backbone Model-
ing Expert is focused on modeling high-capacity wired networks and understands
modeling features such as bandwidth and delay enforcement, queuing strategies
and routing techniques. A Wireless Modeling Expert requires knowledge of dif-
ferent features, such as understanding the properties of wireless channel access
strategies, wireless collisions, and hidden nodes. The Backbone Modeling Expert
does not care about nor know how to model the concerns of the Wireless Expert
and vice versa.

Importantly, multiple Modeling Experts and modeling approaches can exist
for the same domain. Different model approaches make different trade-offs
between resources and fidelity, modeling certain features with high-fidelity and
reducing fidelity in other aspects. For example, one could model Autonomous
System (AS) networks using a link-centric approach or a router-centric app-
roach. A link-centric approach provides high fidelity modeling of link properties
and congestion while providing relaxed fidelity for modeling of routers and rout-
ing protocols. Conversely, a router-centric approach offers a high fidelity model
of routers and routing protocols while abstracting many of the link properties,
which may be more appropriate than a link-centric approach for testing new
routing protocols. Both of these experts are modeling ASes but their approaches
provide different trade-offs for experimenters. Supporting diversity in modeling

Capturing Domain Knowledge Through Extensible Components 145

approaches enables broader applicability, as not all experiments require the same
level of fidelity in all features.

The Modeling Expert can also provide controls on the amount of information
that may be visible through her modeling tools. An example of this would be
a model of an AS which does not leak any topological information to the edge
users, similar to the current Internet. This ability to provide privacy is impor-
tant for Field Experts who want to create models for others to test against, but
do not want to expose any proprietary information about their structure. Con-
versely, a Modeling Expert may not provide these guarantees where they cannot
be enforced or do not make sense to enforce. For example, a model approach
for an AS may have to expose topological information when testing new rout-
ing protocols in order make validation guarantees. In both cases, the Modeling
Expert can pass down this knowledge of constraints to Field Experts to ensure
Field Experts and Users understand the privacy and fidelity guarantees.

Beyond providing tools and an approach to properly model a domain, Mod-
eling Experts must also provide an easy way for others to customize and create
specific models using their tools and modeling approach. For this, we advo-
cate adoption of small languages that can easily and accurately describe and
set the features of a model. Using a language to describe a model, rather than
parameterizing a blob of code, provides flexibility and scaling, such as using
loops to create and set multiple parts of a model. For example, an AS model
may be described with a simple edge-list link language that provides an easy
description of a network and its link properties. Similarly, a wireless model may
utilize a node-list approach that describes the position of speakers, their mobility
and their transmission capabilities. Whatever language is chosen, the goal is for
the language to easily describe a model, without requiring the person describ-
ing the specific model to understand the underlying model implementation or
even the modeling approach—beyond just a broad understanding its goals and
limitations.

Finally, to provide others with a general idea of a component’s applicability,
Modeling Experts need to provide some documentation. This documentation
should give a brief and high-level description of the overall modeling approach,
and the capabilities and constraints of the model, allowing Field Experts and
Users to make informed decisions when choosing a component.

2.2 Models and Field Experts

After a Modeling Expert provides the ability to create and exercise a model,
it falls upon Field Experts to extend components by generating models. Field
Experts have significant knowledge in their relevant field but may not have
knowledge of how to model their domain. For example, an operator of an AS
knows the properties of their links and structure of their topology but may not
know how to accurately represent that on a testbed. Instead of learning how to
model, the Field Experts simply utilize the languages provided by a Modeling
Expert to describe their system and generate a model of it on the testbed.

146 E. Kline et al.

Of course, Modeling Experts and Field Experts are not mutually exclusive.
Often a Modeling Expert will have significant knowledge about one or more
fields, and a Field Expert may know how to approach testbed modeling. How-
ever, we expect that there are significantly more Field Experts than Modeling
Experts, as accurately modeling systems is a difficult challenge and a niche area
of expertise. Thus, it makes sense to capture and amplify a Modeling Expert’s
knowledge.

Just as Users can compose models into a larger network model, Field Experts
can also draw on multiple Extensible Components and are not required to use
only one Modeling Expert’s approach. For example, an AS Field Expert may
want to represent her system using multiple models—a link-centric model, a
router-centric model and a hybrid model. As long as the Field Expert can
understand the trade-offs, as accurately described by the Modeling Expert, she
can make rational and intelligent decisions about which Extensible Components
to use.

Ultimately, the goal of the Field Expert is to generate models through the
Modeling Experts tools, and provide those models to users who can run exper-
iments using these models. It is incumbent on the Field Experts to select the
Extensible Components they feel adequately describe their domains while also
meeting their privacy concerns as described in Sect. 2.1. Further access controls
for these models can be provided and enforced by the testbed.

2.3 Users

Users are the final level of our three-level approach, and are the ultimate recip-
ient of the captured knowledge in our Extensible Components Framework. The
fundamental goal of extensible components is to allow experimenters to utilize
complex network systems within their experiments without having to obtain
domain knowledge of a specific field or modeling approach. Building on knowl-
edge from Modeling and Field Experts, the User can now simply grab one or
more of the provided models and begin to experiment against them. The User
does not need to understand how the model is implemented, or the structure
of the model itself, in order to conduct an experiment. All the User needs to
know is the goal of a model and what constraints and artifacts may occur by
utilizing this model. With this information, the User can conduct complex and
scientifically valid experiments without spending the tedious time becoming a
domain expert in modeling or deployment environments.

3 Component Lifecycle

In the previous section we described how an Extensible Component brings
together expertise from Modeling and Field Experts to unburden the testbed
user and promote reuse. Next we describe the details of how a component is
created and used. We have developed and used our Extensible Component pro-
totypes on the DETER testbed [11], but believe porting our components to other
testbeds would be a straightforward process.

Capturing Domain Knowledge Through Extensible Components 147

3.1 Creating a Component

In order to create a new component, the Modeling Expert is required to pro-
vide three building blocks—a small language, a tool or set of tools to realize the
component, and an interface to generate and exercise the component. As dis-
cussed in Sect. 2.1, the language is utilized by Field Experts to describe a model.
We provide no restrictions on the choice of language, providing flexibility to the
Modeling Expert to choose whatever best suits their tools. The expert is free to
utilize languages that already exist if that is the best option.

The tool created by the Modeling Expert receives models specified in the
component’s language, and instantiates a functional component representing
that model as output. The choice of tool is once again up to the Modeling
Expert. Testbeds, such as DETER, can provide canned capabilities, such that
the expert may only need to translate their language into one that a canned capa-
bility already understands. For example, one of the components we’ve created for
DETER uses the Click Modular Router [10] as it’s underlying implementation.
Thus, our component tool translates our modeling language into a configuration
file that Click understands.

The final building block needed to be able to create and utilize a new compo-
nent is an interface to the testbed that allows the component to be allocated and
instantiated as a first-class object. For DETER, this is a TCL (NS) interface. We
provide Modeling Experts with a TCL library that they can import and build
off of to provide their interface. These experts simply need to sub-class the com-
ponent class and then implement the abstracted functions. These functions are
‘create’ and ‘add-link’ which indicate to the testbed how many nodes to allocate
to the component and how to connect other testbed objects to this component.
Further, the component class accepts an arbitrary number of arguments to be
passed to the sub-class, allowing Modeling Experts to accept variability during
the component construction.

set myc [$ns component ASWAN AS701]

Fig. 3. Example component instantiation

Figure 3 shows the basic Extensible Component API as supplied by the com-
ponent library. This example tells DETER to allocate a new component which is
of type ASWAN (a component for modeling an Autonomous System Wide Area
Networks). Everything else will be passed to the component creation method
to be handled by the specific component sub-class. Thus, in this example, our
Modeling Expert created a component called ASWAN, which expects a single
argument, the specific model to instantiate. The specific model, AS701, is created
and named by the Field Expert (and models a specific Autonomous System’s
network environment).

148 E. Kline et al.

3.2 Creating a Model

The complexity of creating a new component allows for the rest of the frame-
work to be significantly simpler. To create a model, the Field Expert simply
needs to pick a component and utilize the given language to express the model.
The challenge for the Field Expert is picking a component that can adequately
express their model while also understanding the components capabilities, con-
straints and potential artifacts. For example, a component that models ASes in
a link-centric fashion may have a maximum number of links per CPU it can
model before some artifacting occurs. The Modeling Expert documents what
these constraints and limits, and the Field Expert must heed the documentation
to create useful and accurate models.

11 12 {"bw": "400Mbps",

"delay": "10ms",

"loss": "0.0001"}

11 13 {"bw": "200Mbps",

"delay": "15ms",

"loss": "0.0001"}

Fig. 4. Small example of a modeling language

Once the component has been chosen, the expert creates their model within
the Extensible Component’s language. The code segment in Fig. 4 is an example
of a link-centric modeling language using an edge list format. The Field Expert
has used this language to describe a modeled network with three routers and two
edges (links “11”–“12” and “11”–“13”), with several link constraints specified
for each edge. Once the model has been specified, it is imported into an archive
or library. On DETER, the models are given a name and stored in a model
repository for later use.

3.3 Using a Component

Utilizing an Extensible Component within an experiment is where everything
comes together. First, the interface created by the Modeling Expert is exer-
cised by the user to define, instantiate and deploy the component. On DETER,
this involves importing the TCL library and defining the component within the
topology as shown in Fig. 3. The user can pass any options to the component
through this interface. Further, the user can connect the component to other
experiment objects using the ‘add-link’ API, which exposes specific I/O por-
tions of the component allowing the component to be physically linked to other
experimental hardware. At this point, the user does not need to do anything
additionally to have their component realized. When the experiment is instan-
tiated, the component will be automatically configured, initialized and enabled.

Capturing Domain Knowledge Through Extensible Components 149

3.4 Deploying Extensible Components on a Testbed

The majority of our discussion of Extensible Components has been based on
our deployment on the DETER testbed [11]. However, the overall framework
should be amenable to most testing infrastructures. To utilize our Extensible
Components Framework on any given testbed, three fundamental capabilities
are required. First, the infrastructure must be able to express a component
as a first-class object like any other object in that testbed. This means the
testbed back-end will deploy, connect and configure the relevant infrastructure to
instantiate the component. Second, a user must be able to express the component
within their experiment configuration. On DETER, this is accomplished via a
TCL (NS) library available to any user and other testbeds would require similar
modifications or extensions. Finally, a repository to store Extensible Components
and models generated by Modeling Experts and Field Experts, respectively, is
required so that the Extensible Components and models can be easily retrieved
and used by experimenters.

4 Experiences with Example Components

We have two example components in use that demonstrate the domain expertise
separation of our Extensible Components Framework and the capabilities of
Extensible Components. Both of these Extensible Components have been used to
make multiple models of real-world, toy example and corner-case testing models.

The first component, Wide area network (WAN) emulation, is freely avail-
able and has been used by multiple teams for testing and evaluation in a recent
DARPA program. The second component, wireless network emulation, is cur-
rently in development for a second DARPA program. Both of these components
currently use the same Click-based [10] back-end for realization. We are working
towards augmenting Click with additional tools to realize these components, as
other technologies are better suited to accurately model specific elements in each
domain. A key feature of our Extensible Components Framework is the separa-
tion of the component use from the model implementation. As we change the
underlying tools used to realize a model, the testbed user interface and configu-
ration interface of the model can remain largely the same, reducing the burden
on testbed users and Field Experts.

4.1 Wide Area Network Emulation

Wide area network (WAN) emulation is a common need for testbed validation,
and typically requires accurate and realistic topologies. In over nearly a decade
of working with DETER, we observed that without easily accessible and usable
network emulation, experimenters utilize excessive testbed resources simulating
real-world topology. This network simulation approach is not an efficient use
of resources as each physical machine used for simulation typically acts as a
simple store and forward router, and provides nothing else to the experiment.

150 E. Kline et al.

We needed a technology that would allow experimenters to utilize the domain
knowledge of WAN operators without having to gain that knowledge themselves,
while also being far more efficient in resource allocation.

To address this inefficient use of resources, we implemented a WAN Emula-
tion Extensible Component. The WAN emulation component allows an exper-
imenter to deploy an emulated WAN of multiple routers and links on a small
number of physical resources (usually just one physical machine, but in complex
topologies, this is expanded to more).

As researchers on modeling and testbeds, we were the Modeling Experts for
the WAN Emulation Extensible Component. We created all three of the essential
building blocks required in our Extensible Components Framework (as discussed
in Sect. 3.1). Our component specifies an edge-list based modeling language, sim-
ilar to that seen in Fig. 4, which allows Field Experts to describe routers and the
links between them across multiple features. These include bandwidth, delay,
multiple loss modeling approaches, multiple queuing strategies, AQM, packet
reordering, random bit error as well as many others. The second building block
is a tool that converts the model as described in the modeling language into
a format that can be utilized by the testbed. To build this tool, we leveraged
the existing Click [10] capabilities of DETER. Thus, our python-based tool sim-
ply translates our edge list into a Click configuration. This tool is exercised
at experiment run-time, pulling the specified model from the model repository,
translating it and instantiating Click.

Finally, we built additional TCL interfaces to allow users to exercise the
component as a first-class testbed object. This interface is very simple, requiring
the user to only specify the model they wish to instantiate. Further, the user
is required to connect the models I/O interfaces to other network components.
An example connection is shown in Fig. 6 which connects an experimental node
called “mynode” to our component at an I/O location called “router1”. This
means that a physical link between mynode and our component will be con-
structed and the data from that link will enter the component’s topology at
router1.

Fig. 5. Logical topology of our WAN with component in blue and other objects in
orange. The square boxes represent I/O points where data enters and exits the com-
ponent. (Color figure online)

Capturing Domain Knowledge Through Extensible Components 151

An example testbed topology linking into a model from our WAN emulation
component can be seen in Fig. 5. The highlighted blue area represents a WAN
topology model. The four squares at the edge of this zone represent the I/O
points where the testbed connects other objects to the component model. In
this example, we connect four generic ‘nodes’ to the component model at the
four given I/O locations. Data sent from these nodes to the component model
traverse the given network, experiencing any network effects that are modeled,
before exiting at another (or possibly the same) I/O point. Note that other
testbed objects can exist that are not directly related to the component. We could
connect other Extensible Components which encapsulate completely different
modeling tools, or other physical nodes, or any other testbed object.

Since Extensible Components are first-class testbed objects, when the exper-
iment is realized, the component is already correctly configured and operational,
again reducing burden on the testbed user as there is no need to learn details
of testbed operation in order to instantiate models. Importantly, a testbed user
can specify an experiment with multiple models from one or more Extensible
Components—all modeling different, and potentially complex, network systems
which the testbed user can link together as needed.

Our WAN Extensible Component was used to generate multiple WAN mod-
els. To date, we have over 30 models associated with our Extensible Compo-
nent, most of which were utilized in a recent DARPA program. The majority
are models tailored to stress test and validate a particular system, or models
designed to demo a feature of a system. A handful of these models capture Field
Expert knowledge on military and commercial networks. We found capturing the
knowledge of the operational Field Experts in the form of Extensible Component
models greatly reduced the effort and time needed to get everyone within the
DARPA program on the same page for testing, validation and demonstrations.
The testbed users could focus on their systems and spent less time on under-
standing the details of the operational networks their systems would be deployed
on and less time digging into the internals of the testbed.

While models are typically defined by the Field Experts, within the DARPA
program we found it was also valuable to provide multiple dynamic controls
directly to the testbed user. Our WAN Extensible Component allows users to
tune very global and very specific link-level properties during an experiment,
enabling testbed users to customize testing for stress testing and corner-case
testing.

set link1 [$ns duplex-link

$mynode [$myc entry router1]

1000Mb 0.0ms DropTail]

Fig. 6. Connecting a component

152 E. Kline et al.

Current Implementation Performance. As the Modeling Experts for wide
area networks, it is our responsibility to describe the capabilities and limitations
of our Extensible Component. As a link-based model of a WAN, the capabili-
ties are well understood—the component enables modeling link properties with
high-fidelity. The artifacts of these capabilities are also well understood, though
are complex to express. For example, how bandwidth shaping is conducted on a
link can greatly vary the effects on a flow. Token bucket approaches can cause
unexpected burstiness where as dynamic queues based on bandwidth and delay
result in less burstiness but can be more resource intensive (reducing the over-
all throughput available). We have quantified many of these capabilities and
limitations for a multitude of our link properties.

Understanding the fundamental limitations of the underlying back-end is also
critical. To this end, we measured the packet per second (PPS) performance of
our Click-based [10] back-end under a variety of scenarios using 72 byte packets.
All our experiments were conducted on a dual CPU, 12 Core Intel Xeon CPU
E5-2650 v4 at 2.20 GHz with 64 GBs of RAM and two 40 Gigabit Intel XL710
interface cards. To achieve best performance, we deployed our system using
DPDK [13] and FastClick [3].

First, we obtained an upper bound on performance—the maximum PPS Click
could process. Utilizing a queueless Click configuration, we paired each interface
and achieved 36 million PPS per NUMA node on our hardware (a total of 72
million PPS). This may not be a true upper bound, as our traffic generation
nodes cannot generate additional traffic. This still represents a useful practical
upper bound, as our link-based modeling approach requires queues to accurately
emulate multiple link properties. Queues represent a significant performance
penalty, as they act as a point where threads context switch and move to process
each packet. Simply enabling basic queuing reduced our performance by 90% to 4
million PPS per NUMA node. Fortunately, adding all of our other link emulation
options had a negligible effect on performance.

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0 2 4 6 8 10 12 14 16 18 20

T
ho

us
an

d
P

ac
ke

ts
 P

er
 S

ec
on

d

Number of Sequential Links

Fig. 7. Packets per second (PPS) throughput performance as we add additional sequen-
tial links in our WAN model.

Capturing Domain Knowledge Through Extensible Components 153

It is also necessary to understand the performance of each emulated link.
As each link can only be serviced by one thread at a time1, there is a funda-
mental limit to how many packets a single link can process. Our experiments
determined that an individual link can handle 1.2 million PPS. Further, placing
multiple links in sequence has no effect on performance until twelve sequential
links, after-which there is a steady decrease in performance. Figure 7 depicts this
eventual decline in PPS as we add additional sequential links. This reduction in
performance is most likely caused by thread contention and unexpected queuing
delay throughout the sequential pipeline. As Modeling Experts, we must make it
clear to any Field Experts that sequential links that do not have any branching
points are best modeled as one single link.

The final performance question to ask is how many parallel links can be
modeled before we experience artifacting. On our test setup, we have currently
modeled up to 150 parallel links without experiencing loss of performance and
are continuing to push this number until we begin to reach our limitations. It is
also important to realize that placing bandwidth limitations on a link may reduce
the effect of performance reductions. As a caveat, our results are directly related
to the hardware tested on, and better hardware will have better performance.

4.2 Wireless Networks

Modeling wireless networks is vastly different than modeling wired networks. As
part of a current DARPA program, we are in the process of developing a wire-
less emulation capability using Extensible Components. As modeling experts,
we need to provide a modeling language for this component. The language is
different than that of our WAN component as the notion of links does transfer
to a broadcast medium. We are exploring a node-based, rather than edge-based,
format that specifies the position, mobility, and transmission strength of our
wireless speakers, amongst other properties.

As described previously, a tool is required to translate from our modeling
language to a realization on the testbed. Further, a new back-end engine will be
required to be able to conduct this realization. We are currently in construction
of this back-end which focuses heavily on the network layer aspects of wireless,
although many of the physical layer considerations are also being added in.
Several critical constraints, such as bandwidth, delay and loss, are of course
being developed. Additional capabilities are also being added including wireless
collisions, channel access strategies and hidden terminals.

For modeling approaches of our Extensible Component, we are exploring a
wide range of existing implementations that could be leveraged, including mod-
ifying Click [10], CORE [1], EMANE [14] or a combined integration (e.g. [2]).
Until the back-end is fully realized, we will not be ready to develop our transla-
tion tool. However, understanding what can be modeled based on our language
and our back-end heavily informs the capabilities of the overall system.

1 This limit is important to prevent unexpected packet reordering or costly re-
sequencing.

154 E. Kline et al.

The final necessary building block for this new Extensible Component is the
testbed interface. This portion is perhaps the simplest, as many of the rele-
vant capabilities already exist in our library on DETER and our other existing
components. To realize this new component, we need to make sure our new
interface can accurately instantiate and realize the component on the testbed
when the experiment becomes available. As stated previously, this is critical to
ensure components remain first-class objects and are, therefore, easily usable for
experimenters.

5 Related Work

Our work is related and motivated by a large body of research in network simu-
lation and emulation. Many of these works offer tools which can be used in our
Extensible Component Framework, and we expect to expand our model defini-
tions beyond Click [10].

Network simulators, such as NS2/3 and OPNET [5] are widely used today.
While tools like OPNET, share our goals in providing composable models to
users, the extensibility of such tools is limited as these tools are largely focused on
simulating an entire network, including using simulated traffic on a single piece
of hardware, severely limiting how models built on these tools can interconnect.
The ability to define a model across simulated and emulated components in these
frameworks is limited. Likewise, network emulation tools such as Netem [8] and
Dummynet [4] are focused on emulation, and lack the ability to define a model
across both emulation and simulation. Later generations of NS and OPNET
added “system-in-the-loop” capabilities, allowing traffic generated on external
and real systems to be piped through the simulation. Despite system-in-the-
loop capabilities, and a huge library of expert defined models, the ability to
link OPNET models into a network of other models outside of the OPNET
ecosystem is limited. Tools like NS3 and Dummynet offer enough flexibility to
define composable components which can link into a range of other simulated
or emulated components, but these tools still require a framework to capture
complex models and incorporate field expertise.

Tools such as Emulab’s NS Emulation (NSE) based on NS [6] and the U.S.
Naval Research Laboratory’s Common Open Research Emulator (CORE) [1]
provide the ability to define a mix of simulation and emulation network com-
ponents across a set of testbed resources. NSE’s base-components are primitive
and require additional framework to capture a complex model. NSE is no longer
supported, but is an example of a toolkit which can easily benefit from our
Extensible Components Framework. CORE [1] provides a ‘network lab in a box’
with a strong and usable API and an informative GUI. CORE still requires
the user to have a good deal of domain knowledge on the networks being mod-
eled as well as significant knowledge on the operation of CORE. CORE would be
highly useful as a Extensible Component itself, which could be deployed through
our framework to transfer domain knowledge from CORE experts to average
experimenters.

Capturing Domain Knowledge Through Extensible Components 155

Lastly, the Network Modeling and Simulation Environment (NEMSE) [9]
works to provide unified access to a large number of emulation and simulation
tools on the Emulab testbed platform [12], including CORE [1], OPNET [5]
and Click [3,10]. While unified tool access is an important step towards sharing
models, NEMSE lacks a framework to define complex and composable models
and does not address treating models as first-class objects on its chosen testbed
platform.

6 Conclusion

Complex and realistic scenarios are required to accurately evaluate and validate
security and networking solutions. The knowledge required to generate faithful
models continues to expand as the complexity of these systems and their envi-
ronments grows. It is unrealistic to expect an experimenter will have or be able
to obtain the necessary cross-domain expertise to generate these models and
conduct scientifically valid experiments. Therefore, we must reduce the burden
on these experimenters by capturing the knowledge of domain experts and dis-
seminating this knowledge through first-class experimental objects to end-users.

In this paper, we described our Extensible Components Framework to per-
form knowledge capture and domain expertise transfer. A key realization incor-
porated into our framework is that knowledge should be captured and dissem-
inated at three distinct levels—the modeling approach, the model creation and
the model utilization. This separation allows knowledge to be captured by those
who know how to describe their domain without necessarily knowing how to
implement a model for their domain (Field Experts), as well as those who know
how to accurately model a domain, but do not know the specifics of real-world
networks and layouts (Modeling Experts). Further, all of this captured knowl-
edge can be made available and usable to an experimenter without needing to
obtain that domain knowledge. By treating Extensible Components as first-class
testbed objects, experimenters can easily deploy and use complex models and
scenarios without having to gain additional knowledge on the components imple-
mentation or configuration. It is our belief that this framework will promote
rigorous experimentation and validation of security and networking systems by
promoting the creation and sharing of accurate models.

References

1. Ahrenholz, J.: Comparison of CORE network emulation platforms. In: Military
Communications Conference, 2010 - MILCOM 2010, pp. 166–171, October 2010.
https://doi.org/10.1109/MILCOM.2010.5680218

2. Ahrenholz, J., Goff, T., Adamson, B.: Integration of the core and emane network
emulators. In: 2011 - MILCOM 2011 Military Communications Conference, pp.
1870–1875, November 2011. https://doi.org/10.1109/MILCOM.2011.6127585

3. Barbette, T., Soldani, C., Mathy, L.: Fast userspace packet processing. In: Pro-
ceedings of the Eleventh ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, ANCS 2015, pp. 5–16. IEEE Computer Society,
Washington (2015). http://dl.acm.org/citation.cfm?id=2772722.2772727

https://doi.org/10.1109/MILCOM.2010.5680218
https://doi.org/10.1109/MILCOM.2011.6127585
http://dl.acm.org/citation.cfm?id=2772722.2772727

156 E. Kline et al.

4. Carbone, M., Rizzo, L.: Dummynet revisited. ACM SIGCOMM Comput. Commun.
Rev. 40(2), 12–20 (2010). https://doi.org/10.1145/1764873.1764876

5. Chang, X.: Network simulations with OPNET. In: Proceedings of the 31st Confer-
ence on Winter Simulation: Simulation–A Bridge to the Future, WSC 1999, vol. 1,
pp. 307–314. ACM, New York (1999). https://doi.org/10.1145/324138.324232

6. Fall, K.: Network emulation in the Vint/NS simulator. In: Proceedings of the fourth
IEEE Symposium on Computers and Communications, pp. 244–250 (1999)

7. Floyd, S., Kohler, E.: Internet research needs better models. ACM SIGCOMM
Comput. Commun. Rev. 33(1), 29–34 (2003). https://doi.org/10.1145/774763.
774767

8. Hemminger, S.: Network Emulation with NetEm. In: Linux Conf AU (2005).
http://www.linux.org.au/conf/2005/abstract2e37.html?id=163

9. Hench, D.L.: Complex network modeling with an Emulab HPC. In: Proceedings of
the 16th Annual IEEE High Performance Extreme Computing Conference (HPEC
2012), September 2012

10. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F.: The click modu-
lar router. ACM Trans. Comput. Syst. 18(3), 263–297 (2000). https://doi.org/10.
1145/354871.354874

11. Mirkovic, J., Benzel, T.V., Faber, T., Braden, R., Wroclawski, J.T., Schwab, S.:
The DETER project: advancing the science of cyber security experimentation and
test. In: 2010 IEEE International Conference on Technologies for Homeland Secu-
rity (HST), pp. 1–7, November 2010. https://doi.org/10.1109/THS.2010.5655108

12. White, B., et al.: An integrated experimental environment for distributed systems
and networks. In: Proceedings of the Operating System Design and Implementa-
tion, pp. 255–270 (2002)

13. DPDK: Data Plane Development Kit. https://dpdk.org/
14. Extendable Mobile Ad-hoc Network Emulator (EMANE). https://www.nrl.navy.

mil/itd/ncs/products/emane

https://doi.org/10.1145/1764873.1764876
https://doi.org/10.1145/324138.324232
https://doi.org/10.1145/774763.774767
https://doi.org/10.1145/774763.774767
http://www.linux.org.au/conf/2005/abstract2e37.html?id=163
https://doi.org/10.1145/354871.354874
https://doi.org/10.1145/354871.354874
https://doi.org/10.1109/THS.2010.5655108
https://dpdk.org/
https://www.nrl.navy.mil/itd/ncs/products/emane
https://www.nrl.navy.mil/itd/ncs/products/emane

	Capturing Domain Knowledge Through Extensible Components
	1 Introduction
	2 Extensible Components
	2.1 Modeling Experts and Languages
	2.2 Models and Field Experts
	2.3 Users

	3 Component Lifecycle
	3.1 Creating a Component
	3.2 Creating a Model
	3.3 Using a Component
	3.4 Deploying Extensible Components on a Testbed

	4 Experiences with Example Components
	4.1 Wide Area Network Emulation
	4.2 Wireless Networks

	5 Related Work
	6 Conclusion
	References

