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Abstract. The growing concern on environmental issues caused by fos-
sil fuels and, indeed, on the availability of such energy resources in a
long-run basis have settled the ground for the spreading of the so called
green energy sources. Among them, photovoltaic energy stands out due
to the possibility of turning practically any household into a micro power
plant. One important aspect about this source of energy is that practi-
cal photovoltaic generators are equipped with maximum power point
tracking (MPPT) systems. Currently, researchers are focused on devel-
oping MPPT algorithms for partial shaded panels, among which, particle
swarm optimization (PSO) MPPT stands out. PSO is an artificial intel-
ligence method based on the behavior of flock of birds and it works
arranging a group of mathematical entities named particles to deal with
an optimization problem. Thus, this work focus on analyzing the perfor-
mance of this algorithm under different design conditions, which means
different amount of particles and different set points for the constants.
Besides that, the article presents a brief guideline on how to implement
PSO-MPPT. Simulations of an array with three photovoltaic panels,
boost-converter driven, were carried out in order to back the analyzes.

Keywords: Photovoltaic energy generation ·
Maximum power point tracking · Particle swarm optimization

1 Introduction

The growing concern on environmental issues caused by fossil fuels and, indeed,
on the availability of such energy resources in a long-run basis have settled the
ground for the spreading of the so called green energy sources. Among them,
photovoltaic (PV) energy stands out due to the possibility of turning practically
any household into a micro power plant [11]. In views of that, countries such
as Germany, China and Japan have taken the lead, powered either from envi-
ronmental or commercial aims, of the movement of solar photovoltaic energy
spreading [1,20].
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From the technical point of view, it is important to highlight that, in addi-
tion to PV panels, electronic converters, and others hardware components, PV-
based power generation systems should be equipped with Maximum Power Point
Tracking (MPPT) controllers, otherwise they may not extract the maximum
amount of energy from the panel. In fact, the lack of such controllers can even
turn the effective power generation impracticable. In short, the amount of power
harvested from a panel depends on the voltage in the terminal of the panel itself
and this relationship varies with environmental variables such as solar radiance
and temperature. Thus, MPPT controllers act searching in real time for the
voltage which may lead to the Maximum Power Point (MPP) of the panel. It
is worthwhile noticing that methods such as Perturb and Observe (P&O), Hill
Climbing, Incremental Conductance, and plenty of others based in artificial intel-
ligence have already been extensively tested, and are considered to be reliable
for this purpose [2,9,15]. Nonetheless, these methods are prone to fail in face of
partial shading of the panel, situation in which the panel might present multiple
maximum power points.

Regarding the operation under partial shading, a couple of other meth-
ods have already been proposed for MPPT [10], among which Particle Swarm
Optimization (PSO) [7]. This method belongs to the Artificial Intelligence (AI)
branch and is based on the behavior of flock of animals. Its characteristic make
it possible to search for the global MPP (GMPP) without being trapped into
local maxima, which would possible reduce the amount of energy harvested. A
brief review of the literature shows that researchers have widely used different
forms of PSO algorithms in different configurations of PV generation systems.
Some authors have used PSO-MPPT for reducing steady-state oscillations [5]
in a single-converter system, while other have developed algorithms for multi-
converter distributed systems [14]. Besides that, it is also found in the literature
PSO-MPPT applied to grid-tied systems [13]. Furthermore, some researchers
have combined PSO with other techniques [8] or modified the basic concept of
PSO with intention to cut off the random characteristic of the algorithm [16].
Although some authors have analyzed the influence of some parameters, such as
number of particles used in the MPPT, it lacks a full analyze of the influence
of the algorithm settings into the performance of the PSO-MPPT. In views of
that, this work aims at analyzing how the number of particles and the tuning of
constants used in a PSO algorithm affect the performance of MPPT of an array
of partially shaded PV panels. In short, the performance of the PSO-MPPT was
analyzed through simulation for different number of particles and settings for
the constants. For this matter, it was considered a system comprised of an array
of three series-connected panels, a boost converter and a 96V battery. Apart
from these analyses, it is also in the scope of this article to present a detailed
description of the PSO-MPPT used in the simulations.

This work is organized in seven sections as follows: The Sect. 2 presents a
review on how PV panel is modeled and the effects of the partial shading on
the power×voltage (P-V) relationship. Section 3 aims at presenting the scenario
proposed for analysis. After that, an introductory discussion on PSO algorithm
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is carried out in Sect. 4 and, in the sequence, the PSO-MPPT algorithm analyzed
in this work is detailed in Sect. 5. Section 6 presents the methodology used for
analysis along with the simulation results. Finally, conclusions are drawn in
Sect. 7.

2 Photovoltaic Panels

This section aims at depicting the mathematical model used for representing
the PV panels, along with describing its behavior under different radiance and
temperature levels. Besides that, it is also explained the effects of partial shading
on the P-V curve.

2.1 PV Panel Modeling

The single diode model approach [19] was used to represent the PV panel in
the simulation environment. With this model, the PV panel is represented by
current source, Iph, paralleled with direct biased diode and a shunt resistor, Rsh,
as it is presented in Fig. 1. Besides that, a series resistor, Rs, is inserted in the
circuital model so as to modeling the conduction losses of the panel. As the
shunt resistance tends to assume high values [3], the current flowing out of the
PV panel may be expressed by:

Ipv = Iph − Id (1)

where Id is the current flowing through the diode.

Fig. 1. Single-diode equivalent circuit of a photovoltaic cell

Basically, the current source Iph model the panel response to solar irradiation
and, of course, the effect of temperature on the power generation. Thus, this
current can be represented as:

Iph =
G

Gref
Isc,ref + CT (T − Tref ) (2)

where G and T are, respectively, the radiance in W/m2 and temperature in K
which the panel is submitted, whereas Gref and Tref are the reference values of
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these variables for which the short-circuit current Isc,ref was measured. Regard-
ing these last parameters, that is, Gref , Tref and Isc,ref , they generally are
empirical values provided by the manufacturer of the panel. As for the constant
CT , it is simply a temperature coefficient that accounts the effect of this variable
into the short circuit current.

The diode current, on the other hand, can be expressed by:

Id = Io

(
e

Vd
aVt − 1

)
(3)

where Io is the saturation current of the cell, Vt is the thermal voltage of the PV
and a is a factor which depends on the doping of the silicon used in the panel [4].
Different from Io and a, which are constants provided by the manufacturer in
the data-sheet, Vt is computed by means of the following formula:

Vt =
kT

q
(4)

where k is the Boltzmann constant, 1.38×10−23 J/K and q is the electron charge,
1.6 × 10−19 C. The main data of the panel considered throughout this work is
summarized in Table 1.

Table 1. Parameters of the used panel

Parameter Symbol Value

Referential radiance Gref 1000 W/m2

Referential temperature Tref 298.15 K (25 ◦C)

Short-circuit current Ish,ref 3.8 A

Saturation current Io 2.16 × 10−8 A

Diode coefficient a 1.12

Thermal constant CT 0.0024 A/K

Rated power – 60.53 W

Rated voltage – 17.04 V

Number of cells – 36

Considering the PV panel, for which the technical parameters are presented
in Table 1, one may find out the I-V and P-V characteristic curves displayed
in Fig. 2. The dots highlighted on the curves indicates either maximum power
or current in which the maximum power is achieved. It is possible to notice
from Figs. 2(b) and (d) that changes in the radiance and, more significantly, in
the temperature which the panel is submitted shifts the voltage in which the
maximum power point is achieved.
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(a) I-V curve under constant temperature
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(b) P-V curve under constant temperature
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(c) I-V curve under constant radiance
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(d) P-V curve under constant radiance

Fig. 2. I-V and P-V curves of a PV panel. (a) and (b) presents the I-V and P-V curves
for different values of radiance keeping temperature constant at 25 ◦C. (c) and (d)
presents the I-V and P-V curves for different values of temperature keeping radiance
level at 1000 W/m2.
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Fig. 3. P-V curve shapes for an array of three series-connected panels under partial
shading. The vector [G1 G2 G3], placed on each upper left corner, represents the radi-
ance distribution in the panels for that case and the diamond-shaped mark spot the
GMPP.
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2.2 Characteristics of the PV Panel Under Partial Shading
Condition - PSC

The partial shading occurs when an PV panel or an array of panels is submitted
to non-homogeneous distribution of radiance. It means that, due to some external
factors such as clouds, leaves or even birds and others animals covering part of the
panels, the radiance received by part of the cells of a panel is different from the
others. In this situation, either cells or even full panels turn into loads for those
associated to them, which requires the use of bypass diodes for enhancing power
generation [17]. Nonetheless, the result of having panels bypassed when under
PSC is that of changing the characteristic of the P-V curve of the group, making
room for multiple maximum points as illustrated in Fig. 3. It must be pointed
out that the position of the maximum points and quantity of them depends
on factors such as number of cells/panels shaded and unshaded, radiance and
temperature. It is also important to realize that the peak value of each maximum
not necessarily matches the others and that there is no straightforward rule to
determine which maximum point is the greatest. Hence, MPPT algorithms can
be trapped into local maxima rather than the global.

3 Proposed Scenario and Methodology

Figure 4 presents the scenario considered for evaluation of the PSO-based MPPT.
Basically, an array of three series-connected PV panels is feeding a battery
through a boost converter. It is important to notice that an input capacitor,
Cin, is paralleled with the PV array just on the input of the converter. This
capacitor plays an important role in the circuit because it is the storage element
responsible to sustain the voltage across the PV array, vpv. It is also important
to notice that it is possible to change vpv by means adjusting the duty cycle, d,
of the converter. Still on the Fig. 4, the block named Control Algorithms contains

Fig. 4. Reference circuit used throughout the simulations.
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the PSO-MPPT algorithm. As it can be seen, both voltage vpv and current ipv of
the panels are measured and used to compute the power generated. The output
of this block is the duty cycle d which is used to drive the converter. Table 2
presents the parameters used during this paper.

Table 2. Reference for parameters used throughout simulations

Parameter Symbol Value

Input capacitance Cin 30 nF

Filter inductance Lf 0.5 mH

Filter capacitance Cf 50µF

Battery voltage Vdc 96 V

4 Particle Swarm Optimization

Basically, the PSO is an AI-based method, similar to genetic algorithms, based
on the behavior of flock of birds and others animals [6]. It was observed that
the individuals of such groups take advantage of the so call group intelligence to
achieve their collective goal, something like finding shelter or food. To cut the
long story short, if the objective is to find food, rather than concentrating all the
individuals together, the flock is spread over a large area and, as the members
communicate with each other, all of them converge to the place which is supposed
to have more food available. In the same way, a group of individuals, in this
case called particles, is part and parcel of the PSO method. These particles are
spread all over the domain of the problem, and they are programmed to gather
information and to interact with each other in order to find the solution, which,
in general, is the point in the domain which minimizes a previously-established
cost function. As the cost function may present local minimum, finding the
global inflection point requires well setting of the PSO algorithm, besides the
widespread placement of particles.

The PSO algorithm runs on an iterative-approach basis, which means that
each particle is initially placed at different spots and, turn after turn, they move
around, with changing velocity, towards the solution of the problem [18]. It is
important to notice that all spots are mapped on the domain of the problem and,
as it has already been stated, the problem itself is to find the minimum point of
a user-defined cost function. The velocity ui with which a certain particle moves
is given by:

ui[k] = w ui[k − 1] + C1r1(pbesti − x[k − 1])︸ ︷︷ ︸
cognitive component

+C2r2(gbest − x[k − 1])︸ ︷︷ ︸
social component

(5)

where i is the number of the particle, k is the number of the iteration, w is
the inertia weight, C1 and C2 are positive constants, r1 and r2 are random
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numbers ranging from 0 to 1, and x is the position of the particle. Besides that,
the variables pbest and gbest correspond to the best positions (positions which
returned the best results) achieved, respectively, by this particle and by the
whole group, accounting all the previous iterations.

As it can be seen in (5), the velocity of a particle changes with two main parts
named cognitive and social. The former is intended to draw upon the particle’s
own experience, whereas the later focus on the group acquired knowledge. It is
worth noticing that the chosen values of the constants C1 and C2 are straight-
forwardly linked with the dynamic of the algorithm and, because of that, these
values must be adequately tuned according to the objective. As for the random
variables r1 and r2, they play an important role in the searching process, avoiding
the particles to rapidly settle on an unchanging direction of movement [6]. Other
point noteworthy is the role of inertia weight w. The greater this coefficient is,
the wider the domain is explored. In other words, bigger values of w promotes
better the searching for global minimum of the cost function [18]. Finally, the
position of the particle i in the kth iteration is given by:

xi[k] = xi[k − 1] + ui[k] (6)

5 PSO-MPPT

As the voltage across the panels can be controlled by means of changing the duty
cycle, d was chosen to be the variable representing the domain of the problem.
Thus, the position of each particle, this last being referred as qi in some graphs,
represents a duty cycle and was chosen to be updated as follows:

di[k] = di[k − 1] + ui[k − 1] (7)

It should be borne in mind that di[k] must be bounded within the interval [0, 1],
otherwise the PSO algorithm may command a searching outside the domain of
the problem. The same way, (5) can be rewritten as:

ui[k] = ui[k − 1] + C1r1(dbest,i − d[k − 1])︸ ︷︷ ︸
cognitive component

+C2r2(dbest,g − d[k − 1])︸ ︷︷ ︸
social component

(8)

where u, in this case, is the rate of change of the duty cycle, which means the
velocity of the particle, dbest,i and dbest,g take the role of pbest and gbest in (5).
Although they are not used in (8) it is important to point that the values of
power associated to dbest,i and dbest,g shall be stored, respectively, in Pmax,i and
Pmax,g. Unfortunately (8) has no bounds and must not be used in this form,
otherwise it could threaten the performance of the algorithm. Among different
methods for limiting the rate of changing of the duty cycle, it was chosen the
trigonometric approach used in [12]. Thus, (8) must be rewritten as:

ui[k] =
2
π

tg−1
(
wui[k−1]+C1r1(dbest,i−di[k−1])+C2r2(dbest,g−di[k−1])

)
(9)
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since the image of the inverse tangent is [−π/2, π/2] and it only returns ±π/2
in case the argument reaches ±∞, this formula bounds the velocity within the
interval (−1, 1).

When it comes to the cost function, the approach presented in (Sect. 4) was
changed according to the current objective—find the MPP. Hence, the algorithm
was arranged to search for a maximum instead of a minimum of a function, and
this function was considered to be the power produced by the converter.
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Fig. 5. Particle swarm convergence for three particles, q0, q1 and q2. The size of the
arrows are proportional to the velocities and the graphs show the paths from (a) 1st
to 2nd, (b) 2nd to 3rd, and (c) 3rd to 4th iterations.

Once explained how the position and velocity of each particle is computed,
it is time to present the PSO-MPPT algorithm. Firstly, all particles have to be
initialized and this takes an important role in the process. For proper convergence
it is necessary not only a certain minimum number of particles, but also that
these are properly spread throughout the domain of the problem. To better
understand this process, Fig. 5 exemplifies the desired behavior for a case with
three particles. In the leftmost square is presented the particles in their initial
position, notice that rather than displaying actually the position (duty cycle) it
was chosen to spot the point into the P-V curve associated to it. After a couple
of turns, the particles move to the positions shown on the central graph and
latter on they converge to the global maximum point, as shown in the graph on
the right. In order to have a faster and more accurate convergence process it was
assigned different ranges for the initialization of each particle. It means that in
case we have n particles, their initial position might be a random number within
specific intervals, as follows:

d1[0] = rand
((

0, 1
n

])

d2[0] = rand
((

1
n , 2

n

])
...

dn[0] = rand
((

n−1
n , 1

])
(10)

where rand() is a function which returns a random number within the interval
given. This approach guarantee the widespread placement of the particles in the
first turn. It was also chosen ui[0] = 0 as initial velocity for each particle.
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Fig. 6. Particle swarm algorithm flowchart for n particles. The swarm loop represents
the process of going from particle to particle testing the power response. The halt loop
goes off whenever the particles converge to GMPP.

After setting the initial states of the particles, the iterative process goes off. In
every cycle k, the positions di[k] of all n particles are updated according to Eq. (7)
and, then, the converter is driven with each value in sequence to compute the
generated power Pi[k], from vpv and ipv, associated to each particle. Notice that
whenever the duty cycle is changed the circuit undergoes transient state. That
is why the measurement of the power is delayed in 4.5ms. In addition to that,
instead of using the instantaneous power, it was chosen to be used the average
power computed over 50 samples (covering a period of 0.5ms) to guarantee that
any oscillation or noise in the signals do not compromise the proper work of the
algorithm. In case the Pi[k] surpass the maximum power, Pmax,i, achieved by
the particle so far, di[k] is assigned to dbest,i, and Pi[k] to Pmax,i. Before finishing
the iteration, after all particles have been tested, Pmax,g and dbest,g are updated,
case any Pmax,i surpass its previous value, and the velocities ui[k] are computed.
Attention have to be raised to the fact that even after converging to the MPP,
the particles still continue changing position due to the random characteristic of
the process and it can cause oscillations on the power generated. Thus, it was
chosen to halt the algorithm, and drive the converter with dbest,g, whenever the
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particles crowd each other in a small neighborhood. To infer if the particles are
next to each other is used the standard deviation of the average point of Pi[k],
given by:

σ[k] =

√√√√ 1
n

n∑
i=1

(Pi[k] − μ[k])2 (11)

where

μ[k] =
1
n

n∑
i=1

Pi[k] (12)

is the average power of all particles after the kth iteration. The halt loop is
commanded to arise whenever σ[k] < 0.8 is satisfied. The flowchart in Fig. 6
summarizes the algorithm. Notice that once halt, the searching process only
restarts if occurs a fluctuation in the generated power P bigger than 5%.

6 Methodology and Analysis of Results

This section aims at analyzing the performance of the PSO-MPPT under dif-
ferent setting conditions, it means, different number of particles, values of the
constants w, C1 and C2. Firstly, it was defined a set of values of the parameters
for which the PSO algorithm was to be analyzed. The number of particles, for
instance, was set for 3, 5, 7 and 9, on a row, the constants C1 and C2, on the
other hand, were varied from 1 to 2 with steps of 0.2 and the inertia constant
w from 0.2 to 1.0 with the same step size, totaling 720 different combinations of
setting points. Considering this space, a set of eight simulations were carried out
for each combination to access the performance of the algorithm under different
environment conditions. Half of these considered partial shading condition, each
one with a different pattern, and the other half full coverage of the sun, with
different levels of radiance. The temperature, on the other hand, was held con-
stant at 25 ◦C for all the aforementioned cases. In summary, it was carried out
5760 simulations, 2880 of which considering partial shading condition. Table 3
summarizes the ranges in which each variable of the simulations were varied.

Table 3. PSO search range parameters

Parameter Range Step Unit

w (0.2, 1) 0.2 –

C1 (1, 2) 0.2 –

C2 (1, 2) 0.2 –

n (3, 9) 2 –

G1, G2, G3 (400, 1000) 200 Wm−2

Tenv 25 0 ◦C
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For the sake of classifying the results, were binarily classified into group A,
for those which reached accuracy higher than 99% (virtually 100% accuracy),
and group B, for all the other results. In this context, accuracy represents the
per unit value of the power produced by the converter taking as reference the
theoretical MPP for each case. The global results of simulations and classification
are shown in histogram in Fig. 7. As expected, the experiments in scenarios
without shading produced virtually 100% accuracy for all the cases. Meanwhile,
under partial shading the tests unveiled that only 87.67% (2525) were classified
into the group A. Here it is important do state that among those nearly 12%
which were classified into the group B, some ended up in a local maxima and
others did not converge.

Fig. 7. Accuracy and classification of simulation results independently of the settings

Thenceforth, to compare performance of parameters it was defined the suc-
cess rate, SR, of the MPPT as follows:

SR(i, j,m, l) =
|A|

|A| + |B|
∣∣∣∣
C1(i),C2(j),w(m),n(l)

⎧
⎪⎨
⎪⎩

i, j ∈ N∗ | i, j < 7
m ∈ N∗ | m < 6
l ∈ N∗ | l < 5

(13)

Where |A| and |B| represents the number of cases classified in groups A and B
for a specific combination or parameters n, C1, C2 and w. In short, SR(i, j,m, l)
informs the percentage of cases which were classified in the group A for each
combination of parameters.

Since the swarm size n is the principal hyper-parameter in the algorithm, we
partitioned the SR using this metric. For each number of particles we tested 720
scenarios and the success rate SR for them is shown in Fig. 8. In these graphs,
the colors blue and yellow represent the extremities of the results: the lowest
and the highest levels of SR. Thus, it was possible to find from Fig. 8(b) that
there are 13 combinations of C1 and C2 regarding the case with n = 5 which
the success rate achieved 100%, indicating that all these tests (260) converged
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to the GMPP. Notice that the inertia constant varies among all these tests and
it is going to be analyzed in the sequence. Due to the fact that the chart for five
particles presented the greatest yellow area amongst all, it was decided that the
best tracking performance is achieved with n = 5.
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Fig. 8. Success rate mapping for different number of particles (a) n = 3: 5 pairs with
SR = 100%. (b) n = 5: 13 pairs with SR = 100%. (c) n = 7: 7 pairs with SR = 100%.
(d) n = 9: 2 pairs with SR = 100%. (Color figure online)

Considering the 260 successful cases, it means, those detailed in the previous
paragraph (n = 5), it was analyzed the average convergence time and the results
presented in the Table 4. It is observed that the average time grows with the
value of the inertia constant w. This happens because, once w goes bigger, the
velocity of the particles tends to significantly increase and, thus, the particles
jump around the GMPP, leading the PSO algorithm into a larger settling time.
It is noticeable, as well, that there is an optimum region on the domain C1–C2,
represented in Table 4(a) by dashed cells. In this region, the tracking process
reaches its lowest value, 0.251 s. It is important to notice that the bounding
technique used in (9) is responsible for making different values of C1 and C2

produce the same settling time.
In summary, the best results were achieved when swarm size was set for five

particles, the constants for cognitive and social components C1 and C2 were both
set for 1.6, and the inertia weight w for 0.2.
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Table 4. Average time in seconds to reach GMPP for class A with size n = 5, parti-
tioned by w. The parameters C1 and C2 already identified are in boldface inside the
dashed cells.

Figure 9 shows the convergence process observed in the best scenario
addressed in the simulation and Fig. 10 shows the search domain. It is high-
lighted in Fig. 9(c) the final value of dbest,g and in (a), the system reached the
GMPP at 120W, for this case. It is possible to notice that it took about 0.25 s,
which correspond to 10 swarm cycles, for the system reach to the GMPP. Thus,
the hatched areas on the graphs corresponds to the period in which the PSO
algorithm was halted for there was not changes into the position of the MPP.
These chart also allow us to visualize the heart of the PSO algorithm: the chang-
ing values observed in the power and duty cycle shows the algorithm testing the
position of each particle on a row, cycle after cycle. Notice that both variables
are related to the converter, which means they comprise the results for all the
particles of the swarm. As the time moves on, the particles start searching in a
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Fig. 9. Convergence process. (a) Output power of PV. (b) Duty cycle. (c) Best duty
cycle during search process. After time 0.25 s the search algorithm halts and dbest,g is
steadily delivered to the power converter.
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Fig. 10. P -V curve showing the tracked global power point with success rate of 99.9%
(best set of parameters found).

narrower neighborhood, which means the difference of duty cycle from particle
to particle and from cycle to cycle gradually fade, and eventually they converged
to the MPP. It is also worthwhile noticing that dbest,g is only changed twice and
this results comes from the widespread placement of the particles during the
initialization process.
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7 Conclusions

This paper presented a general review of the use of PSO in MPPT and the
influence of the adjustment of parameters into the performance of the MPP
tracking. In a nutshell, it has been presented a grid search over a space of 5760
scenarios for the best combination of parameters, number of particles, C1, C2

and w, for the proposed algorithm. From the results, it was possible to conclude
that the algorithm is effective and reached the GMPP in almost 88% of proposed
cases independently of the settings (number of particles and chosen values for
C1, C2 and w). It was also noticed that the rate of non-convergence, which in
fact, for this analysis, means not reaching the GMPP before t = 3 s, was low
with only 39 out of 5760 cases reporting this behavior. Of course, the algorithm
was able to reach the GMPP nearly 100% of the cases for n = 5, C1 = C2 = 1.6
(best setting arrangement). It was also spotted that the best performances, when
it comes to the convergence time, led the algorithm to reach GMPP in about
0.25 s.

Besides that, it is also possible to draw some conclusions about the relation-
ship between parameter adjustment and tracking performance:

– Swarm size (n): large number of particles leads to a slower convergence time.
– Inertia coefficient (w): larger value can slow the convergence time since it

might require more cycles for all particles get closer to the GMPP.
– Cognitive and social components: inside the algorithm C1 and C2 contributes

either for local and global maximum searching.

One last point to be made concerns the effect of the general configuration
on the results achieved. Since in the present analysis was considered only cases
with one, two or three local maxima, it is not possible to guarantee that the
performance will be the same for the cases where more than three maxima
occurs.
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