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The Internet of things (IoT) [1] refers to the network of low-power, limited pro-
cessing capability sensing devices which can send/receive data to/from other
devices using wireless technologies such as RFID (Radio Frequency Identifi-
cation), Zigbee, WiFi, Bluetooth, cellular etc. IoT devices are being deployed
in a number of applications such as wearables, home automation, smart grids,
environmental monitoring, infrastructure management, industrial automation,
agricultural automation, healthcare and smart cities. Some of the popular plat-
forms for ToT are Samsung SmartThings (consumer IoT for device management)
and Amazon Web Services 10T, Microsoft Azure IoT, Google Cloud Platform
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Abstract. Many security issues have come to the fore with the increas-
ingly widespread adoption of Internet-of-Things (IoT) devices. The Mirai
attack on Dyn DNS service, in which vulnerable IoT devices such as IP
cameras, DVRs and routers were infected and used to propagate large-
scale DDoS attacks, is one of the more prominent recent examples. IoT
botnets, consisting of hundreds-of-thousands of bots, are currently present
“in-the-wild” at least and are only expected to grow in the future, with
the potential to cause significant network downtimes and financial losses
to network companies. We propose, therefore, to build testbeds for evalu-
ating IoT botnets and design suitable mitigation techniques against them.
A DETERIab-based IoT botnet testbed is presented in this work. The
testbed is built in a secure contained environment and includes ancillary
services such as DHCP, DNS as well as botnet infrastructure including
CnC and scanListen/loading servers. Developing an IoT botnet testbed
presented us with some unique challenges which are different from those
encountered in non-IoT botnet testbeds and we highlight them in this
paper. Further, we point out the important features of our testbed and
illustrate some of its capabilities through experimental results.
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(enterprise IoT for cloud storage and data analytics). The number of IoT devices
deployed globally by 2020 is expected to be in the range of 20-30 billion [2]. The
number of devices has been increasing steadily (albeit at a slower rate than some
earlier generous predictions), and this trend is expected to hold in the future.

IoT devices are being increasingly targeted by hackers using malware (mali-
cious software) as they are easier to infect than conventional computers for the
following reasons [3-5]:

— There are many legacy IoT devices connected to the Internet with no security
updates.

— Security is given a low priority within the development cycle of IoT devices.

— Implementing conventional cryptography in IoT devices is computationally
expensive due to processing power and memory constraints.

— Many IoT devices have weak login credentials either provided by the manu-
facturer or configured by users.

— IoT device manufacturers sometimes leave backdoors (such as an open port)
to provide support for the device remotely.

— Often, consumer IoT devices are connected to the Internet without going
through a firewall.

In a widely publicized attack, the IoT malware Mirai was used to propagate
the biggest DDoS (Distributed Denial-of-Service) attack on record on October
21, 2016. The attack targeted the Dyn DNS (Domain Name Service) servers
[6] and generated an attack throughput of the order of 1.2 Thps. It disabled
major internet services such as Amazon, Twitter and Netflix. The attackers had
infected IoT devices such as IP cameras and DVR recorders with Mirai, thereby
creating an army of bots (botnet) to take part in the DDoS attack. Apart from
Mirai, there are other IoT malware which operate using a similar brute force
technique of scanning random IP addresses for open ports and attempting to
login using a built-in dictionary of commonly used credentials. BASHLITE [7],
Remaiten [8], and Hajime [9] are some examples of these IoT malware.

Bots compromised by Mirai or similar IoT malware can be used for DDoS
attacks, phishing and spamming [10]. These attacks can cause network down-
time for long periods which may lead to financial loss to network companies,
and leak users’ confidential data. McAfee reported in April 2017 [11] that about
2.5 million IoT devices were infected by Mirai in late 2016. Bitdefender men-
tioned in its blog in September 2017 [12] that researchers had estimated at least
100,000 devices infected by Mirai or similar malware revealed daily through tel-
net scanning telemetry data. Further, many of the infected devices are expected
to remain infected for a long time. Therefore, there is a substantial motivation
for studying these IoT botnets so as to characterize, detect and develop effective
countermeasures against them.

A comprehensive IoT botnet testbed environment will be quite useful for
researchers working towards this goal. Further, the testbed can be used to gen-
erate useful ground truth data for researchers to evaluate the effectiveness of
their proposed IoT botnet detection algorithms. As pointed out in [13], bot-
net emulation studies in controlled laboratory environments have a number of
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advantages (e.g. closeness to real-world botnets, greater degree of safety and con-
trol over experiment environment, fewer legal and ethical issues) when it comes
to botnet research compared to analytical modelling, simulation studies, botnet
binary reverse engineering and in-the-wild botnet analysis.

In this work, we present a testbed environment built using the National
Cybersecurity R&D Lab (NCL) [14] infrastructure and consisting of physical
and virtual machines (VMs) which can be used to study Mirai-like IoT botnets.
As pointed out later, the same testbed can be modified to work with other IoT
botnets as well. The testbed includes ancillary services such as Domain Name
Service (DNS), Dynamic Host Configuration Protocol (DHCP), botnet infras-
tructure which includes Command-and-Control (CnC) and scanListen/loading
servers, and a secure contained environment for testing. The last two services
are provided by DETERLab [15], which provides the software stack on which
the NCL testbed is based. A secure contained environment is especially critical
since many of the botnets are capable of further infecting devices connected to
the Internet. This testbed is mainly targeted at cyber security researchers who
can easily and quickly bootstrap IoT botnet experiments on our testbed. To the
best of our knowledge, this is the first testbed to emulate the full behavior of an
IoT botnet. In the subsequent sections, we review published research on botnet
testbeds. We also elaborate on our experience setting up the various components
of the testbed and the related challenges that we faced. Finally, we include some
experimental results from our testbed that illustrate its capabilities.

2 Related Work

There have been several research works on the study of botnets through testbeds.
Barford et al. [16] have presented a toolkit for Emulab-enabled testbeds (such as
DETERIlab) called Botnet Evaluation Environment (BEE), designed to provide
bots and botnets for experimentation in a scalable and secure/self-contained
environment. BEE includes a library of OS/bot images to be run on physical
and virtual machines as well as a set of services and tools required for botnet
evaluation such as DHCP, DNS, IRC, VM monitors and honeypots. [17] has pro-
posed a composable botnet framework called SLINGbot which can be used to
construct botnets with different (Command and Control) C2 structures (includ-
ing potential future botnet C2 structures), simulate botnet traffic, characterize
it and develop botnet defense techniques.

In [13], the authors have argued for isolated in-the-lab at-scale botnet exper-
imentation and evaluated an emulated 3000-node Waledac botnet. Further, they
have also validated a defense technique (using sybil attack) against the botnet.
[18] has argued for large-scale botnet emulation that is at par with actual bot-
nets (hundreds of thousands to millions of bots) and potentially discover issues
that show up at that scale. The authors have presented a prototype testbed
with 600,000 Linux VMs or 62,000 Windows 7 VMs on a 520 node computing
cluster through over-budgeting of processor and memory resources and other
techniques. Since few works have paid attention to containment in botnet emu-
lation, a malware execution farm, G@Q has been presented in [19] which focuses
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on methodical development of explicit containment policies for malware mea-
surement and analysis.

ElSheikh et al. [20] have addressed the lack of publicly available botnet
research datasets by creating an in-lab botnet experimentation testbed in a con-
tained environment and using it to generate botnet datasets. [21] has implemented
an HTTP (Hypertext Transfer Protocol)-based botnet testbed for performing
HTTP GET flooding attacks against web servers. The authors have also pro-
vided real-time data sets (including http bot traces) for researchers to evaluate
such botnets and proposed countermeasures against DDoS attacks from those bot-
nets. Finally, in [22], the authors have presented a controlled network environment
based on VMware virtualization technology, called V-Network, for analyzing net-
work worm propagation patterns and evaluating countermeasure systems.

This paper makes an important contribution since there has been no work till
now on creating IoT botnet testbeds emulating the full behavior of IoT malware.
Our testbed is similar to [16] in the sense that it is also based on DETERIlab and
provides services such as DNS, DHCP, CnC etc. but the challenges encountered
by us (as pointed out in Sect. 3.3) were different because the testbed in [16] was
focused on PC-based bots and not IoT bots. In comparison to [13] and [18],
our current focus is not on scalability since we can increase the number of bots
in our testbed easily by installing more VMs per physical machine and adding
more physical machines. However, we intend to look into their techniques in the
future to increase the number of bots in our testbed to more accurately represent
real-world IoT botnets. We are in the process of collecting datasets for the IoT
botnet research community, similar to [20], and hope to release them in near
future. Out testbed is not restricted to specific attacks such as HTTP flooding
[21] and we also use virtualization to create multiple bots on a physical machine,
albeit not through VMWare hypervisor as done in [22].

3 IoT Botnet Testbed

In this section, we begin by giving an overview of the operation of Mirai, followed
by a detailed discussion on the process of setting up various components of our
IoT botnet testbed. We move on to highlight the challenges during testbed setup
and how they were overcome. Finally, the major features of our testbed are
pointed out.

3.1 Overview of Mirai

The Mirai [23] setup consists of three major components: bot, scanListen/loading
server, and the CnC (Command-and-Control) server. The CnC server also func-
tions as a MySQL [24] database server. User accounts can be created in this
database for customers who wish to hire DDoS-as-a-service. The database on
CnC server consists of three tables: history, user and whitelist. They are assigned
bots and can use them to launch a DDoS attack against their target services.
There are a number of attack options available in Mirai: UDP flood, SYN flood,
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ACK flood, TCP stomp flood, UDP plain flood, Valve source engine specific
flood, DNS resolver flood, GRE IP flood, GRE Ethernet flood and HTTP flood.

The operation of Mirai is illustrated in Fig. 1. Once an IoT device is infected
with Mirai (and becomes a bot), it first attempts to connect to the listening CnC
server by resolving its domain name and opening a socket connection. Thereafter,
it starts scanning the network by sending SYN packets to random IP addresses
and waiting for them to respond. This process may take a long time since the
bot has to go through a large number of IP addresses. Once it finds a vulnerable
device with a TELNET port open, it attempts to open a socket connection
to that device and emulates the TELNET protocol. Then it attempts to login
using a list of default credentials and if successful, it reports the IP address of
the discovered device and the working TELNET login credentials to the listening
scanListen server. The scanListen server sends that information to the loader
which again logs in to the discovered device using the details received from the
scanListen server. Once logged in, the loader downloads the Mirai bot binary
to that device and the new bot connects to the CnC' server and starts scanning
the network.

A $58 <>
“ Create account “
Exists ?

+ Assign bots

C2 API
CnC

ScanListen
48101 23

Load Svc
| CnC Connect
Report IP |
+ credentials Load bot

Telnet port scan

Bot Bot Telnet port scans
Telnet port scans (infected device) (infected device)

Brute force login

Fig. 1. Operation of various components of Mirai (Source: Radware [25])

3.2 Installing Testbed Components

The testbed shown in Fig. 2 was configured on a computing cluster isolated from
the Internet. Each cluster node has two Intel Xeon E5-2620 processors, 64 GB
DDR4 ECC memory and runs Ubuntu 14.04 LTS standard image. The first
step was to configure a local authoritative DNS server on one of the testbed
nodes because infected Mirai bots connect to CnC and scanListen servers using
domain names instead of fixed IP addresses. The reason behind this design can
be that the malware authors did not want the CnC/scanListen servers to be
taken down if their IP addresses were identified by security personnel. If domain
names are used for connection instead, the IP addresses mapped to those domain
names can be easily changed if they have been identified and blocked. Originally,
the Mirai source code (bot/resolv.c) uses the Google DNS servers located at IP
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Fig. 2. Testbed used to simulate Mirai behavior

address 8.8.8.8 for domain name-to-IP address conversion. However, since we
were working on a secure isolated testbed with no outside Internet connectivity,
we could not use Google DNS servers. Therefore, it became essential for us to
configure a local DNS server on our testbed. We used BIND9 (Berkeley Internet
Naming Daemon) to configure a local name server as a primary master, creating
forward and reverse zone files. The next step entailed configuring a CnC server
(by creating a MYSQL database) on a testbed node and the scanListen/loader
on another node.

The IoT devices used in our testbed are Raspberry Pi (RPi) devices emu-
lated using QEMU [26], an open source machine emulator and hardware virtu-
alizer. Each RPi device runs Raspbian (Wheezy version) and is configured with
ARM 1176 (v6) CPU and 256 MB of RAM. The CnC and scanListen server
domain names and port numbers were updated in bot/table.c file in the RPi.
Since the emulated RPi devices need to connect to the CnC and scanListen
servers using their domain names, the details of local DNS server were added to
the /etc/resolv.conf files in emulated devices which query the local DNS server
to get the IP addresses corresponding to the domain names and then connect to
those IP addresses. The codes for bot, CnC server, scanListen server and loader
were compiled using the script, mirai/build.sh. Since we wanted to compile the
bot binaries for RPi (which runs on ARM platform) on a testbed node running
on x86 platform, we also had to setup cross-compilers using the scripts/cross-
compile.sh script.

3.3 Challenges Encountered in Testbed Setup

One of the major challenges was the TELNET protocol emulation in Mirai source
code. When the original bot binary compiled from source code was run on an
emulated RPi device, it was unable to receive the TELNET username prompt.
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Without the username prompt, it was impossible to try the usernames from the
list of default credentials and find a working one. Hence, the first bot could never
successfully infect another emulated device, thus preventing us from simulating
the real propagation behavior of Mirai on our testbed. It became imperative for
us to modify the code handling the TELNET protocol emulation in the original
Mirai source code so that it worked on our testbed.

When a TELNET client makes a connection request to a server, there is
a negotiation phase where an exchange of a specific sequence of bytes takes
place between the client and the server before the client is served with the
username prompt. The original TELNET byte exchange logic in Mirai source
code (function: consume_iacs(), file: bot/scanner.c) is shown in Fig. 5. Since this
logic was not working on our testbed, we created a hack and sent a TELNET
connection request from one of our testbed nodes to another. The underlying
byte exchange was analyzed using tcpdump which is a very useful packet analyzer
that is usually installed by default on Linux machines. We modified the code in
consume_iacs() function to replicate the above byte exchange sequence which
is depicted in Fig.3. Again, after the username prompt is served to the client
and the username is entered, there is a byte exchange between the TELNET
client and server before the password prompt is served. Therefore, we modified
the code in consume_pass_prompt() with the required byte sequence so that the
testbed bot is served the password prompt, as shown in Fig. 4.

At consume_iacs (struct scanner_connection *conn)

int consumed = 0;
1int8_t *ptr - conn->rdbuf;

r tmpl[] = {Oxff, Oxfd, 0x03, Oxff, Oxfb, 0x18, Oxff, Oxfb, Oxlf, Oxff, Oxfb, 0x20, Oxff, Oxfb, 0x21, Oxff, Oxfb, 0x22, Oxff, Oxfb, 0x27,0xff, Oxfd,

tmp2[] = {Ox£E, Oxfc, 0x23):

tmp3[] — {0xff, Oxfa, Ox1f, 0x00, Ox6éc, 0x00, 0x25, Oxff, Oxf0};

tmpd[] = {Oxff, Oxfa, 0x20, 0x00, 0x33, 0x38, 0x34, 0x30, 0x30, 0x2c, 0x33, 0x38, 0x3d, 0x30, 0x30, Oxff, 0xf0, Oxff,
fa, 0x18, 0x00, 0x78, Ox74 ,0x65, 0x72, Ox6d, 0x2d, 0x32, 0x35, 0x36, 0x63, Ox6f, Ox6c, Ox6f, 0x72, OXff, 0xf0);
tmp5[] = {0xff, Oxfc, 0x01};

har tmp6(] = {Oxff, Oxfd, 0x01};

0Oxfa, 0x27, 0x00, Oxff, 0xf0,

sleep(2) ;
send (conn->fd, &tmpl[0], 24, MSG_NOSIGNAL);
sleep(2)
send (conn->fd, &tmp2(0], 3, MSG_NOSTGNAL):
sleep(2)
send (conn->fd, &tmp3[0], 9, MSG_NOSIGNAL);
sleep(2) s
send (conn->fd, &tmpd[0], 43, MSG_NOSIGNAL);
sleep(2) 7
send (conn->fd, &tmp5[0], 3, MSG_NOSIGNAL);
sleep(2) 7
send (conn->fd, &tmp6[0], 3, MSG_NOSIGNAL):
sleep(2)

ptr += conn->rdbuf_pos;
consumed = conn->rdbuf_pos:

while (consumed < conn->rdbuf pos)
{

int i
if (*ptr != Oxff)

else if (*ptr —— Oxff)
s

if (lcan_consume (conn, ptr, 1))

reak;
if (ptr[l] == Ox£f)

Fig. 3. Changes made in consume_iacs() function in Mirai source code

For the emulated RPi (on which Mirai binary is executed) to scan nearby
devices, it needs to connect to the host network. By default, QEMU assigns a
static IP address (10.0.2.15) to the emulated RP1i if the user has not specified
any network interfaces in the script that brings up the RPi, thereby leaving no
connectivity between RPi and host. One of the ways to achieve this connectiv-
ity is by using bridge-TAP configuration. A network bridge refers to a device
that connects two separate network segments using the same communication
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protocol, allowing them to operate as a single aggregate network. TAP inter-
face is a virtual network interface that sends and receives layer 2 packets such
as Ethernet frames not through a physical “wire”, but instead by writing and
reading data respectively from user-space programs. We used brctl to config-
ure Ethernet bridge on the host, tunctl to create and manage TAP interfaces
and libuvrt virtualization management library to automatically setup a DHCP
server and bridge (virbrQ) on the host. The virbr0) comes up with a default IP
address(192.168.122.1), so the IP address had to be changed for each host using
virsh utility. The TAP interface was bound to the bridge and the QEMU RPi
was brought up with a network interface attached to the TAP device. Any pack-
ets sent from the RPi are now written to the TAP interface and forwarded by
the attached bridge to the host network. Similarly, packets sent from the host
network are forwarded through the bridge to the attached TAP interface from
where they are read by RPi operating system. Since we were emulating multiple
QEMU VMs on a physical node, a base Raspbian image was created in gcow?2
format and using it as a backing file, we generated disk images which store only
the differences from base image to avoid using multiple raw image files and save
on storage space.

static int consume pass prompt (struct scanner_connection *conn)
{

char *pch;

nt i, prompt_ending = -1;

g t *ptr = conn->rdbuf;

char tmpl[] = {Oxff, Oxfa, Oxlf, 0x00, Oxcc, 0x00, 0x33, Oxff, 0xf0};
char tmp2[] = {O0xff, 0xfa, Oxlf, 0x00, Oxcc, 0x00, 0x34, Oxff, 0xf0);

sleep(2) 7
send (conn->fd, &tmpl[0], 9, MSG_NOSIGNAL);
sleep(2) ;
send (conn->fd, &tmp2[0], 9, MSG_NOSIGNAL);
sleep(2);
ptr += conn->rdbuf_pos;

(i = conn->rdbuf pos - 1; i > 0; i—)
{

(conn->rdbuf[i] == ':' || conn->rdbuf[i] == '>' || conn->rdbuf[i] == '3' || conn->rdbuf[i] == '#')
{
prompt_ending = i + 1;

}
}

(prompt_ending == -1)

nt tmp;

((tmp = util memsearch(conn->rdbuf, conn->rdbuf pos, "assword”, 7)) != -1)
prompt_ending = tmp;

(prompt_ending == -1)
0;

prompt_ending;

Fig. 4. Changes made in consume_pass-prompt() function in Mirai source code

3.4 Testbed Features
The main features of our IoT botnet testbed are listed below:

— Using Network Simulator (NS) scripts, users can conveniently start, stop,
modify and restart malware experiments instead of employing manual con-
figuration.



132 A. Kumar and T. J. Lim

— The emulated Raspberry Pi devices are quite close to the real-world IoT
devices in terms of the platform, operating system, applications and net-
working capabilities.

— Our testbed can be scaled to add more IoT devices (by increasing the number
of QEMU VMs per physical machine), gateways, routers and other network
devices as per user simulation requirements. It also supports the integration
of both physical and virtual devices.

— The testbed topology, i.e. the way the routers, gateways and IoT devices
are connected to each other, can be changed to simulate different types of
networks.

— More advanced versions or derivatives of Mirai malware can be tested on our
testbed since the ancillary infrastructure required (consisting of DNS server,
CnC server, scanListen/loader) is already configured. The only remaining
requirement is to run the specific malware binary on the emulated IoT devices.

— IoT malware exploiting software vulnerabilities (such as Reaper, Satori
etc.) can also be tested on our testbed by running the corresponding bot
binaries/compiled source codes/exploit codes on the emulated RPi devices
and making a few other modifications in the ancillary services and botnet
infrastructure.

4 Experimental Results

As shown in Fig. 2, the local DNS server, CnC (Command-and-Control) server,
scanListen /loading server and the victim server (which is to be attacked through
DDoS) are all connected to a single LAN. In practice, all the above servers are
parts of different sub-networks connected to the Internet. The NCL testbed
has a limitation of maximum two network interfaces per physical node, thereby
restricting us from simulating more realistic networks with multiple connections.
However, this restriction does not impair our testbed functions such as scanning
of vulnerable devices, bot-CnC communications, infection of emulated devices
and attacks launched from infected devices. These functions are not dependent
on the relative placement of DNS server, CnC server, scanListen/loading server
and victim server in the network. Further connected to the same LAN are three
routers, two of which are connected to IoT gateways (physical devices acting as
a bridge between IoT devices and the cloud) and the third one is connected to
non-IoT devices (e.g. PC). Finally, each gateway is connected to 10 IoT devices.
We chose this gateway-IoT device topology since it is used in a number of IoT
deployments (such as IP cameras, smart lighting devices, wearables etc.). The
IoT devices can run a video streaming server to simulate the operation of an IP
camera (IoT device used in Mirai attack on Dyn). A few IoT devices were config-
ured to have their TELNET port number 23 open and listening for connections.

We have plotted the volume of bot-CnC traffic with time for a single bot
(traffic volume in packets per second) in Fig.6. As expected, there are busy
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IF first byte != 255, break;
IF first two bytes = [255 255], continue;
IF first two bytes = [255 253], send [255 251 31] AND send [255, 250, 31, 0, 80, 0, 24, 255, 240];
IF first two bytes = [255 253] AND third byte !=31,
FOR first three bytes, (IF byte = 253, change to 252) AND (IF byte = 251, change to 253)
Send all bytes in buffer;
IF first byte = 255 AND second byte != 253,
FOR first three bytes, (IF byte = 253 change to 252) AND (IF byte = 251 change to 253)

Send all bytes in buffer;

Fig.5. TELNET client-server negotiation logic used in Mirai source code

Packitsf1 sec
T

=l bot-CnC messages

® e oo00e ® [} (X T 1 Y X
. L | | . .
0 2 4 6 8 10 12 14 16 18
Packet arrival times (sequence number) %104

Fig. 7. Transmission times of bot scanning packets
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and non-busy periods in the bot-CnC traffic. The busy period is when there
is exchange of keep-alive messages (PSH+ACK) between the bot and the CnC
server. Here, PSH refers to a push message and ACK refers to acknowledgement.
Since the keep-alive messages are sent at regular intervals, one can observe peri-
odic spikes in the bot-CnC traffic rate. The transmission of bot scanning packets
is illustrated in Fig.7. As can be observed, the scanning packets are sometimes
transmitted within short intervals and at other times they are transmitted far
apart, resembling a Poisson process.

In the next experiment, we commanded few infected bots to attack the victim
server with UDP flood traffic which reaches a rate of 48K pps (packets per
second). The attack does not wait for ICMP (Internet Control Message Protocol)
reply packets (such as destination unreachable) to be sent back by the victim
server. One of the non-IoT nodes in the testbed was configured as a UDP client.
Once the victim server was overwhelmed, it started dropping legitimate UDP
requests from the client. This can be noted from Fig. 8 which depicts the client
UDP connection packet capture after the attack.

g from eth0 [Wireshark 1.10.6 (v1.10.6 from master-1.10)]

® ® m 4 ; Q 3T & Bl ool sEEX @

Filter: | udp v | Expression... Clear Apply Save

No. Time Source Destination Protocol Lengtt Info
262 181.4501590€ 192.168.2.26 192.168.2.10 uop 45 Source port: 35582 Destination port: search-agent
263 181.6423910€ 192.168.2.20 192.168.2.10 uop 46 Source port: 35582 Destination port: search-agent
264 181.8413046€ 192.168.2.20 192.168.2.10 uopP 45 Source port: 35582 Destination port: search-agent
265 182.0577460€ 192.168.2.260 192.168.2.10 uopP 45 Source port: 35582 Destination port: search-agent
266 182.2570570€ 192.168.2.260 192.168.2.10 uop 46 Source port: 35582 Destination port: search-agent
267 182.4152840¢€ fe80: :782c:ac48:a361:5 ff02::1:2 DHCPV6 165 Solicit XID: ©x7c114 CID: 000100011fe21c33484d7ed0a0ss
268 182.4412500€ 192.168.2.20 192.168.2.10 uoP 44 Source port: 35582 Destination port: search-agent
269 182.6260020€ 192.168.2.260 192.168.2.10 uopP 46 Source port: 35582 Destination port: search-agent
276 182.8193920€ 192.168.2.20 192.168.2.10 uop 46 Source port: 35582 Destination port: search-agent
271 183.0214690€ 192.168.2.20 192.168.2.10 uop 46 Source port: 35582 Destination port: search-agent
272 183.2448600€ 192.168.2.20 192.168.2.10 uoP 46 Source port: 35582 Destination port: search-agent
273 183.4337426€ 192.168.2.20 192.168 2.10 UDP 45 Source port: 35582 Destination port: search-agent

274 183.4345320€ 192 .10 . CM 73 Destination unreachable (Port unreachable)
277 191.3684550€ fe80: : 9 27ff:fe2c:c4 ffaZ f MDNS 107 Standard query 6x6000 PTR _ipp. tcp.local, "QM" questio
278 198.4187450¢€ fe80: :782c:ac48:a361:5 ff02::1:2 DHCPV6 165 Solicit XID: ©x7c114 CID: ©00100011fe21c33484d7ed0aoss

»Frame 2: 590 bytes on wire (4720 bits), 590 bytes captured (4720 bits) on interface @

» Internet Protocol Version 4, Src: 192.168.2.100 (192.168.2.108), Dst: 255.255.255.255 (255.255.255.255)
»User Datagram Protocol, Src Port: bootps (67), Dst Port: bootpc (68)
»Bootstrap Protocol

Fig. 8. Client UDP connection packet capture after UDP flood attack

We also conducted a TCP SYN flooding attack in which ~46K pps were
transmitted by the bots without listening for SYN-ACK packets sent back by the
victim server. During the attack, the victim server encountered congestion as can
be inferred from Fig. 9. It started sending out duplicate ACKs and retransmits
packets multiple times which stop once the attack is over. This resulted in a
denial of service to the benign TCP traffic from the client.
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g from etho [Wireshark 1.10.6 (v1.10.6 from master-1.10)]

© ® C e Q T 4L EB s #OMEX @
Filter: | tcp v | Expression... Clear y Save
No. Time Source Destination Protocol Lengtt Info
286 478.5533750€ 192.168.2.10 192.168.2.20 TCP 66 search-agent > 43312 [ACK] Seq=1 Ack=342 Win=29056 Len=0 TSval=196148 TSecr=166862
287 478.6871060€ 192.168.2.20 192.168.2.10 TCP 70 43312 > search-agent [PSH, ACK] Seq=342 Ack=1 Win=29312 Len=4 TSval=166915 TSecr=196148

288 478.9141330€ 192.168.2.20 192.168.2.10 TCP 70 43312 > search-agent [PSH, ACK] Seq=346 Ack=1 Win=29312 Len=4 TSval=166972 TSecr=196148

291 478.9884880€ 192.168.2.16 192.168.2.20 TP 66 search-agent > 43312 [ACK] Seq=1 Ack=350 Win=29056 Len=8 TSvi

8 TSecr=166984
292 479.1493740€ 192.168.2.20 192.168.2.10 TP 69 43312 > search-agent [PSH, ACK] Seq=350 Ack=1 Win=29312 Len=3 TSval=167030 TSecr=196258
293 479.1640350€ 192.168.2.10 192.168.2.20 P 66 search-agent > 43312 [ACK] Seq=1 Ack=353 Win=29056 Len=0 TSval=196302 TSecr=167030
294 479.4033820€ 192.168.2.20 192.168.2.10 TP 70 43312 > search-agent [PSH, ACK] Seq=353 Ack=1 Win=29312 Len=4 TSval=167094 TSecr=196302
295 479.4405910€ 192.168.2.10 192.168.2.20 TP 66 search-agent > 43312 [ACK] Seq=1 Ack=357 Win=29056 Len=0 TSval=196371 TSecr=167094
296 479.5497600€ 192.168.2.20 192.168.2.10 TP 67 43312 > search-agent [PSH, ACK] Seq=357 Ack=1 Win=29312 Len=1 TSval=167130 TSecr=196371
297 479.5509280€ 192.168.2.10 192.168.2.20 TP 66 search-agent > 43312 [ACK] Seq=1 Ack=358 Win=29056 Len=0 TSval=196399 TSecr=167130
298 479.7649960€ 192.168.2.20 192.168.2.10 TP 69 43312 > search-agent [PSH, ACK] Seq=358 Ack=1 Win=29312 Len=3 TSval=167184 TSecr=196399
299 479.7839040€ 192.168.2.10 192.168.2.20 TP 66 search-agent > 43312 [ACK] Seq=1 Ack=361 Win=29056 Len=0 TSval=196457 TSecr=167184
300 479.9656130€ 192.168.2.20 192.168.2.10 TP 69 43312 > search-agent [PSH, ACK] Seq=361 Ack=1 Win=29312 Len=3 TSval=167234 TSecr=196457

»Frame 3: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface

>Ethernet II, Src: CadmusCo_5f:13:a7 (08:00:27:5f:13:a7), Dst: CadmusCo_e9:81:066 (08:60:27:e9:81:06)
»Internet Protocol Version 4, Src: 192.168.2.20 (192.168.2.20), Dst: 192.168.2.10 (192.168.2.10)

P Transmission Control Protocol, Src Port: 43312 (43312), Dst Port: search-agent (1234), Seq: @, Len: @

Fig. 9. Client TCP connection packet capture after SYN flood attack

5 Conclusion

In this paper, we presented a DETERIlab-based IoT botnet testbed built within
a secure contained environment with ancillary services such as DHCP, DNS and
botnet infrastructure comprising of CnC and scanListen/loading servers. We
described the setup process for various components of the testbed and associated
challenges. The main features of the testbed were also listed. Finally, we ran some
basic experiments and discussed the results showing bot-CnC communication,
scanning traffic and few DDoS attacks which demonstrated the capabilities of
our testbed.
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