
Automated and Optimized Formal
Approach to Verify SDN Access-Control

Misconfigurations

Amina Saâdaoui(B), Nihel Ben Youssef Ben Souayeh, and Adel Bouhoula

Digital Security Research Lab, Sup’Com, University of Carthage, Tunis, Tunisia
{amina.saadaoui,nihel.benyoussef,adel.bouhoula}@supcom.tn

Abstract. Software-Defined Networking (SDN) brings a significant flex-
ibility and visibility to networking, but at the same time creates new
security challenges. SDN allows networks to keep pace with the speed of
change by facilitating frequent modifications to the network configura-
tion. However, these changes may introduce misconfigurations by writ-
ing inconsistent rules for Flow-tables. Misconfigurations can arise also
between firewalls and Flow-tables in OpenFlow-based networks. Prob-
lems arising from these misconfigurations are common and have dra-
matic consequences for networks operations. Therefore, there is a need
of automatic methods to detect and fix these misconfigurations. Given
these issues, some methods have been proposed. Though these methods
are useful for managing Flow-tables rules, they still have limitations in
term of low granularity level and the lack of precise details of analyzed
flow entries. To address these challenges, we present in this paper a for-
mal approach that allows to discover Flow-tables misconfigurations using
inference systems. The contributions of our work are the following: auto-
matically identifying Flow-tables anomalies, using the Firewall to bring
out real misconfigurations and proposing automatic method to deal with
set-field action of flow entries.

These techniques have been implemented and we proved the correct-
ness of our method and demonstrated its applicability and scalability.
The first results we obtained are very promising.

Keywords: Flow entries · Flow table · SDN · Misconfigurations ·
FtDD · Inference system · Direct path · Firewall

1 Introduction

In SDN Network, devices can be programmed via different communication pro-
tocols, such as OpenFlow. In fact an openFlow network consists of a distributed
collection of switches managed by a program running on a logically-centralized
controller. Each switch has a flow table that stores a list of rules for processing
packets. Each rule consists of a pattern (matching on packet header fields) and

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

H. Gao et al. (Eds.): TridentCom 2018, LNICST 270, pp. 96–112, 2019.

https://doi.org/10.1007/978-3-030-12971-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12971-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-12971-2_6

Automated and Optimized Formal Approach to Verify SDN 97

actions (such as forwarding, dropping, modifying the packets, or sending them
to the controller). The OpenFlow controller installs or uninstalls rules in the
switches, reads traffic statistics, and responds to events. For each event, the con-
troller program defines a handler, which may install rules or issue requests for
traffic statistics. Therefore, Open flow and Software-Defined Networking (SDN)
can simplify network management by offering programmers network-wide visi-
bility and direct control over the underlying switches from a logically-centralized
controller, but at the same time brings new security challenges by raising risks of
software faults (or bugs), especially switches misconfigurations. Since companies
rely only on the availability of their networks, such misconfigurations are costly.
Due to the magnitude of this problem, our goal is to develop a method that
allows to automatically identify configuration errors among the set of switches
rules which should be well configured with respect to the firewall configuration.
This task is challenging due to a number of reasons. First of all, an openflow
switch generally comprises thousands of flow entries that are dependent and
second flow entries do not always exactly match firewall rules. As an exam-
ple, consider an enterprise network shown in Fig. 1. We have three switches
their configurations are shown in Fig. 3. The firewall configuration that should
be implemented is shown in Fig. 2 This example is considered throughout this
paper to evaluate our approach to discover flow entries misconfigurations. We
can note that the second flow entry fe2, shown in Switch S1, is configured to
forward traffic from the machine 172.27.2.3, to switch S2 and from this switch
traffic will be forwarded to switch S3 using flow entry fe2, then from the switch
S3 this traffic will be dropped using the flow entry fe6, which is not conform
to the requirements of the firewall configuration shown in Fig. 2 (rule r2 will
accept traffic from this source address). Although a misconfiguration is identi-
fied between these flow entries, most related studies [1,3,4] did not consider these
configuration errors, also, most of these studies did not handle different actions
of flow entries, precisely, the action set-Field that allow to modify header packet
fields which can influence the path parsed by some packets and consequently
the process of detection of misconfigurations. This task is more complex than
it appears at first glance especially when a large number of switches and flow
entries is deployed.

In this paper, we propose a new approach to discover misconfigurations in
real-case openFlow switches configurations already designed, by considering all
relations between all flow entries and all possible paths parsed by packets in a
given Network. Our approach takes advantages of the interdependency of flow
entries modeling their relations in a Flowtable decision diagram (FtDD). Our
proposed method could be used also before updates occurred by the controller to
verify if changes will induce further misconfigurations. This paper is organized
as follows: Sect. 2 presents a summary of related work. Section 3 overviews the
formal representation of flow entries, firewall configurations and details FtDD
structure. In Sect. 4, we present our inference systems to discover misconfigu-
rations. In Sect. 5, we present first a study of the complexity of our inference
systems, and then we address the implementation and evaluations of our tool.
Finally, we present our conclusions and discuss our plans for future work.

98 A. Saâdaoui et al.

Fig. 1. Network topology

Fig. 2. Firewall configuration

Fig. 3. Switches configurations

2 Related Work

A significant amount of research has addressed configurations analysis and mod-
eling. For example, Some research has focused on firewall misconfiguration detec-
tion anad correction ([1,11,17,18]). Also, there was a considerable amount of
work on detecting misconfiguration in routing ([2,7,10]). The concept of Open-
Flow switch was introduced in [16] and used in different applications. The work

Automated and Optimized Formal Approach to Verify SDN 99

done on OpenFlow switches did not address the problems of switches misconfig-
uration detection and correction; instead, recently, there have been many verifi-
cation tools proposed for SDN. Some tools debug controller software or applica-
tions, while others check the correctness of network policies.

Controller software or applications verification: In [4] authors propose a tool
named NICE which automates the testing of OpenFlow Apps. In fact it allows
to find bugs in real applications and to test the atomic execution of system
events. But this tool does not guarantee the errors absence and does not allow
to check safety properties. Ball et al. propose another tool in [3] named Verifcon
that allows to verify the correctness of SDN applications on a large range of
topologies and sequences of network events. The limitation of this work is that
authors focus on safety properties without verifying the liveness properties of
packets (packets must eventually reach their destinations) and also they assume
that events are executed atomically ignoring out-of order rule installations.

Network policies verification: Frenetic [8] is a domain-specific language for
OpenFlow that aims to eradicate a large class of programming faults. Using
Frenetic requires the network programmer to learn extensions to Python to sup-
port the higher-layer abstractions. OFRewind [19] enables recording and replay
of events for troubleshooting problems in production networks due to closed-
source network devices. However, it does not automate the testing of OpenFlow
controller programs. Kazemian et al. [12] proposed a method that allows to ver-
ify network properties like reachability, by using Header Space Analysis HAS
but their work does not allow to check in real-time if network policy still not
violated after rules update for example. Netplumber presented in [12] uses a set
of policies and invariants to do real time checking. It leverages header space
analysis and keeps a dependency graph between rules but it does not allow to
model dynamic network behaviors. Hu et al. introduced in [11] Flowgard a new
tool that allows to verify the network policy by providing methods to detect and
correct firewall policy violations in OpenFlow based networks. FlowChecker [1]
applies symbolic model checking techniques on a manually-constructed network
model based on binary decision diagrams to detect misconfigurations in Open-
Flow forwarding tables. In [13] authors present a tool VeriFlow used for verifying
network correctness before the rules and logic are implemented in the network
devices. The tool will check the changes made to the network for correctness or
anomalies before allowing the changes to be deployed. But when large changes in
the network happen, VeriFlow is unable to keep up and it is necessary to allow
rules to be installed without verification. Instead, the verification process will
run in parallel, at the same time as the rules are installed.

The objectives of our work are different. We aim first to automatically identify
Flow-tables anomalies, using the Firewall to bring out real misconfigurations
and finally, we propose automatic method to deal with set-field action of flow
entries. Proving the correctness and completeness of proposed techniques is an
unavoidable step. Nevertheless, most existing studies and algorithm ignore to
prove these two properties. In our work, by using formal representation and
inference systems we proved their completeness and correctness.

100 A. Saâdaoui et al.

3 Formal Specification

Our objective is to discover each misconfiguration with the minimum number of
operations. Therefore, we need a formal specification to deal with this problem
and also to prove the correctness and completeness of our work. In what follow,
we define, formally, some key notions.

3.1 Open Flow Switch Flow Entries

An OpenFlow Switch configuration consists of a flow table, which perform packet
lookups and forwarding, and an OpenFlow channel to an external controller.
The switch communicates with the controller and the controller manages the
switch via the OpenFlow protocol. A flow table contains a set of flow entries
of the form FL = {fei => ai; 1 =< i <= n}; each flow entry consists
of match fields fei, and a set of actions to apply to matching packets ai =
{FORWARD,CONTROLLER, set(field1, field2) and FORWARD, drop},
where the action CONTROLLER allows to forward packets to the controller
which will filter them using the firewall configuration.

3.2 Firewall Configuration

We consider a finite domain P containing all the headers of packets possibly
incoming to or outgoing from a network.

A simple firewall configuration is a finite sequence of filtering rules of the
form FR = (ri ⇒ Ai)0<i<N+1. These rules are tried in order, up to the first
matching one. A filtering rule consists of a precondition ri which is a region
of the packet’s space, usually, consisting of source address, destination address,
protocol and destination port. Each right member Ai of a rule of FR is an action
defining the behavior of the firewall on filtered packets: Ai ∈ {accept, deny}.

3.3 FtDD (Flow Table Decision Diagram) of a Path
in a Distributed Environment

A flow tables decision diagram of our network, is constructed using the collection
of flow entries of different flow tables of different switches in our network switches.
Therefore, the FtDD of our network could be represented as follows: FtDD =
{dpj ; 1 <= j <= m}, which is an acyclic and directed graph that has the
following properties: There is exactly one node in FtDD that has no incoming
edges. This node is called the root of FtDDi. The nodes in FtDD that have no
outgoing edges are called terminal nodes. FtDDi is the union of direct paths dpi.
The algorithm used to construct an FtDD is detailed in [9,15]. Each direct path

Automated and Optimized Formal Approach to Verify SDN 101

is represented as follows: FtDD =
⋃

j(i:1→m)
dpi. dpj = dpj .srce∧dpj .protocol∧

dpj .dest ∧ dpj .f lowEntries ∧ dpj .action. Where:

– dpj .srce is the range of source address represents by the direct path dpj .
– dpj .dest is the range of destination address represents by the direct path dpj .
– dpj .protocol is the range of protocols represented by the direct path dpj .
– dpj .f lowEntries is the set of flow entries from the flow table configuration

that match the domain of packets represented by this direct path. But we
have to precise for each rule the flow table that belongs to it.

– dpj .action= = the action of this direct path dpj . The action of each direct
path depends on the actions of each flow entry handled by this direct path
from each switches in this path, so we have:

• dpj.action = accept if all flow entries applied the action forward from the
source to the destination.

• dpj.action = drop if at least one rule applies the action drop to the packets
handled by this direct path.

• dpj.action = set − Field(field1, field2) and Fwd(Sk) if in this direct
path we have a flow entry that apply this action.

• dpj.action = Loop, if the flow handled by this direct path is returned to
a switch already exists in the set dpj.flowEntries.

• dpj.action = CONTROLLER if at least one rule applies this action
to the packets matched by this direct path, packets forwarded to the
controller will be handled by the firewall.

Our current work allows to automatically discover misconfigurations in all
switches of our network by considering all relations between all flow entries and
by considering also all parsed paths by using FtDD. In the next section we
discuss our approach to deal with this problematic.

4 Inference Systems

In this work, our goal is to propose an automatic method that supports
OpenFlow controller by effectively managing flow-tables entries in dynamic
OpenFlow-based networks. To achieve our goal and address this challenge, we
seek a solution based of inference systems.

4.1 Inference System for Constructing FtDD

The first step is to define a set In-switches composed by couples (Sin, I) switches
from which the traffic flow first. Where I is source addresses that are linked to
the switch Sin. The verification in our work is based on firewall requirements;
therefore, we use the firewall rules and the network topology to define this set
I. Our goal is to construct the FtDD. To achieve this goal we propose in Fig. 4
an inference system that presents steps to construct this FtDD.

102 A. Saâdaoui et al.

Fig. 4. Inference system for constructing FtDD

The rules of this inference system apply to quadruple (ftdd, Sin, FEm, F)
where ftdd is the Flow entries decision diagram of the couple (Sin, I), FEm is
a temporary variable contains a set of flow entries from different switches in our
network that we should parse to get the real path from which packets from sources
in the set I passed. F is a temporary variable contains the set of packet matched
by rules already parsed. The inference rule start allows to parse rules from the
switch Sin that match the set I, this inference rule allows also to define the set
FEm if the action of the parsed flow entry fe is forward to another switch Sj ,
therefore this set contains rules from the switch Sj that match the set of packets
matched by previous traffic. The rule apply allow to route all traffic according to
rules matched and actions FORWARD. So the idea implemented by this infer-
ence system is as follows: For each flow entry from the switch Sin, we verify if its
action is to forward to another switch, in this case, we parse flow entries of the
new switch until we obtain a flow entry with an action drop, CONTROLLER or
a forward to another switch already parsed. Therefore, the condition to add a flow
entry to the set of rules to be parsed is described, as follows:

The rule Stop is applied when we parse and update all the paths of the set
Sin (Fig. 5).

Fig. 5. ConditionAdd

The function Construct FDD is the function used to construct FDD
depicted in previous work [9,15]. The flow entries decision diagram of all sets
Sin is defined as follows: FtDD =

⋃
ftdd.

Automated and Optimized Formal Approach to Verify SDN 103

For example if we consider the network topology shown in Fig. 1, we should
first start by defining possible inputs Iin. We have three sets of possible input
addresses:

– I1 = {172.27.2.7, 172.27.2.3} which is linked to switch S1.
– I2 = {172.27.1.5} which is linked to switch S3.
– I3 = {∗/I1UI2} which is the set of possible input address sources that could

income to switch S2.

We have three sets of possible input address sources. By applying infer-
ence system shown in Fig. 4. We will obtain FtDD shown in Figs. 6, 7 and 8
respectively.

In order to prove the correctness and completeness of our approach, we start
by the following theorem:

– Theorem if (∅, Sin, ∅, ∅) �∗ FtDD then, FtDD is correct and complete.
– Proof if (∅, Sin, ∅, ∅) �∗ FtDD then, ∀p ∈ dom(I), ∃dpi ∈ FtDD where

p ∈ dom(dpi), because at each Flow table, there is a default flow entry that
match all possible packets. Therefore, a packet will match at least on flow
entry. Therefore, FtDD is complete. If (∅, Sin, ∅, ∅) �∗ FtDD, then ∀p ∈ dpi,
dpi.F lowEntries contains the path parsed by the packet p. In fact, at each
step, and if the flow entry match the packet p, and this flow entry is not
masked by previous traffic (the set F in our inference system), then one of the
inference rules Apply or Start is applied, and these inference rules will apply

Fig. 6. FtDD of I1

104 A. Saâdaoui et al.

Fig. 7. FtDD of I2

Fig. 8. FtDD of I3

Automated and Optimized Formal Approach to Verify SDN 105

the function ConstructFDD which will add the flow entry applied to the
direct path dpi.F lowEntries. Therefore, dpi.F lowEntries contains exactly
all flow entries parsed by the packet p. Then, dpi.F lowEntries is equivalent
to the SDN path of the packet p. Therefore, our FtDD is correct.

4.2 Inference System for Dealing with Set-Field Actions

For a flow entry, we must consider various Set-Field actions, which can rewrite
the values of respective header fields in packets that can affect the process of
verification. Therefore, before constructing FtDD we have to analyze the impact
of these modifications on the flow entries.

The inference system shown in Fig. 9 allows to find and assign effective actions
to direct paths that have the action set-field.

In our work we are interested in discovering switches misconfigurations; there-
fore, knowing the effective action applied on each direct path is an unavoidable
step. Our inference system is applied on four variables (shown in Fig. 9), The
first one is the set DP − Set which contains all direct paths in our FtDD
where actions of these direct paths is equal to “Set-Field(Field1, Field2) and For-
ward(Sk)”: DP − et = {dp ∈ FtDD, dp.action = Set−Field(Field1, F ield2) ∧
Forward(Sk)}. We should find the real action applied by these direct paths.
The second one is our FtDD constructed using the inference system defined in
the previous section. The Third component dp match contains all direct paths
from FtDD that match the same packets as a given direct path. The main infer-
ence rule in this inference system is update F tDD, it allows to update Ftdd by
assigning the effective action applied a given direct path. In fact, for each direct
path from the set DP-Set we try to find this action by verifying if direct path
that match the modified direct path (i.e., we modify field1 by field2) and have
the switch Sk in their path (dp.flowEntries contains a flow entry from the switch
Sk) have all the same action, if it is the case we assign this effective action to the
direct path otherwise we consider the action as UNDEFINED (This indicative
will help us to find misconfigurations in the next steps of our work). We have
to precise that the new direct paths of our set Dp-match could contain other

Fig. 9. Inference system for dealing with set rules

106 A. Saâdaoui et al.

direct paths that have the action set-field, therefore in this case we will re-add
the direct path dp-set to the set DP-Set and we will find all applied actions
recursively. The rule Success will be applied if after updating FtDD all actions
are defined and the inference rule Failure will be applied otherwise.

We used two functions in this inference system:

– modify − Field(dp− set): This function allows to modify fields of the direct
path dp-set by replacing field1 by field2.

– Action(DP−match): This function returns the action applied by direct paths
in the set Dp−match, if all the direct paths apply the same action, otherwise,
it returns UNDEFINED.

– Set − action(FtDD, dp − set, act): This function allows to update FtDD by
assigning the action act to the direct path dp − set.

If we consider our example presented in the Sect. 1, we should find actions of
different direct paths that have the action (set − Field, Fwd(Sk)). In our case
we have one direct path:

– dp2 in FtDD2 shown in Fig. 7: By applying our inference system, we should
find different direct paths in FtDD that match the modified direct path dp2
(i.e., by replacing 172.27.1.5 by 172.27.2.7 in the field source address) and
have a flow entry applied by S3 in their field dp.F lowEntries. In our case we
have direct path dp2 from FtDD1 and the action of this direct path is drop
therefore we update our FtDD by assigning the action drop to the direct
path dp2 from FtDD2.

We write C �SetField C ′: C ′ is obtained from C by application of one of the
inference rules of Fig. 9.

4.3 Inference System for Discovering Access-Control
Misconfigurations

We have two types of misconfigurations: Total and partial misconfigurations:

– TMC: A direct path dpi ∈ FtDD is totally misconfigured iff it the packets
mapped by this path apply a different action as applied in the security policy
FC on these packets.

– PMC: A direct path dpi ∈ FtDD is partially misconfigured iff some packets
mapped by this path apply a different action as applied in the security policy
SP on these packets.

In Fig. 10, we propose an inference system to discover total and partial
misconfigurations. Inference rules are applied on quadruple (FtDD, TMC,
PMC, dpv), where FtDD is the set of all flow entries decision diagrams of all
paths in our network. TMC and PMC are the sets of total and partial miscon-
figurations respectively. dpv is the direct path to be verified.

The inference rule parse allows to define the direct path to be verified. In most
cases it is the direct path dpi but in some cases when the dpi.path contains a flow

Automated and Optimized Formal Approach to Verify SDN 107

Fig. 10. Inference system for discovering misconfigurations

entry that have the action set − Field where field is a destination address, the
direct path to be verified is the direct path modified by replacing the destination
address with the new one.

The main inference rule in this system is Detect misc, it deals with each
direct path and compares the domain of this direct path with the set of packets
of the firewall configuration that applies the same action as this direct path. If
it is partially or not included by this set then we have a partial or a total mis-
configuration. And if the action of the direct path is undefined then we consider
this direct path partially misconfigured. The Success rule is applied when we
parse all direct paths of all FtDD in our network without identifying a miscon-
figuration (total or partial). Failure is applied when at least one configuration
error is identified.

For example, if we consider the network topology shown in Fig. 1 and once
ensured that all direct paths have an assigned action, we proceed to the dis-
covering of misconfigurations using our inference system. We parse all paths of
FtDD, for each path we verify if we have an effective misconfiguration, as we
explained in the previous section we have three sets of possible input addresses:

– I1 = {172.27.2.7, 172.27.2.3} which is linked to switch S1.
– I2 = {172.27.1.5} which is linked to switch S3.
– I3 = {∗/I1UI2} which is the set of possible input address sources that could

income to switch S2.

And for each Ii ∈ Iin, we have an FtDD shown in Figs. 6, 7 and 8 respectively.
For FtDD1: For packets incoming from the set I1, we have three total mis-

configurations, in direct paths dp2, dp3 and dp4, they apply the action drop,
while the firewall configuration applies the action accept to packets mapped by
the domain of these three direct paths. We have also a partial misconfiguration,
in dp1, in fact, according to the firewall configuration shown in Fig. 2, packets
that match dp1 and have a port number equal to 80 should be rejected, but
dp1 accepts all packets, even packets that match this port number, Therefore we
should detect a PMC in this direct path.

108 A. Saâdaoui et al.

For FtDD2: In this FtDD, There is no misconfiguration in dp1, the action
applied is CONTROLLER, packets will be forwarded to the firewall which is
perforce with respect to the firewall. And for the direct path dp2, there is a total
misconfiguration, in fact the action assigned to the direct path dp2 using the
inference system shown in Fig. 9 is drop and the action applied by the firewall
to these packets is accept, therefore we have one total misconfiguration in this
direct path.

For FtDD3: For the direct path dp1 we cannot make a decision because
packet parsed by this direct path will be forwarded from S2 to S3 which will by
his turn forward it again to S2, therefore this direct path contains a LOOP and
no final decision is made. We have a TMC in dp2, all packets matched by this
direct path have a different action as applied in the firewall.

In order to prove the correctness of our approach, we start by the following
definition:

– Definition FtDD is called misconfiguration-free if and only if ∀dp ∈ FtDD,
dp verifies these two conditions:

– (1) dp.action
= UNDEFINED.
– (2) dom(dp) ⊆ FW dp.action.
– Theorem if FtDD is misconfiguration-free and (DPSet, F tDD, ∅, ∅)

�∗
SetField Success then, (FtDD, ∅, ∅, ∅) �∗

detectMisc Success.
– Proof FtDD is misconfiguration-free, then ∀dp ∈ FtDD, dp applies the

same action as defined in FC, dom(dp) ⊆ FW dp.action. It follows that at
each step we apply first the inference rule Parse to define the direct path to
be verified dpv, then for this direct path we try to apply the inference rule
Detect misc, or dom(dp) ⊆ FW dp.action and (DPSet, F tDD, ∅, ∅) �∗

SetField

Success it means that ∀dp ∈ FtDD, dpv.action
= undefined, therefore, the
precondition of the inference rule is not verified. It follows that in all steps
Pass inference rule is applied, i.e., TMC = ∅ and PMC = ∅, therefore
(FtDD, ∅, ∅, ∅) �∗

detectMisc Success.

4.4 Inference System for Extracting Accepted Denied

In Fig. 11, we propose an Inference system that presents necessary and sufficient
steps for extracting accepted and denied packets from a firewall configuration
FR. We extract the accepted and denied packets before and after removing each
rule from the firewall configuration, two cases can be faced:

– Case1: FRaccept (before removing ri) is equal to FRaccept (after removing
ri) and FRdeny (before removing ri) is equal to FRdeny (after removing ri):
In this case, we can remove ri safely without altering the firewall behavior.

– Case2: FRaccept (before removing ri) is different from FRaccept (after remov-
ing ri) and/or FRdeny (before removing ri) is different from FRdeny (after
removing ri): in this case we should maintain ri in the configuration file.

Automated and Optimized Formal Approach to Verify SDN 109

Fig. 11. Inference system for extracting accepted and denied packets

5 Implementation and Experimental Results

5.1 Implementation

We used all-in-one pre-built virtual machine, built by SDN Hub [5]. Wich is
a Ubuntu image that has a number of SDN software and tools installed, like:
SDN Controllers: OpenDaylight with support for Openflow 1.2, 1.3 and 1.4,
and LINC switch. Mininet to create and run example topologies. This pre-built
virtual machine contains also a JDK 1.8 and Eclipse, which allows us to easily
integrate our solution.

The topology as shown in Fig. 1 is built from a Python program which uses
the topology files to build the topology in the controller. The following command
allows to build the configuration from the file TOPOTEST:

– ubuntu@sdnhubvm : /mininet/examples$ sudo
mn − −custom topotest.py − −topo toptest.

For example to add the flow entry fe1 to the switch S1 we use the following
command:

– sh ovs−ofctl add−flow s1 priority = 500, nw dst = 172.27.1.5, actions = 3.

We implemented the techniques and inference systems described earlier in
a software tool, using a Boolean satisfiability (SAT) based approach. This app-
roach reduces the verification problem into Boolean formula and checks its sat-
isfiability. In our case, in order to verify if a direct path is partially or totally
misconfigured, we verify if the domain of the direct path reduced into Boolean
formula is included or not in the domain of the firewall configuration reduced into
two sub-domains FRdeny and FRaccept as explained in Sect. 4. So, our formalism
for specifying the flow entries and the firewall configuration is a Boolean-based
specification language. We have chosen also the Java developing language. On
the other hand, the verification of the satisfiability of Boolean expressions is per-
formed using Limboole [14]. This tool allows to check satisfiability respectively
tautology on arbitrary structural formulas and not just satisfiability for formulas
in conjunctive normal form (CNF), and can handle large set of non-quantified
Boolean clauses in reasonably good time.

110 A. Saâdaoui et al.

5.2 Complexity

For n rules in each flow table, there can be a maximum of 2n−1 outgoing edges for
a node. Therefore, the maximum number of paths in a constructed FtDD is (2n−
1)d, where d is the number of fields in each flow entry. After the construction of
FtDD the discovering of misconfigurations process, explained in Sect. 4, is done
on direct paths elements dpi.F lowEntries and dpi.action. Therefore, for this
inference system, the complexity (without counting the elementary functions) is
equivalent to the complexity of operations in an ordered list and equal in this
case to the complexity of parsing a list which is equal to O(m) (where m is the
size of a set). Thus, in our case, the complexity of this inference system is equal
to O(nd), where d is the number of inspected fields. Given that d is typically
small (generally we have 4 or 5 fields) our inference systems have a reasonable
response time in practice. The next section confirms the above remarks.

5.3 Experimental Results

We have also conducted a set of experiments to measure the performance of our
inference systems. The experiments were run on an Intel Dual core 1.6 GHz with
2 Gbyte of RAM. It is supposed that we have IPv4 addresses with net-masks
and port numbers of 16 bit unsigned integer with range support. Figure 12 sum-
marize our results. We consider time treatment factor that we review by varying
the number of switches and flow entries. In overall terms, we consider the average
processing time, in seconds, of the main procedures of FtDD construction, deal-
ing with set Set-Field direct paths (dpi that have action equals to set − Field)
and FtDD misconfigurations detection. At the end, our tool proved a stable
performance showing acceptable processing time to the treatment of complex
combination of filtering flow entries.

Fig. 12. Processing time evaluation

Automated and Optimized Formal Approach to Verify SDN 111

6 Conclusion

We presented in this paper a set of inference systems to automatically ana-
lyze, detect OpenFlow switches misconfigurations. More precisely, our proposal
is an offline tool intended for discovering these misconfigurations by using a for-
mal method and a data structure (FtDD), this tool can be used periodically or
before updates on Flow tables occurred by the controller to verify if changes
will induce further misconfigurations. The advantages of our proposal are the
following: First, The detection approach is optimal, using the minimum num-
ber of operations. Second, we considered all flow entries of different switches,
all paths, all actions of our switches. Third, we analyze also all modifications
that can occur on packets if actions set-Field are used, which is not consid-
ered by all previous work. Fourth, we proved the correctness and completeness
of our approach. While the current approach primarily focuses on discovering
switches misconfigurations, in our future work, we plan to automatically resolve
these misconfigurations. We are also interested in developing a tool that allows
to perform automatically all proposed techniques and test this tool on Cisco
Open Network Environment for Government [6] which is a comprehensive solu-
tion designed to help government network infrastructures become more open,
programmable, and application-aware.

References

1. Al-Shaer, E., Al-Haj, S.: Flowchecker: configuration analysis and verification of fed-
erated openflow infrastructures. In: 3rd ACM Workshop on Assurable and Usable
Security Configuration, SafeConfig 2010, Chicago, IL, USA, 4 October 2010, pp.
37–44 (2010)

2. Alimi, R., Wang, Y., Yang, Y.R.: Shadow configuration as a network management
primitive. In: Proceedings of the ACM SIGCOMM 2008 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communications,
Seattle, WA, USA, 17–22 August 2008, pp. 111–122 (2008)

3. Ball, T.: Vericon: towards verifying controller programs in software-defined net-
works. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2014, Edinburgh, United Kingdom, 09–11 June 2014, pp.
282–293 (2014)

4. Canini, M., Venzano, D., Pereśıni, P., Kostic, D., Rexford, J.: A NICE way to
test openflow applications. In: Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2012, San Jose, CA, USA,
25–27 April 2012, pp. 127–140 (2012)

5. All-in-one sdn app development starter vm (2018)
6. Cisco open network environment for government (2018)
7. Feamster, N., Balakrishnan, H.: Detecting BGP configuration faults with static

analysis (awarded best paper). In: Proceedings of 2nd Symposium on Networked
Systems Design and Implementation (NSDI 2005), Boston, Massachusetts, USA,
2–4 May 2005 (2005)

8. Foster, B., et al.: Frenetic: a network programming language. In: Proceeding of
the 16th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2011, Tokyo, Japan, 19–21 September 2011, pp. 279–291 (2011)

112 A. Saâdaoui et al.

9. Gouda, M.G., Liu, A.X.: Structured firewall design. Comput. Netw. 51(4), 1106–
1120 (2007)

10. Griffin, T., Wilfong, G.T.: On the correctness of IBGP configuration. In: Pro-
ceedings of the ACM SIGCOMM 2002 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, 19–23 August 2002,
Pittsburgh, PA, USA, pp. 17–29 (2002)

11. Hu, H., Han, W., Ahn, G.-J., Zhao, Z.: FLOWGUARD: building robust firewalls for
software-defined networks. In: Proceedings of the Third Workshop on Hot Topics
in Software Defined Networking, HotSDN 2014, Chicago, Illinois, USA, 22 August
2014, pp. 97–102 (2014)

12. Kazemian, P., Chan, M., Zeng, H., Varghese, G., McKeown, N., Whyte, S.: Real
time network policy checking using header space analysis. In: NSDI, pp. 99–111.
USENIX Association (2013)

13. Khurshid, A., Zou, X., Zhou, W., Caesar, M., Brighten Godfrey, P.: Veriflow: ver-
ifying network-wide invariants in real time. In: Proceedings of the 10th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2013, Lom-
bard, IL, USA, 2–5 April 2013, pp. 15–27 (2013)

14. Limboole sat solver (2018)
15. Liu, A.X., Gouda, M.G.: Diverse firewall design. IEEE Trans. Parallel Distrib.

Syst. (TPDS) 19(8), 1237–1251 (2008)
16. McKeown, N., et al.: Openflow: enabling innovation in campus networks. Comput.

Commun. Rev. 38(2), 69–74 (2008)
17. Saadaoui, A., Ben Youssef Ben Souayeh, N., Bouhoula, A.: Formal approach for

managing firewall misconfigurations. In: IEEE 8th International Conference on
Research Challenges in Information Science, RCIS 2014, Marrakech, Morocco, 28–
30 May 2014, pp. 1–10 (2014)

18. Saâdaoui, A., Ben Youssef Ben Souayeh, N., Bouhoula, A.: FARE: fdd-based fire-
wall anomalies resolution tool. J. Comput. Sci. 23, 181–191 (2017)

19. Wundsam, A., Levin, D., Seetharaman, S., Feldmann, A.: Ofrewind: enabling
record and replay troubleshooting for networks. In: USENIX Annual Technical
Conference. USENIX Association (2011)

	Automated and Optimized Formal Approach to Verify SDN Access-Control Misconfigurations
	1 Introduction
	2 Related Work
	3 Formal Specification
	3.1 Open Flow Switch Flow Entries
	3.2 Firewall Configuration
	3.3 FtDD (Flow Table Decision Diagram) of a Path in a Distributed Environment

	4 Inference Systems
	4.1 Inference System for Constructing FtDD
	4.2 Inference System for Dealing with Set-Field Actions
	4.3 Inference System for Discovering Access-Control Misconfigurations
	4.4 Inference System for Extracting Accepted Denied

	5 Implementation and Experimental Results
	5.1 Implementation
	5.2 Complexity
	5.3 Experimental Results

	6 Conclusion
	References

