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Abstract. Uncertainty analysis have attracted increasing attention of both
theory and application over the last decades. Owing to the complex of sur-
rounding, uncertainty analysis of rainfall in urban area is very little. Existing
literatures on uncertainty analysis paid less attention on gauge density and
rainfall intensity. Therefore, this study focuses on urban area, which a good
complement to uncertainty research. In this study, gauge density was investi-
gated with carefully selecting of gauge to covering evenly. Rainfall intensity
data were extracted from one rainfall event at begin, summit and ending phases
of rainfall process. Three traditional methods (Ordinary Kriging, RBF and IDW)
and three machine methods (RF, ANN and SVM) were investigated for the
uncertainty analysis. The result shows that (1) gauge density has important
influence on the interpolation accuracy, and the higher gauge density means the
higher accuracy. (2) The uncertainty is progressively stable with the increasing
of rainfall intensity. (3) Geostatistic methods has better result than the IDW and
RBF owing to considering spatial variability. The selected machine learning
methods have good performance than traditional methods. However, the com-
plex training processing and without spatial variability may reduce its practi-
cability in modern flood management. Therefore, the combining of traditional
methods and machine learning will be the good paradigm for spatial interpo-
lation and uncertainty analysis.

Keywords: Rainfall � Spatial interpolation � Ordinary Kriging �
Random forest � Machine learning

1 Introduction

Rainfall is one of the most important parameters for the flood management, such as
hydrological models. Although some weather radars or satellite can get the short timely
precipitation data, the ground rain gauge network is still the precise rainfall measure
instruments, especially in the urban area. But at most situation it is with a sparse
network [1]. Spatial interpolation had been widely used method to estimate the rainfall
based on the gauge network, which has been a hot research issue. The common
domains using spatial interpolation include meteorology [2], climate [3] and environ-
ment [4]. Three substantial roles of interpolation in meteorology domain include
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parameter for hydrological model [5], area mean rainfall [6], simulating and mapping
the rainfall map [7].

Understanding of the uncertainty of interpolation is vital for hydrological model or
flood management. But there are only a very few researches on interpolation uncer-
tainties [1]. Uncertainty is the one of challenge in modern flood management because
the non-stationarity data come from multiple sources which raises new challenges for
uncertainty analysis [8, 9]. Research on uncertainty focus on catchment such as esti-
mating basin precipitation [10], uncertainty analysis for gauge network design within
Folsom Lake watershed [11], assessment of precipitation spatiotemporal distribution
for hydrological process simulation in the Three Gorges Basin [12]. Considering
uncertainty factors, Elevation based topographic influence on spatial interpolation was
validated [2]. Rainfall spatial variability is another important factor in interpolation,
and its influence is investigated for the numerical simulation model [7].

In general, most of the existing research on uncertainty of rainfall interpolation
suffer from several drawbacks. First, there is seldom researches in urban area. The
probable causes is the spare gauge network which can bring bias and non-stationarity
error [1]. In fact, it is necessary to estimate the uncertainty in urban areas because the
precipitation patterns, climatology and surroundings in urban areas are quite different
from those catchments [13, 14]. Furthermore, existing research lacks attention on gauge
density and rainfall intensity. Existing research argues that rain gauge density is one of
factor for the uncertainty [5]. However, owing to the spare gauge network in urban
area, it is insufficient number for gauge density analysis [15, 16]. Rainfall intensity
affects the measuring error of rain gauge and shows the spatial and temporal distri-
bution of rainfall. Hence, it has also affected the interpolation uncertainty. As a result,
the uncertainty of rainfall in urban area and its relationship to gauge density and rainfall
intensity are worth of to further investigation.

In this paper, taking the aspects described above into consideration, we investigated
the uncertainty with gauge density and rainfall intensity using various spatial inter-
polation including machine learning methods in urban area. Rain gauge network has 37
gauges, which is enough in number to validate the relationship of uncertainty and
gauge density. The network is thoroughly designed based on rules for flood emergency
management in dense population city [17]. Although many factors in uncertainty
analysis such as rainfall variability, catchment size, topography, and the spatial inter-
polation technique [5], the topography and rainfall variability were excluded because
on the most plain area in study area and data selected from one rainfall event. A 10%
interval was adopted to select rain gauge representing different gauge density, mean-
while ensuring the even covering the whole area. Rainfall intensity data was carefully
selection at the beginning, summit and ending phases of rainfall event. As for the
interpolation methods, deterministic methods and geostatistic methods were both val-
idated. In order to compare the intelligence of interpolation, three machine learning
methods were also investigated.

The rest of our paper is organized as follows. Some interpolation methods and
uncertainty analysis works are presented in Sect. 2. In Sect. 3, methods and mea-
surements for uncertainty used in this paper are descripted. Following these methods,
results are shown in Sect. 4. Validation on uncertainty with gauge density and rainfall
intensity are discussed in Sect. 4. We conclude our work in Sect. 5.

80 J. Huang et al.



2 Study Area and Related Work

2.1 Study Area

A case study in Xicheng District, Beijing, China is selected to investigate our research.
It has a total area of approximately 50.7 km2 with about 1,259,000 inhabitants (in 2000
Census). Now, it has totally 37 rain gauges, which means one gauge evenly covering
1.37 km2. Figure 1 shows the study area and rain gauge network.

2.2 Spatial Interpolation Methods

Rain gauge network is generally the first selection for precise measuring rainfall.
However, its spare deployment needs various interpolation methods for accurate esti-
mating. One of challenges lies in choosing the right interpolation [16, 18, 19]. The
widely used classification of interpolation methods is two categories: deterministic and
geostatistic methods [16]. According to complexity of methods, deterministic methods
include arithmetic average, Thiessen polygon, Inverse Distance Weight (IDW) and
polynomial interpolation [5]. Among them, IDW is the conspicuous method that gives
the weight by the inverse of distance. Geostatistic methods such as Ordinary Kriging
(OK) and its variants present estimation for un-sample points considering the spatial
correlation of sample points [20]. Some literatures argue that geostatistic methods have
more performance than deterministic method [21, 22], the other present the interpo-
lation accuracy is case dependent [5, 16, 20]. Although some robust interpolation
methods have been developed, such as Gaussian copulas [1], they are rarely used in
rainfall interpolation due to their complexity and heavy data requirement.

Machine learning methods, such as random forest (RF) and support vector machine
(SVM), have present their capability for accurate estimation at un-sample points. These
methods can achieve good estimation even if there are noise data in sample points [23].

Fig. 1. Study are and rain gauge network.
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SVM has been applied to rainfall data in a previous study [24]. Machine learning
methods (RF and SVM) have be investigated for spatial interpolation of environmental
variables [25].

Either deterministic method or geostatistic method are found to be more case
dependent and no one of these methods can carry perfect interpolation for all rainfall
event [20]. Therefore, some combined methods are applied in rainfall prediction.
Sometime, the combined method is called the third classification of interpolation
methods [21, 25]. The combined schema can strength their advantages and minimized
their weakness. For example, regression-kriging (RK) were developed that combines a
regression of the dependent variable on auxiliary variables (such as land surface
parameters, remote sensing imagery and thematic maps) with simple kriging of the
regression residuals [26]. The combination of Random Forest and OK (RFOK) and
combination of Random Forest and IDW (RFIDW) were developed and validated on
the interpolation of seabed sediments [25].

2.3 Uncertainty Analysis on Rainfall

There are only a very few researches on interpolation uncertainties [1], but it is vital for
hydrological model and rainfall estimation. Moulin et al. proposed an error estimated
model to interpolate uncertainty of hourly precipitation [18]. Tsintikidis et al. inves-
tigated uncertainty analysis for gauge network design [11]. Chen conducted uncertainty
assessment of precipitation based on rainfall spatiotemporal distribution for hydro-
logical process simulation [12]. In order to holistic understanding uncertainty in flood
management, a framework for uncertainty analysis to support decision making has
been established [8]. In view of case study area, catchment and big space had been pay
more attention, such as basin precipitation [10], Folsom Lake watershed in US [11], the
Three Gorges Basin in China [12], and the upper Loire River in France covering
3234 km2 [18]. On the opposite, there is seldom research in urban area. Elevation and
rainfall variability are the widely considered factor for uncertainty analysis. It has been
validated that incorporating with elevation can improve the interpolation accuracy [2].
Incorporating the use of spatially-variable precipitation data from a long-range radar in
the simulation of the severe flood, spatial variability can influent the total precipitated
volumes, water depths and flooded areas [7]. In addition, research argues measurement
error from rain gauge network is one of the main sources for uncertainty [5]. Gauge
error includes error from device and gauge density in gauge network. In generally, the
former had been calibrated in factory. But there is a little research on gauge density. In
recent, Otieno conducted similar research in catchment covering 135 km2 with 49
gauges [16].

3 Methodology

3.1 Spatial Interpolation Methods

The general interpolation methods used in this study were Inverse Distance Weighting
(IDW), Ordinary Kriging (OK) and Radial Basis Functions (RBF). The main software

82 J. Huang et al.



is the Geostatistical Analyst package of software ArcGIS developed by ESRI Inc.
Furthermore, three machine learning methods were also investigated in this study to
validate its’ accuracy.

Inverse Distance Weighting (IDW). IDW interpolation method is established on the
basis of the hypothesis that neighboring point has the more similar properties than the
farther one. The principle of IDW methods shows that the estimated value of inter-
polation points is inversely proportion of the distance from known points [27, 28].
Therefore, it gives greater weights to points closest to the prediction location, and
weights diminish as a function of distance. The formula as shown:

z xð Þ ¼
Xn

i¼1

zi
dki

� �
=

Xn

i¼1

1
dki

� �
ð1Þ

Where z(x) is the predicted value at an interpolated point, zi is the ith sample point,
n is the total number of sample points, di is the distance between the i sample point and
the interpolated point, k is the weighting power which may decide the weight affected
by distance.

Ordinary Kriging (OK). Ordinary kriging is one of the most widely used stochastic
interpolation methods (Webster and Oliver 2007), which has been engaged for esti-
mating missing rainfall, areal rainfall distribution from point rainfall data, and data
fusion of rain gauge and radar data [29, 30]. Kriging is an exact or smooth interpolation
method depending on the measurement error model. Ordinary Kriging method is a
widely used variant method that is closely relative to autocorrelation. The Kriging
estimator is a linear combination of the observed values with weights that are derived
from Kriging equations with semi variogram function. The parameters of the semi
variogram function and the nugget effect can be estimated by an empirical semi var-
iogram function. The semi variogram function is:

y hð Þ ¼ 1
2N hð Þ

XN hð Þ
i¼1

z xið Þ � z xi þ hð Þ½ �2 ð2Þ

Where y(h) is the semi variance value at distance interval h; N(h) is the number of
sample pairs within the distance interval h; and z(xI + h) and z(xI) are sample values at
two points separated by the distance interval h.

Radial Basis Functions (RBF). Radial basis function methods are a series of exact
interpolation techniques, that is, the surface must pass through each measured sample
point. They are special cases of splines. There are five different basis functions: tine-
plate spline, spline with tension, completely regularized spline, multi-quadric function,
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and inverse multi-quadric function [31]. In this study, we used the inverse multi-
quadric function as the radial basis function. The prediction value by RBF can be
expressed as the sum of two components [32]. The formula is:

z xð Þ ¼
Xm

i¼1
aifi xð Þþ

Xn

i¼1
bjhj dj

� � ð3Þ

Where h(dj) shows the radial basis functions and dj the distance from sample site to
prediction point x, f(x) is a trend function, a member of a basis for the space of
polynomials of degree is less than m. The coefficients ai and bj are calculated by means
of the resolution of the linear equations; m and n are the total number of known points
used in the interpolation.

Machine Learning Methods. During the past several decades, machine learning
methods have been extensively engaged in numerous fields of science and technology.
Machine learning methods can train complex data to find a fit model with maximum
accuracy and lowest complexity. In this study, three methods were investigated to
validate rainfall interpolation accuracy, which include Random Forest (RF), Artificial
Neural Network (ANN) and Support Vector Machine (SVM).

Random forest is an ensemble predictor with many tree models. Each tree model
depends on the values of a sampled random vector respectively and under the same
distribution for all trees in the forest [33]. The RF method can achieve higher predictive
accuracy because a set of trees or networks have more robust abilities than one single
tree [34], which has been used for data clear applications such as missed data prediction
[35]. In addition, RF method has higher efficiency on large dataset with high dimension
and easier to use without understanding the data distribution model. In this study, RF
adopted the training rainfall data as regressive trees, then forming the forest. Each tree
is independent from the others since a random predictor variable is prepared for each
node.

The Artificial Neural Network (ANN) is famous on its capability to learn linear
predictors from the complex nonlinear data by modeling the target variable using a
hidden layer of variable [36]. The general multilayer ANN model is made of three or
more neuronal layers: input layer, output layer and one or more intermediate or hidden
layer for feature extraction [37]. ANN is a black-box and isn’t support the monitoring
of model processing. The mean squared error (MSE) is often acted as measure for
stopping criterion at each training and validation iteration. If multiple networks are
averaged, the approach is comparable to the idea of random forest.

The Support Vector Machine (SVM) is a group of supervised learning method for
classification or regression problem based on statistic learning theory [38]. The per-
formance of SVM depends on the kernel function and responding parameters. The
radial basis function is one of the popular kernel functions for SVM that had been used
for land cover classification [39].
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3.2 Accuracy and Uncertainty Evaluation

The performance of rainfall value interpolation is assessed by cross validation with
leave-one-out, which has been used in existing rainfall interpolation literatures [16, 30].
According to principles of cross validation with leave-one-out, one sample data of the
dataset is temporarily excluded for interpolation and the estimated value of this point is
interpolated using the remaining sample points. This step is then repeated until all the
points are all “removed – estimated” in turn. The accuracy and uncertainty are eval-
uated by the measurements of Root Mean Square Error (RMSE) and Coefficient
Variation (CV), respectively.

RMSE shows reliable indicator for the spatial interpolation, which has been con-
sidered as a preferred evaluation for many applications. RMSE has been widely used in
rainfall interpolation and prediction [16, 40]. The equation is shown as follow:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ẑ sið Þ � z sið Þ½ �2
n

s
ð4Þ

Where ẑ sið Þ shows the estimated value of point si, z sið Þ is the true value of point si,
n is the total number of points used in the validation.

RMSE is often used to evaluate how far the estimated value are from the true value.
RMSE ranges from 0 to infinity, and the smaller of the RMSE means the better
estimation of this sample point. RMSE is robust for the evaluation based on the same
data, but it would not match the multiple datasets with different variability. In this
paper, seven rainfall events with different rainfall intensity were used to evaluate the
relationship of rainfall intensity and interpolation accuracy. Considering the variability
in intensity, the coefficient of variation (CV) is employed to measure the uncertainty
with intensity [5]. The equation is shown as below.

CV ¼ standard deviation of predicted rainfall value
predicted rainfall value

ð5Þ

According to the Leave-one-out cross validation, the predicted rainfall value is the
mean of values comes from all iterate computations. Therefore, the CV is defined as the
standard deviation (SD) divided by the predicted rainfall value. The CV indicates how
large differences of estimated rainfall value to its true value tend to be in comparison to
their average [41]. The main appeal of the CV is that it takes account on the variability
of observe variable by using the mean value, which removes the proportional affection
with standard deviation. The CV is therefore a standardization of the SD that allows
comparison of variability dataset [42].
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4 Result and Discussion

4.1 Gauge Density Experiment

Numerous studies have been done on the comparison of various interpolation methods
under different circumstances such as rainfall intensity, spatial and temporal scales.
However, rain gauge density is a wide across issue relate to cost, interpolation accuracy
and reliability. The influence of rain gauge density on rainfall interpolation is worth of
particular interest [16], which need more attention.

In this study, different number of rain gauges were selected representing the dif-
ferent rain gauge density. Then three commonly used interpolation methods (IDW, OK
and RBF) were adopted for interpolation, cross validation methods used for accuracy
evaluation. Inspiring the sample method for varying density in literature [16], we used
10% interval as the rule to determine the number. It is about 5, 7, 10, 14, 17, 20, 24, 27
and 31 points from all 37 rain gauges, which mean 10.10, 7.21, 5.05, 3.61, 2.97, 2.53,
2.10, 1.87, 1.63 km2 per gauge covering respectively. With the distribution of selected
gauges, selection was carefully done ensuring that the selected gauges can still rea-
sonably covered. Figure 2 shows the gauge distribution of partial density.

Results were derived from the three interpolation methods, in where, the high
quadric surface function is used in RBF methods. Table 1 gives the results. Figure 3
shows the trend graph of the result. Result shows the RMSE is unstable when the
sample rate under 50%. Above 50%, it is the overall decreasing trend that is obvious
along the increasing of gauge density and number among the three interpolation
methods. The RMSE improved about 40%. Therefore, it can conclude that insufficient

Fig. 2. Rain gauge distribution of various density.
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sample data may cause higher uncertainty and enough measurement is necessary for
interpolation. The 50% sample ratio maybe a better threshold for good interpolation
accuracy. It can also confirm in Otieno’s research work [16]. However, more gauge
density samples than Otieno’s work (only 3 of 49 points) were tested in this paper. For
the high RMSE with less points (such as 5 and 7 points) may has large uncertainty
because the unstable error comes from rain gauge measuring error and rainfall vari-
ability. Rain gauge data are sensitive to wind and other surrounding environments [43].
The error caused by wind exposure and field is 2–10% for rainfall [44]. Other causes
such as water splashing into and out of the collector, evaporation also have influence on
measurements. Therefore, enough gauge is necessary for high accuracy interpolation.

Table 1. Rain gauge number and RMSE

Sample rate
(rate/number)

RMSE of
interpolation
methods (mm)
IDW OK RBF

15/5 5.74 4.04 5.05
20/7 14.67 13.19 15.03
30/10 10.72 8.71 9.65
40/14 10.13 8.92 9.21
50/17 11.16 10.04 10.87
60/20 9.35 8.42 8.72
70/24 9.45 7.57 7.74
80/27 8.45 7.17 7.43
90/31 7.5 6.57 6.92

4.0
6.0
8.0

10.0
12.0
14.0
16.0

15 20 30 40 50 60 70 80 90

RM
SE

(m
m

)

Rain gauge sample rate (%)

IDW OK RBF

Fig. 3. The RMSE of varying gauge density.
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4.2 Interpolation Uncertainty Against Rainfall Intensity

In addition to rainfall gauge network density, rainfall intensity is also of significant
interest in urban hydrology as an important parameter for flood model and hydraulic
infrastructure planning. Understanding uncertainty level would help for determining
these parameters. Hence, the interpolation uncertainty against rainfall intensity is worth
of investigation.

In order to reduce the rainfall variability influence, different rainfall intensity data
are extracted from the same rainfall event. This study selected seven hourly rainfall
data to achieve their rainfall intensity. The instant rainfall of all rain gauges at seven
hours are collected to interpolation. The cross validation and CV represent the
uncertainty. The description of intensity data is shown in Table 2. And Fig. 3 shows
the value distribution of intensity. The intensity of 23rd hour has the maximum
magnitude of intensity (Fig. 4).

The scatter plot of CV against rainfall intensity is shown as Fig. 5. With seven
intensity datasets and 37 gauges, 259 points are plotted by their intensity. The sub-
stantial decreasing trend is observed in this figure, which is similar to Muthusamy’s
result in literature [5]. In here, a general interpolation uncertainty is discussed, therefore
there isn’t the classification of rainfall intensity. Meanwhile, something can be drawn:
(1) when the intensity <5.0 mm/h, the CVs have bigger deviation with some outliers;
(2) when the intensity falling in [5.0, 10.0], the corresponding CVs range between 0.0
and 1.0. And the points are evenly distributed; (3) when the intensity bigger than
1.0 mm/h, the CVs are very stable and close to zero. This pattern is similar to existing
research on relationship between intensity and CV [5].

After analyzed the all of 259 sample points, we explored the relationship of
uncertainty and the various rainfall intensity at different phases of rainfall event. Three
phases with seven datasets are picked up: beginning (23 o’clock and 24 o’clock),
summit of rainfall process (7 o’clock and 10 o’clock) and ending phase (14 o’clock,
16 o’clock and 17 o’clock). The result is shown as Fig. 6.

The distribution trend of CV changes from substantial decreasing state (as shown in
Fig. 6(a)) to a stable state with clustering distribution (as shown in Fig. 6(e) to (f)).

Table 2. Intensity data of one rainfall event

No. Time intervala Average hourly intensity (mm/hour) Instant average rainfall (mm)

1 22:00–23:00 9.41 9.42
2 23:00–24:00 6.37 15.79
3 6:00–7:00 16.82 52.52
4 9:00–10:00 15.08 70.56
5 13:00–14:00 2.63 76.93
6 15:00–16:00 0.77 78.72
7 16:00–17:00 1.17 79.89
aDay precipitation is between 20:00 yesterday and 20:00 today.
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In the 23 o’clock, the rain is beginning with large span of intensity (Fig. 6(a)), which is
similar to Muthusamy’s result in literature [5]. This decreasing trend is kept in the next
hour, but these scatter points show discrete distribution (Fig. 6(b)). In the summit and
ending phases of rainfall, the clustering distribution is strengthened. The CV value has
changed from a big value to small one, which is from 6.0 of beginning phase (Fig. 6(a))
to 0.2 of ending phase (Fig. 6(e) to (g)).

The different average rainfall value means the bigger gap among CV. At begin, the
rainfall value increased from zero and has a lower average rainfall with uneven dis-
tribution, then the higher CV maybe occurrence (Fig. 6(a)). On the opposite, at the
ending phase, the bigger average rainfall value means the small Standard Deviation of
rainfall, which brings a less amplitude of CV (Fig. 6(e) to (g)).
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Fig. 6. CV against different phase of rainfall process
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Fig. 5. Interpolation CV against rainfall intensity.
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4.3 Interpolation Method Comparison

Spatial interpolation is generally estimating or predicting the value at un-sampled
points. The mainstream methods can divided into two categories: deterministic and
geostatistic methods [16]. The deterministic methods use the similarity and smoothness
of surface as measurements for the interpolation to interpolate values. While the
geostatistic methods utilize statistic methods and spatial correlation methods with the
local variability or global variability theory [45]. Therefore, the geostatistic methods
are capable of taking account of the spatial distribution of gauges and spatial variability
of data. Therefore, Geostatistic methods has some advantage comparing to determin-
istic methods in theory. The widely used deterministic methods include IDW, RBF and
Thiessen polygon [45]. Meanwhile, the Kriging and other variants such as Simple
Kriging and Universal Kriging are the common geostatistic methods. These methods
are validated in this paper. In addition, three machine learning methods were validated
and compared with the main interpolations in this paper.

Four datasets were selected from one rainfall event at different time according to
Table 2. The methods include OK, IDW and RBF with inverse multi-quadric function,
RF, ANN and SVM were validated. The RMSE measurement of interpolation result are
shown as Table 3.

The results demonstrate that all the interpolation methods can generate different
interpolation accuracy because of the existing of uncertainty [6, 46]. According to the
RMSE results from Table 3, OK was generally more accurate than IDW and RBF,
which is a little different with Otieno’s research [16] in which the IDW has better
performance than OK method. Therefore, different data under different gauge network
may achieve various result. Another probable cause is the input parameters for every
interpolation method. Many studies argued that the input parameter of interpolation
method is one of the important factors of uncertainty [47]. The validation of optimal
power parameter of IDW was conducted by Otieno (2014), then more superior result
was achieved. Generally, IDW and RBF need less and simple input parameters com-
paring to Kriging method. Although the more accurate result can get by carefully
calibrating parameters of Kriging method, this is a dynamic parameter for different
data.

Table 3. RMSE of different methods

Method RMSE (mm)
23rd hour 7th hour 16th hour 17th hour

OK 1.92 5.09 6.81 6.99
IDW 3.35 6.14 7.81 7.97
RBF 2.18 5.32 7.01 7.20
RF 1.94 4.05 5.33 5.47
ANN 2.14 4.92 5.73 5.85
SVM 2.05 4.05 5.49 5.52
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Meanwhile, the machine learning methods have outstanding performance than
traditional methods, which can be concluded from Table 3. The principle of machine
learning may be able to explain this result. The training and fitting in machine learning
can identify and remove the outlier or noise data for the hypothetic model. Therefore,
the higher accuracy may be achieved. However, owing to the spatial variability of
rainfall, some noise data in machine learning methods maybe the right value. So, the
spatial variability of value should be considered and will be investigated in the future
work.

Another criterion for selection interpolation method is the purpose of interpolation
[32]. There are two main purposes of rainfall spatial interpolation: assessing the mean
area rainfall and mapping the rainfall level. The former focuses on the overall trend of
rainfall, and the latter cares of boundary of rainfall level with local max-min rainfall.
IDW is very sensitive to weighting power, which is a function of inverse distance. This
means that there is a higher influence or weight when closer to the center of the cell
being estimated. RBF are based on the degree of smoothing across all sample points.
Therefore, IDW methods keep the maximum and minimum value occurring at sample
point, but it can generate at un-sample points in RBF method. Kriging method accounts
for the spatial autocorrelation overall sample points and keeps the smooth of whole
trend. In small area, owing to the weak spatial correlation and strong smoothing effect
of kriging, the local maximum was underestimated and the local minimum was
overestimated. Therefore, various methods are suitable for different purpose. When
considering the overall trend, the Kriging method is more suitable, such as mapping
rainfall distribution in study area. In contrast, IDW and RBF have the stronger ability to
predict the local maximum and minimum and are suitable for interpolation to generate
the rainfall level map.

5 Conclusion

Understanding of the uncertainty of interpolation is vital for flood management, which
is the one of challenges in modern flood management. This paper carried out the
uncertainty analysis on rainfall in urban area, which is a good complement work with
the existing uncertainty analysis on catchment. This paper focus on influence comes
from the gauge density and rainfall intensity. We carefully selected the gauge sample
points with different number manually to our best to covering the study area. The
rainfall intensity data comes from one rainfall event, which weakened the rainfall
variability. Three traditional methods and three machine learning methods were
selected for rainfall interpolation. We draw conclusions from our work: (1) the accu-
racy is largely improved with the increasing of gauge density. (2) The uncertainty is
progressively stable with the increasing of rainfall intensity. In the hourly intensity, the
decreasing of uncertainty with more range of intensity is more obvious than short range
of intensity. (3) Interpolation method selection is a crucial thing to achieve accurate
estimation according to interpolation purpose and rainfall intensity. Overall, the geo-
statistic methods has better performance than deterministic methods owing to consid-
ering spatial variability. But input parameters of geostatistic methods should carefully
calibrate. The machine learning methods have better performance than traditional
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methods but without considering the spatial variability. In the future work, more
combined methods with machine learning will be investigated, meanwhile, the spatial
variability must be examined.
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